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Covers and the curve complex

KASRA RAFI

SAUL SCHLEIMER

We provide the first nontrivial examples of quasi-isometric embeddings between
curve complexes; these are induced by orbifold covers. This leads to new quasi-
isometric embeddings between mapping class groups. As a corollary, in the mapping
class group normalizers of finite subgroups are undistorted.

57M99; 30F99

1 Introduction

The coarse structure of the complex of curves was first studied by Masur and Min-
sky [14]. Central in low-dimensional topology, the curve complex sheds light on the
algebra of the mapping class group, the global geometry of Teichmüller space and
the fine structure of hyperbolic three-manifolds. It is also relevant to the geometric
study of other combinatorial spaces with a mapping class group action such as the
mapping class group itself, the pants complex, the Hatcher–Thurston complex and the
arc complex. Little is known about the subspace structure of these; thus, we propose:

Problem 1.1 Classify quasi-isometric embeddings between combinatorial spaces, as
given above.

In this paper we produce the first examples of quasi-isometric embeddings of lower
into higher complexity curve complexes, yielding new embeddings between mapping
class groups. Our embeddings are induced by orbifold covering maps. We also briefly
discuss other topological operations, namely puncturing and taking subsurfaces.

Covering

Suppose that S is a compact connected orientable orbifold of dimension two with
nonpositive orbifold Euler characteristic. Let Sı denote the surface with boundary
obtained by removing an open neighborhood of the orbifold points. Define C.S/ to be
the curve complex of Sı (see Definition 2.1). We also define the complexity of S :

�.S/D 3 genus.Sı/Cj@Sıj � 3:
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Let P W †! S be an orbifold covering map. The covering P defines a one-to-many
relation …W C.S/! C.†/; the curve b 2 C.S/ is related to ˇ 2 C.†/ if P .ˇ/D b .
We will call ˇ a lift of the curve b and say that ˇ is symmetric.

Theorem 8.1 The covering relation …W C.S/! C.†/ is a Q–quasi-isometric embed-
ding. The constant Q depends only on �.S/ and the degree of the covering map.

Theorem 8.1 is surprising in light of the fact that the commonly discussed subspaces
of the curve complex, such as the complex of separating curves, the disk complex of
a handlebody and so on, are not quasi-isometrically embedded. We remark that the
orbifold covering map cannot be replaced by a branched cover. The orbifold structure
keeps track of which boundary components of the cover of Sı must be capped off
to obtain †ı . Also, geometric structure lifts via orbifold covering; this is used in the
proof that the relation … is everywhere defined.

Let MCG.S/ be the orbifold mapping class group. We prove:

Theorem 9.1 The covering P induces a quasi-isometric embedding

…�WMCG.S/!MCG.†/:

When the cover is regular, a stronger statement holds.

Theorem 9.6 Suppose that ��MCG.†/ is a finite subgroup. Then the normalizer
of � in undistorted in MCG.†/.

Note that many algebraically defined subgroups of the mapping class group, such as
the Torelli group, are distorted; see Broaddus, Farb and Putman [4].

Puncturing

Suppose that S is a closed orientable surface of genus g � 2 and † is the surface of
genus g with one puncture. The following theorem follows directly from a construction
of Harer [9, Lemma 3.6]: choose a hyperbolic metric on S and remove a point in the
complement of all simple closed geodesics. Choosing an identification of † and the
punctured surface now gives an embedding …W C.S/! C.†/.

Theorem 1.2 The construction above yields uncountably many isometric embeddings
of C.S/ into C.†/.

The same construction gives quasi-isometric embeddings of MCG.S/ into MCG.†/.
This result for mapping class groups was previously obtained by Mosher via a different
technique [18, Quasi-isometric section lemma].
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Subsurfaces

For completeness, we briefly mention another topological construction. Suppose
that † is a compact orientable surface, S � † is a cleanly embedded subsurface,
and † X S has no annular components. The inclusion of S into † induces an
obvious, but important, simplicial injection of curve complexes. This injection is not
a quasi-isometric embedding; the image has diameter two. However the inclusion
does induce a quasi-isometric embedding of mapping class groups. That is, these
subgroups are undistorted. This follows directly from the summation formula of Masur
and Minsky [15, Theorems 7.1, 6.10 and 6.12] and was independently obtained by
Hamenstädt [7, Theorem B and Corollary 4.6].

Quasi-isometry group

A special, but quite deep, instance of Problem 1.1 is the computation of the quasi-
isometry group. This has recently been obtained for the mapping class group by
Behrstock, Kleiner, Minsky and Mosher [1] and also by Hamenstädt [8]. They show
that the quasi-isometry group is virtually equal to the isometry group; in other words,
the mapping class group is rigid.

Using the rigidity of the mapping class group, the structure of the boundary of the
curve complex and an understanding of cobounded laminations we show in [21] that
the quasi-isometry group of the curve complex is again the mapping class group.

Outline of the proof of Theorem 8.1

Suppose that P W †! S is a covering map. In this outline we assume that �.S/ > 1.
We deal with special cases in the body of the proof.

To prove that the relation …W C.S/ ! C.†/ is a quasi-isometric embedding we
must show, for a; b 2 C.S/ and lifts ˛; ˇ 2 C.†/, that dS .a; b/ is comparable to
d†.˛; ˇ/. The inequality dS .a; b/ � d†.˛; ˇ/ is clear; the relation … is simplicial
when �.S/> 1.

Two steps are required to reverse the inequality. We first give a new estimate of distance
in the complex of curves (Theorem 6.1). We then analyze the behavior of our estimate
under lifting.

In more detail: choose x;y 2 T .S/, the Teichmüller space of S , so that a has
bounded length in x and the same holds for b in y . Let G be the Teichmüller geodesic
connecting x and y . The part of G lying in the thick part of Teichmüller space
contributes linearly to the distance in C.S/ between a and b (Lemma 4.4).

Geometry & Topology, Volume 13 (2009)
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Next, we introduce .T0;T1/–antichains: this is an antichain, in the poset of subsurfaces
of S , with thresholds T0 and T1 (Section 5). The size of the antichain linearly estimates
the number of vertices appearing in a C.S/–geodesic while G travels through the thin
part of Teichmüller space. The sum of the estimates in the thick and thin parts is then
comparable to the distance in the curve complex (Theorem 6.1).

Let � be the lift of G , which is again a Teichmüller geodesic with identical parameter-
ization. This follows from the well-known fact that covering maps induce isometric
embeddings of Teichmüller spaces (Section 7). The curves ˛ and ˇ have bounded
lengths at the endpoints of � . We now estimate d†.˛; ˇ/ as above. When G is in the
thick part, the same holds for � . Thus the thick part of � contributes at least as much
to d†.˛; ˇ/ as the thick part of G contributes to dS .a; b/.

We next prove that the lift of an antichain is again an antichain, perhaps with weaker
thresholds. A key point is Lemma 7.2, stating that any subsurface � of †, having
d�.˛; ˇ/ large, is symmetric. In fact, such � is a lift of a subsurface Z where
dZ .a; b/ is large and we may apply induction. Therefore, the estimate for dS .a; b/

and d†.˛; ˇ/ are comparable (Theorem 8.1).

Our use of Teichmüller geodesics appears unavoidable: for example, Masur–Minsky
hierarchies do not, a priori, have good properties with respect to covering maps. The
main geodesic does lift to a quasi-geodesic, but this only becomes clear a posteriori.
The antichains we use are, in fact, a subset of the domains mentioned in a hierarchy.
However, antichains choose the correct subset.

Acknowledgments We thank the referees for useful comments. We thank the Mathe-
matical Sciences Research Institute for its hospitality in the fall of 2007.

2 Background

We begin by introducing some convenient notation: if A;B; c are nonnegative real
numbers with c> 0 and if A� cBCc, then we write A�c B . If A�c B and B �c A,
then we write A�c B .

Suppose X and Y are metric spaces and f W X ! Y is a relation. Then f is a c–
quasi-isometric embedding if for all x;x0 2 X and for all y 2 f .x/;y0 2 f .x0/ we
have dX .x;x

0/�c dY.y;y
0/. We say that f is a c–quasi-isometry if additionally a

c–neighborhood of f .X / equals Y .

Suppose that † is a compact orientable orbifold, of dimension two, with nonpositive
orbifold Euler characteristic. For definitions and discussion of orbifolds we refer the
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reader to Scott’s excellent article [23]. Recall that †ı is the surface obtained by
removing an open neighborhood of the orbifold points from †. In many respects there
is no difference between † and †ı ; we will use whichever is convenient and remark
on the few subtle points as they arise.

A simple closed curve ˛ �†, avoiding the orbifold points, is inessential if ˛ bounds
a disk in † containing one or zero orbifold points. The curve ˛ is peripheral if ˛ is
isotopic to a boundary component. Note that isotopies of curves are not allowed to
cross orbifold points.

Definition 2.1 [10] When �.†/ > 1 the complex of curves C.†ı/ has as its vertices
isotopy classes of essential, nonperipheral curves. A collection of kC1 distinct vertices
spans a k –simplex if every pair of vertices has disjoint representatives.

There is a different definition when �.†/� 1. When †ı is a torus, once-holed torus
or a four-holed sphere the curve complex of †ı is the Farey graph; since all curves
intersect, edges are instead placed between curves that intersect exactly once or exactly
twice, respectively. The curve complex of the three-holed sphere is empty.

If †ı is an annulus, then vertices of C.†ı/ are essential arcs in †ı , considered
up to isotopy relative to their boundary. Edges are placed between vertices with
representatives having disjoint interiors. (The resulting complex is quasi-isometric
to Z.) The assumption on the Euler characteristic of † prevents †ı from being a disk
or a sphere.

To obtain a metric, give all edges of C.†/ length one and denote distance between
vertices by d†. � ; � /. It suffices to study the one-skeleton of C.†/, for which we use
the same notation, because the one-skeleton and the entire complex are quasi-isometric.

3 Subsurface projection

Suppose that † is a compact connected orientable orbifold. A strict suborbifold ‰ is
cleanly embedded if every component of @‰ is either a boundary component of † or
is an essential nonperipheral curve in †. All suborbifolds considered will be cleanly
embedded.

From Masur and Minsky [14], recall the definition of the subsurface projection relation

�‰W C.†/! C.‰/

defined when ‰ı is not a three-holed sphere. Suppose first that † has negative
orbifold Euler characteristic and ‰ı is not an annulus. Choose a complete finite
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volume hyperbolic metric on the interior of †. Let †0 be the Gromov compactification
of the cover of † corresponding to the inclusion �orb

1
.‰/! �orb

1
.†/. Thus †0 is

homeomorphic to ‰ ; this gives a canonical identification of C.‰/ with C.†0/. For
any ˛ 2 C.†/, let ˛0 be the closure of the preimage of ˛ in †0 . If every component of
˛0 is properly isotopic into the boundary then ˛ is not related to any vertex of C.‰/;
in this case we write �‰.˛/ D ∅. Otherwise, let ˛00 be a component of ˛0 that is
not properly isotopic into the boundary. Let N be a closed regular neighborhood of
˛00[ @†0 . Since ‰ı is not a three-holed sphere there is a boundary component ˛000 of
N which is essential and nonperipheral. We then write ˛000 2 �‰.˛/.

If ‰ is an annulus the projection map is defined as above, omitting the final steps
involving the regular neighborhood N .

It remains to deal with the case where �orb.†/ D 0 and ‰ is a cleanly embedded
annulus. Here † is either a torus or a square pillow: a sphere with four orbifold points
of order two. In either case, fix a flat metric on †. Let  be the core curve of the
annulus ‰ . Isotope ˛ and  to be geodesic. When † is a torus we cut along  and
take the closure of the resulting annulus; � .˛/ is the remains of ˛ . When † is a
square pillow, the geodesic  is replaced by the parallel geodesic arcs connecting pairs
of orbifold points.

We say a curve ˛2C.†/ cuts the suborbifold ‰ if �‰.˛/¤∅. Otherwise, ˛ misses ‰ .
Suppose now that ˛; ˇ 2 C.†/ both cut ‰ . Define the projection distance to be

d‰.˛; ˇ/D diam‰.�‰.˛/[�‰.ˇ//:

The bounded geodesic image theorem, due to Masur and Minsky [15], states:

Theorem 3.1 Fix a surface †. There is a constant M D M.†/ with the following
property. Suppose that ˛; ˇ 2 C.†/ are vertices, ƒ� C.†/ is a geodesic connecting ˛
to ˇ and �¨† is a subsurface. If d�.˛; ˇ/ �M then there is a vertex of ƒ which
misses �.

4 Teichmüller space

In this section we take † to be a surface. Let T .†/ denote the Teichmüller space
of †: the space of complete hyperbolic metrics on the interior of †, up to isotopy. For
background see Bers [2] and Gardiner [6].

There is a uniform upper bound on the length of the shortest closed curve in any
hyperbolic metric on †. For any metric � on †, a curve  has bounded length in �
if the length of  in � is less than this constant. Let e0 D e0.†/ > 0 be a constant
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such that, for curves  and ı , if  has bounded length in � and ı has a length less
than e0 then  and ı have intersection number zero.

Suppose that ˛ and ˇ are vertices of C.†/. Fix metrics � and � in T .†/ so that
˛ and ˇ have bounded length at � and � respectively. Let �W Œt� ; t� �! T .S/ be a
geodesic connecting � to � . For any curve  let lt . / be the length of its geodesic
representative in the hyperbolic metric �.t/. The next result follows from the proof
of [20, Proposition 3.7]; see also [19, Theorem 5.5].

Theorem 4.1 (Large implies short.) For every positive e� e0 there is a threshold Te

such that, for a strict subsurface � of †, if d�.˛; ˇ/� Te then there is a time t� so
that the length of each boundary component of � in �.t�/ is less than e.

There is also a converse [19, Theorems 6.1, 7.1, 7.3].

Theorem 4.2 (Short implies large.) For every threshold T1 there is a constant e1

such that if lt . / � e1 for some curve  and for some time t , then there exists a
subsurface ‰ disjoint from  having d‰.˛; ˇ/� T1 .

The shadow of the Teichmüller geodesic � inside of C.†/ is the set of curves  so that
 has bounded length in �.t/ for some t 2 Œt� ; t� �. The following is a consequence of
the fact that the shadow is an unparameterized quasi-geodesic. (See Theorem 2.6 and
then apply Theorem 2.3 in [14].)

Theorem 4.3 The shadow of a Teichmüller geodesic inside of C.†/ does not backtrack
and so satisfies the reverse triangle inequality. That is, there exists a backtracking
constant BD B.†/ such that if t� � t0 � t1 � t2 � t� and if i has bounded length in
�.ti/, i D 0; 1; 2 then

d†.0; 2/� d†.0; 1/C d†.1; 2/�B:

We say that �.t/ is e–thick if the shortest closed geodesic  in �.t/ has a length of at
least e.

Lemma 4.4 For every e>0 there is a progress constant P>0 so that if t� � t0� t1� t� ,
if �.t/ is e–thick at every time t 2 Œt0; t1�, and if i has bounded length in �.ti/
(i D 0; 1), then

d†.0; 1/�P t1� t0:

Geometry & Topology, Volume 13 (2009)
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Proof Since �.t/ is e–thick at every time t 2 Œt0; t1�, from Theorem 4.1 we deduce
that d�.0; 1/ � Te for every strict subsurface of � of †. The lemma is then a
consequence of Theorem 1.1 and Remark 5.5 in [20]. (Referring to the statement
and notation of [20, Theorem 1.1]: Extend i to a short marking �i . Take k large
enough such that the only nonzero term in the right hand side of [20, Equation (1)] is
d†.�0; �1/.)

In general the geodesic � may stray into the thin part of T .S/. We take ��e to be
the set of times in the domain of � which are e–thick. Notice that ��e is a union
of closed intervals. Let �.e; L/ be the union of intervals of ��e which have length
at least L. We use j�.e; L/j to denote the sum of the lengths of the components of
�.e; L/.

Lemma 4.5 For every e there exists Le such that if L� Le , then

d†.˛; ˇ/� j�.e; L/j=2P:

Proof Pick Le large enough so that, for L� Le ,

.L=2P/� PC 2B:

Realize �.e; L/ as the union of intervals Œti ; si �, i D 1; : : : ;m. Let i be a curve of
bounded length in �.ti/ and ıi be a curve of bounded length in �.si/.

By Theorem 4.3 we have

d†.˛; ˇ/�

�X
i

d†.i ; ıi/

�
� 2mB:

From Lemma 4.4 we deduce

d†.˛; ˇ/�

�X
i

1

P
.si � ti/�P

�
� 2mB:

Rearranging, we find

d†.˛; ˇ/�
1

P
j�.e; L/j �m.PC 2B/:

Thus, as desired:

d†.˛; ˇ/�
1

2P
j�.e; L/j:
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5 Antichains

Consider two curves ˛; ˇ 2 C.†/. As discussed in the introduction, we would like to
estimate the length of the geodesic Œ˛; ˇ� in C.†/ corresponding to the times when
the Teichmüller geodesic � D Œ�; � � is in the thin part of T .†/. At such a time,
Theorem 4.2 gives a suborbifold � with d�.˛; ˇ/ large. However, the number of
these suborbifolds is not a good estimate for the distance in the complex of curves;
many suborbifolds with high projection distance may be disjoint from a single curve
in the geodesic Œ˛; ˇ�. Nonetheless, by carefully choosing a subcollection of such
suborbifolds, we can find a suitable estimate.

Fix ˛ and ˇ in C.†/ and thresholds T1 �T0 > 0. We say that a set J of suborbifolds
�¨†, is a .T0;T1/–antichain for .†; ˛; ˇ/ if J satisfies the following properties.
� J is an antichain in the poset of suborbifolds ordered by inclusion: if �;�0 2J

then � is not a strict suborbifold of �0 .
� If � 2 J then d�.˛; ˇ/� T0 .
� If ‰ ¨† and d‰.˛; ˇ/� T1 then ‰ is a suborbifold of some element of J .

Notice that there may be many different antichains for the given data .†; ˛; ˇ;T0;T1/.
One particularly nice example is when T0DT1DT and J is defined to be the maxima
of the set

f�¨† j d�.˛; ˇ/� Tg

as ordered by inclusion. We call this the T–antichain of maxima for .†; ˛; ˇ/. By jJ j
we mean the number of elements of J . We may now prove:

Lemma 5.1 For every orbifold † and for every pair of sufficiently large thresholds
T0;T1 , there is an accumulation constant A† D A.†;T0;T1/ so that if J is an
.T0;T1/–antichain for .†; ˛; ˇ/, then

d†.˛; ˇ/� jJ j=A†:

Proof We proceed via induction on the complexity of †. In the base case, when
C.†ı/ is the Farey graph, J is the set of annuli whose core curves  have projection
distance d .˛; ˇ/� T0 . In this case, assuming T0 > 3, every such curve  is a vertex
of every geodesic connecting ˛ to ˇ [17, Section 4]. Therefore the lemma holds for
Farey graphs with A† D 1.

Now assume the lemma is true for all surfaces with complexity less than �.†/. Note
that there exists a constant C so that if ��‰ �† and ˛0; ˇ0 are the projections of
˛; ˇ to ‰ then

jd�.˛; ˇ/� d�.˛
0; ˇ0/j � C:
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We take thresholds T0 and T1 for † large enough so that for the .T0;T1/–antichain J
we have:

� The lemma applies to any strict suborbifold ‰ with thresholds T0�C;T1CC.

� T0�M.†/; thus by Theorem 3.1 for any orbifold in �2J and for any geodesic
ƒD Œ˛; ˇ� in C.†/ there is a curve  in ƒ so that  misses �.

For ‰ ¨†, define

A‰ D A.‰;T0�C;T1CC/ and J‰ D f� 2 J j�¨‰g:

Claim Suppose that  is a vertex in ƒD Œ˛; ˇ� and ‰ is a component of †X . Then

jJ‰j � A‰ � .T1CC/:

Proof of claim If ‰ is a suborbifold of an element of J then J‰ is the empty set
and the claim holds vacuously. Thus we may assume that

d‰.˛; ˇ/ < T1:

Let ˛0 and ˇ0 be the projections of ˛ and ˇ to ‰ . From the definition of C, J‰ is a
.T0�C;T1CC/–antichain for ‰; ˛0 and ˇ0 . Thus,

T1 > d‰.˛; ˇ/� d‰.˛
0; ˇ0/�C� jJ‰j=A‰ �C;

with the last inequality being the induction hypothesis. Hence,

T1CC� jJ‰j=A‰:

Now consider a vertex  2ƒ. Note that †X  has at most two components, say ‰
and ‰0 . Any element of J not cut by  is either a strict suborbifold of ‰ or ‰0 ,
an annular neighborhood of  , or ‰ or ‰0 itself. Therefore, by the above claim, the
maximum number of orbifolds in J that are disjoint from  is

.A‰CA‰0/.T1CC/C 3:

Since every orbifold in J is disjoint from some vertex of ƒ, the lemma holds for
A.†;T0;T1/ equal to

2 �maxfA‰ j‰ ¨†g � .T1CC/C 3:
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6 An estimate of distance

Again, take † to be a surface. In this section we provide the main estimate for d†.˛; ˇ/.
Let e0 be as defined in Section 4. We choose thresholds T0 � Te0

(see Theorem 4.1)
and T1 so that Lemma 5.1 holds. Let e1 be the constant provided in Theorem 4.2
and let e> 0 be any constant smaller than minfe0; e1g. Finally, we pick Le such that
Lemma 4.5 holds and such that Le=2P> 4. Let L be any length larger than Le .

Theorem 6.1 Let T0 , T1 , e and L be constants chosen as above. There is a constant
KD K.†;T0;T1; e; L/ such that for any curves ˛ and ˇ , any .T0;T1/–antichain J
and any Teichmüller geodesic � , chosen as above, we have

d†.˛; ˇ/�K jJ jC j�.e; L/j:

Proof For K� 2 �max.A; 2P/, the inequality

d†.˛; ˇ/�K jJ jC j�.e; L/j

follows from Lemmas 5.1 and 4.5. It remains to show that

d†.˛; ˇ/�K jJ jC j�.e; L/j:

For each � 2 J fix a time t� 2 Œt� ; t� � so that all boundary components of � are
e0 –short in �.t�/ (see Theorem 4.1). Let E be the union:˚

t�
ˇ̌
� 2 J ; t� 62 �.e; L/

	
[
˚
@I
ˇ̌

I a component of �.e; L/
	
:

We write E D ft0; : : : ; tng, indexed so that ti < tiC1 .

Claim The number of intervals in �.e; L/ is at most jJ jC 1. Hence, jE j � 3jJ jC 1.

Proof There is at least one moment s between any two consecutive intervals I;J �

�.e; L/ when some curve  becomes e–short (and hence e1 –short). Therefore, by
Theorem 4.2,  is disjoint from a subsurface ‰ where d‰.˛; ˇ/ � T1 . Since J is
an .T0;T1/–antichain, ‰ is a subsurface of some element � 2 J . It follows that
d†.; @�/� 2. This defines a one-to-many relation from pairs of consecutive intervals
to J . To see the injectivity consider another such pair of consecutive intervals I 0 and
J 0 , a moment s0 between them and a corresponding curve  0 and subsurface �0 . Let
� 0 D �jŒs;s0� . Applying Lemma 4.5 to � 0 , we find

d†.; 
0/� L=2P> 4

and therefore � is not equal to �0 .
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Let i be a curve of bounded length in �.ti/.

Claim

d†.i ; iC1/�

(
P.tiC1� ti/CP; if Œti ; tiC1�� �.e; L/;

2BCPLCPC 4; otherwise.

Proof The first case follows from Lemma 4.4. So suppose that the interior of Œti ; tiC1�

is disjoint from the interior of �.e; L/.

We define sets IC; I� � Œti ; tiC1� as follows: A point t 2 Œti ; tiC1� lies in I� if
� there is a curve  which is e–short in �.t/ and
� for some � 2 J , so that d†.@�;  /� 2, we have t� � ti .

If instead t� � tiC1 then we place t in IC . Finally, we place ti in I� and tiC1 in IC .

Notice that if � 2 J then t� does not lie in the open interval .ti ; tiC1/. It follows
that every e–thin point of Œti ; tiC1� lies in I� , IC , or both. If t 2 I� and  is the
corresponding e–short curve then d†.i ;  /� BC2. This is because either t D ti and
so  and i are in fact disjoint, or there is a surface � 2 J as above with

2� d†.@�;  /� d†.i ;  /�B:

Similarly, if t 2 IC then d†.iC1;  /� BC 2.

If IC and I� have nonempty intersection then d†.i ; iC1/� 2BC 4 by the triangle
inequality.

Otherwise, there is an interval Œs; s0� that is e–thick with length less than L such that
s 2 I� and s0 2 IC . Let  and  0 be the corresponding short curves in �.s/ and
�.s0/. Thus

d†.i ;  /� BC 2 and d†.
0; iC1/� BC 2:

We also know from Lemma 4.4 that

d†.; 
0/� PLCP:

This finishes the proof of our claim.

It follows that

d†.˛; ˇ/� d†.0; 1/C � � �C d†.n�1; n/

� .2BCPLCPC 4/jE jCPj�.e; L/jCPjE j
�K jJ jC j�.e; L/j

for an appropriate choice of K. This proves Theorem 6.1.
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7 Symmetric curves, surfaces and metrics

Suppose that S is a compact connected orientable orbifold, of dimension two, with
nonpositive orbifold Euler characteristic. Let P W †! S be an orbifold covering map.
Recall that the covering P defines a relation …W C.S/! C.†/: a curve b 2 C.S/ is
related to ˇ 2 C.†/ if P .ˇ/D b . If ˇ 2….b/ then we call ˇ symmetric and say that
ˇ is a lift of b . Similarly, a suborbifold ��† is symmetric if it is a component of
P�1.Z/ where Z is a suborbifold of S .

Lemma 7.1 The covering relation … is everywhere defined.

Proof We will show that if a is an essential nonperipheral curve then every component
of P�1.a/ is essential and nonperipheral. Since S has nonpositive orbifold Euler
characteristic, choose a Euclidean or a hyperbolic metric on S with totally geodesic
boundary. Replace a by its geodesic representative, a� . Since a is simple, a� misses
all cone points of order greater than two. In fact, the only way a� meets a cone point
is when a bounds a disk with exactly two orbifold points of order two; here a� is
a geodesic arc connecting these two points. In any case, the lift of a is an essential
nonperipheral simple closed curve that is homotopic to the lift of a� . The conclusion
follows.

As is well-known, coverings of surfaces induce isometric embeddings of the associated
Teichmüller spaces. For completeness and to establish notation we include a proof.

For the rest of this section fix symmetric curves ˛ and ˇ . Pick x;y 2 T .Sı/ so that
aD P .˛/ has bounded length in x and b D P .ˇ/ is bounded in y . Let GW Œtx; ty �!

T .Sı/ be the Teichmüller geodesic connecting x to y . For every t 2 Œtx; ty � let qt be
the terminal quadratic differential of the Teichmüller map from G.tx/ to G.t/. We lift
qt to the surface P�1.Sı/, fill the punctures not corresponding to orbifold points and
so obtain a parameterized family �t of quadratic differentials on †ı . Notice that �t

is indeed a quadratic differential: suppose that p 2 S is a orbifold point and qt has
a once-pronged singularity at p . For every regular point � in the preimage of p the
differential �t has at least a twice-pronged singularity at � .

Uniformize the associated flat structures to obtain hyperbolic metrics on †ı . This gives
a path �W Œtx; ty �! T .†ı/. The path � is a geodesic in T .†ı/. This is because, for
t; s 2 Œtx; ty �, the Teichmüller map from G.t/ to G.s/ has Beltrami coefficient k jqj=q

where q is an integrable holomorphic quadratic differential in G.t/. This map lifts
to a map from �.t/ to �.s/ with Beltrami coefficient k j� j=� , where the quadratic
differential � is the pullback of q to �.t/. That is, the lift of the Teichmüller map

Geometry & Topology, Volume 13 (2009)



2154 Kasra Rafi and Saul Schleimer

from G.t/ to G.s/ is the Teichmüller map from �.t/ to �.s/ with the same quasi-
conformal constant. Therefore, the distance in T .Sı/ between G.t/ and G.s/ equals
the distance in T .†ı/ between �.t/ and �.s/.

Lemma 7.2 For e small enough, Te as in Theorem 4.1 and any suborbifold ��† if
d�.˛; ˇ/� 2TeC 1, then � is symmetric.

Proof Consider the first and last times t˙ that every component of @� is e–short
in �.t˙/. Thus the image P .@�/ is e–short in G.t˙/. Therefore, all components of
the image are simple. (This is a version of the Collar Lemma. For example, see [5,
Theorem 4.2.2].) It follows that the boundary of � is symmetric.

To show that � is symmetric it now suffices to show that �\P�1.P .@�//D @�. So
suppose that there is a curve  in the intersection which is not a boundary component.
Then  has bounded length (in fact, length at most d �e) at the times t˙ . It follows from
Theorem 4.1 that d�.˛;  /; d�.; ˇ/� Te , contradicting the assumption d�.˛; ˇ/�

2TeC 1.

8 The quasi-isometric embedding

Theorem 8.1 The covering relation …W C.S/! C.†/, corresponding to the covering
map P W †! S , is a Q–quasi-isometric embedding. The constant Q depends only on
�.S/ and the degree of the covering map.

Remark 8.2 The constant Q may go to infinity with the degree of the covering map;
the distance d†.˛; ˇ/ between the lifts may be significantly larger or smaller that
dS .a; b/.

To see that the distance may decrease suppose that S is a surface with negative Euler
characteristic. For any pair of curves a; b there is a cover admitting lifts ˛; ˇ which
are disjoint. In fact a cover of degree at most 2d�1 , where d D dS .a; b/, suffices [11,
Lemma 2.3].

In the other direction, suppose that S is a torus and a; b are the curves of slope ˙1.
Let † be the pq–cover obtained by unwrapping the zero and infinity slopes p and q

times, respectively. The lifts ˛; ˇ have slopes ˙p=q and so i.˛; ˇ/D 2pq . If p and
q are consecutive Fibonacci numbers then the distance d†.˛; ˇ/ is essentially equal to
the logarithm of the intersection number.
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Remark 8.3 Note that Q does not depend directly on the topology of †. When
�orb.S/D 0 (the annulus, torus or square pillow) the degree of the covering map is not
determined by the topology of †. When the orbifold Euler characteristic is negative
the topology of † can be bounded in terms of the topology of S and the degree of the
covering map.

Remark 8.4 When † is the orientation double cover of a nonorientable surface S ,
Theorem 8.1 is due to Masur and Schleimer [16].

Proof of Theorem 8.1 We first show that

d†.˛; ˇ/�Q dS .a; b/:

When �.S/ > 1 or when S is an annulus, two vertices of C.S/ have distance one when
they have intersection number zero. But disjoint curves in S have disjoint preimages
in †. Therefore, a path connecting a to b lifts to a path of equal length connecting ˛
to ˇ . This implies the desired inequality in these cases. If †ı is a torus, once-holed
torus or four-holed sphere then two curves are at distance one when they intersect once
or twice, depending on S . The lifts of these curves then intersect at most 2d times,
where d is the degree of the covering. Thus, the distance between the lifts is at most
2 log2.2d/C 2. (See [22, Lemma 1.21].) Therefore

d†.˛; ˇ/� .2 log2.2d/C 2/ � dS .a; b/:

Now we must prove the opposite inequality:

d†.˛; ˇ/�Q dS .a; b/:

Suppose that d is the degree of the covering. We prove the theorem by induction
on the complexity of S . In the case where S is an annulus without orbifold points,
the cover † is also an annulus and the distances in C.†/ and C.S/ are equal to the
intersection number plus one. But, in this case,

i.˛; ˇ/� i.a; b/=d:

Therefore, the theorem is true with QD d.

Now assume the theorem is true for all strict suborbifolds of S . Let Q0 be the largest
constant of quasi-isometry necessary for such suborbifolds with a degree d cover.
Choose the threshold T, constant e and length L such that Theorem 6.1 holds for both
the data .S;T;T; e; L/ as well as .†; .T=Q0/�1;Q0TCQ0; e; L/. We also assume that
Q0TCQ0 � 2TeC1 (Lemma 7.2). All of the constants depend only on the topology of
S and the degree d, because these last two bound the topology of †.
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Let JS be the T–antichain of maxima for S; a and b and let J† be the set of
components of preimages of elements of JS .

Claim The set J† is a ..T=Q0/� 1;Q0TCQ0/–antichain for .†; ˛; ˇ/.

Proof We check the conditions of being an antichain. Since elements of JS are not
subsets of each other, the same holds for their preimages. The condition d�.˛; ˇ/�

.T=Q0/�1 is the induction hypothesis. Now suppose ‰�† with d‰.˛; ˇ/�Q0TCQ0 .
By Lemma 7.2, ‰ is symmetric. That is, ‰ is a component of the preimage of some
Y � S and by induction

Q0dY .a; b/CQ0 � d‰.˛; ˇ/� Q0TCQ0:

Thus dY .a; b/� T and so Y �Z for some Z 2 JS . Therefore, taking � to be the
preimage of Z , we have ‰ �� 2 J† . This proves the claim.

Hence, there are constants K and K0 such that

dS .a; b/�K jJS jC jG.e; L/j;

d†.˛; ˇ/�K0 jJ†jC j�.e; L/j:and

Note that jJS j � jJ†j as distinct suborbifolds have distinct preimages. Note also that
jG.e; L/j � j�.e; L/j because �.t/ is at least as thick as G.t/. Therefore

dS .a; b/�Q d†.˛; ˇ/;

for QD K.K0C 1/. This finishes the proof of Theorem 8.1.

9 An application to mapping class groups

Suppose that P W †! S is an orbifold covering map. Let MCG.†/ be the orbifold
mapping class group of †: isotopy classes of homeomorphisms of † restricting to
the identity on @S and respecting the set of orbifold points and their orders. Here all
isotopies must fix all boundary components and all orbifold points. As an application
of Theorem 8.1 we prove the following theorem:

Theorem 9.1 The covering P induces a quasi-isometric embedding

…�WMCG.S/!MCG.†/:
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We will use the language of markings from [15]. Recall that a marking m of S is a
collection of curves which fill S . That is, cutting Sı along m results in a collection of
disks and boundary parallel annuli. If m, n are both markings then we define i.m; n/

to be the sum of intersection numbers of pairs of curves coming from m and n. Notice
for any marking m that there are only finitely many mapping classes x 2MCG.S/
with x.m/Dm.

Here we establish a few properties of markings.

Lemma 9.2 For every N there are finitely many markings of self-intersection number
less than N, up to the action of the mapping class group.

Proof The bound on intersection number provides an upper bound on the number
of disks and annuli in Sı Xm. These are glued along edges whose number is also
bounded.

Lemma 9.3 For every marking m and any N> 0 there are only finitely many mark-
ings n with i.m; n/� N.

Proof The restriction of n to a component of Sı Xm is a union of arcs. The number
of these arcs is bounded by i.m; n/. Therefore, the combinatorial type of the collection
of arcs is bounded depending on m and i.m; n/.

Lemma 9.4 For every N1 > 0 there is an N2 > 0 such that if m and n are two
markings, each with self-intersection number less than N1 , then there is a mapping
class x 2MCG.S/ such that i.x.m/; n/� N2 .

Proof Let Œm1�; : : : ; Œmk � be the homeomorphism classes of markings that have self-
intersection number less than N1 ; by Lemma 9.2 there are finitely many such classes.
Define i

�
Œmi �; Œmj �

�
to be the minimum intersection number between a marking in

Œmi � and a marking in Œmj �. The the lemma now holds for

N2 Dmax
i;j

i
�
Œmi �; Œmj �

�
:

Lemma 9.5 Let ‚ be a generating set of MCG.†/ and let � be a marking of †. For
every N> 0 there is W > 0 with the following property: for any � 2MCG.†/,

i
�
�; �.�/

�
� N H) k�k‚ �W:

Here W depends on �.†/, ‚, � and N but is independent of � .
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Proof Lemma 9.3 implies that there are only finitely many markings �0 so that �0

is a homeomorphic image of � and i.�; �0/ � N. For each such �0 there are only
finitely many mapping classes taking � to �0 (the marking � may have symmetries).
Let W be the maximum word length of all these mapping classes.

Proof of Theorem 9.1 Fix, for the remainder of the proof, a marking m of S . Let
�D….m/ be the lift of m to †. Note that � fills † and so is a marking.

We construct …? as follows: Let x be an element of MCG.S/ and let �0 be the
lift of x.m/. The markings m and x.m/ have equal self-intersection. Therefore,
the same holds for � and �0 . By Lemma 9.4, there is an N2 depending only on the
self-intersection number of � such that one can always find � 2MCG.†/ where
i.�0; �.�//� N2 . Also, it follows from Lemma 9.3 that there are only finitely many
such mapping classes. We define …?.x/ to be any such mapping class � .

Let T be a finite generating set for MCG.S/ and ‚ be a finite generating set for
MCG.†/. Let kxkT and k�k‚ denote the word lengths of x and � with respect to T

and ‚ respectively. To prove the proposition it suffices to show that, for � D…?.x/,

(1) kxkT �W k�k‚;

where W is a constant that does not depend on x .

By [15, Theorems 7.1, 6.10 and 6.12] we have

(2) kxkT �W1

X�
dZ

�
m;x.m/

��
k1
:

Here the sum ranges over all suborbifolds Z � S . The constant W1 depends on k1

which in turn depends on our choice of the marking m and the generating set T .
However, all of the choices are independent of the group element x . Finally, Œr �k D r

if r � k and Œr �k D 0 if r < k.

As above, after fixing a large enough constant k2 (see below) and an appropriate W2 ,
we have

k�k‚ �W2

X�
d�
�
�; �.�/

��
k2
:

But �.�/ and ….x.m// have bounded intersection. Therefore, their projection distance
in every subsurface � is a priori bounded. Hence we can write

(3) k�k‚ �W3

X�
d�
�
�;….x.m//

��
k2
;

for a slightly larger constant W3 .

We prove Equation (1) by comparing the terms of the right hand side of (2) with those
on the right hand side of (3). Note that �D….m/ is a union of symmetric orbits and
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the same holds for ….x.m//. Therefore, we can choose k2 large enough such that if
d�.�;g.�// is larger than k2 then � is itself symmetric (see Lemma 7.2). Taking
Z D P .�/, it follows from Theorem 8.1 that

dZ .m;x.m//� d�.�;….x.�///:

On the other hand, Theorem 8.1 also tells us that large projection distance in any
Z � S implies large projection distance in all the components of the preimage of Z .
Therefore, there is a finite-to-one correspondence between the surfaces that appear in
(3) and in (2) and the corresponding projection distances are comparable. We conclude
that kxkT �W k�k‚ for some W . This finishes the proof.

Assume now �<MCG.†/ is a finite subgroup. Applying Nielsen Realization [12]
the group � can be realized as a group of homeomorphisms of †. Let S be the
quotient and let P W †! S be the regular covering with deck group �. Let N.�/ be
the normalizer of � inside of MCG.†/ and let M <MCG.S/ be the finite index
subgroup of mapping classes that lift. MacLachlan and Harvey [13, Theorem 10] give
a short exact sequence:

1!�!N.�/
p
!M ! 1:

Theorem 9.6 Suppose that ��MCG.†/ is a finite group. Then the normalizer of
� is undistorted in MCG.†/.

Proof Choose finite generating sets ‚ for MCG.†/ and ‚0 for N.�/. Equip the
groups with the word metric. For � 2N.�/ we must show that the word length of �
with respect to ‚ is comparable to its word length with respect to ‚0 .

Let M be as in the MacLachlan–Harvey short exact sequence. Choose finite generating
sets T for MCG.S/ and T 0 for M . Again, equip these groups with the word metric.

MCG.†/
…?
 ���� MCG.S/x??� x??�

1 ����! � ����! N.�/
p

����! M ����! 1

The map pW N.�/!M is a quasi-isometry because � is finite. Therefore,

k�k‚0 � kp.�/kT 0 :

Also, since M is a finite index subgroup of MCG.S/, the word metric in M and the
metric it inherits from MCG.S/ are comparable. Hence,

kp.�/kT 0 � kp.�/kT :

Geometry & Topology, Volume 13 (2009)



2160 Kasra Rafi and Saul Schleimer

Let � D…?p.�/, where …? is as in the proof of Theorem 9.1. Thus …? is a quasi-
isometric embedding. That is,

kp.�/kT � k…? p.�/k‚:

Also, by the definition of …? , the intersection number of �.�/ and �.�/ is bounded.
It follows that the intersection number of � and ��1 �.�/ is also bounded. Lemma
9.5 implies that � and � are close in the mapping class group. That is

k…? p.�/k‚ � k�k‚:

The theorem follows from the last four equations.

As a special case, let † be the closed orientable surface of genus g and let �W †!†

be a hyperelliptic involution. Let S D†=� and let P W †! S be the induced orbifold
cover. Birman and Hilden [3] provide a short exact sequence:

1! h�i !N.�/!MCG.S/! 1

which has a group-theoretic section. Notice that MCG.S/ is the spherical braid group
on 2gC 2 strands. Theorem 9.6 now answers a question of Luis Paris:

Corollary 9.7 The section of the Birman–Hilden map induces a quasi-isometric em-
bedding of the spherical braid group on 2gC 2 strands into the mapping class group of
the closed surface of genus g .
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