"Economics has never been a science - and it is even less now than a few years ago." Paul Samuelson
"Funeral by funeral, theory advances" Paul Samuelson
"Economics is extremely useful as a form of employment for economists." J.K. Galbraith
"The only function of economic forecasting is to make astrology look respectable."J.K. Galbraith
"In economics it is a far, far wiser thing to be right than to be consistent"J.K. Galbraith

Binomial Model

$S_{n}=$ stock price at time n
$S_{n+1}=u S_{n}$ with probability $p, S_{n+1}=d S_{n}$ with probability $q=1-p$
$0<d<u$ fixed
$r=$ interest rate: $\$ 1 \rightarrow \$(1+r)$ in time 1
$0<d<1+r<u$ or it is not interesting
$V=$ European call option Strike price K, maturity at time N
means $V_{N}=\left(S_{N}-K\right)_{+}$
Problem: $V_{0}=$?

Arbitrage pricing theory

Start with X_{0} dollars
You can have Δ_{0} shares of stock (costs $\Delta_{0} S_{0}$) and put the rest in the bank

At time 1 you have $X_{1}=\Delta_{0} S_{1}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$ which is either $X_{1}(u)=\Delta_{0} u S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$ with prob p
or
$X_{1}(d)=\Delta_{0} d S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$ with prob q
Because it is just two equations in two unknowns, you can choose X_{0}, Δ_{0} so that $X_{1}=V_{1}$

$$
\begin{gathered}
\Delta_{0}=\frac{V_{1}(u)-V_{1}(d)}{S_{1}(u)-S_{1}(d)} \quad X_{0}=\frac{1}{1+r}\left[\tilde{p} V_{1}(u)+\tilde{q} V_{1}(d)\right] \\
\tilde{p}=\frac{1+r-d}{u-d} \quad \tilde{q}=\frac{u-1-r}{u-d}
\end{gathered}
$$

Arbitrage pricing theory says that $X_{0}=V_{0}$

We know $V_{N}=\left(S_{N}-K\right)_{+}$
We now have $V_{N-1}=\tilde{E}\left[\frac{1}{1+r} V_{N}\right]=\tilde{E}\left[\frac{1}{1+r}\left(S_{N}-K\right)_{+}\right]$
$V_{N-2}=\tilde{E}\left[\left.\left(\frac{1}{1+r}\right)^{2}\left(S_{N}-K\right)_{+} \right\rvert\, S_{N-2}\right]$
\tilde{E} is with respect to random walk S_{n} with $S_{n+1}=u S_{n}$ with probability \tilde{p} and $S_{n+1}=d S_{n}$ with probability \tilde{q}

$$
V_{0}=\tilde{E}\left[\left.\left(\frac{1}{1+r}\right)^{N}\left(S_{N}-K\right)_{+} \right\rvert\, S_{0}\right]
$$

Brownian motion as limit of random walks

Y_{1}, Y_{2}, \ldots independent with $P\left(Y_{i}=1\right)=P\left(Y_{i}=-1\right)=1 / 2$

$$
M_{n}=Y_{1}+\cdots+Y_{n}
$$

$$
B^{(n)}(t)=\frac{M_{\lfloor n t\rfloor}}{\sqrt{n}}
$$

Takes step $\pm 1 / \sqrt{n}$ at times $1 / n, 2 / n, \ldots$
$B^{(n)}(t)$ converges to Brownian motion $\left(B^{(n)}\left(t_{1}\right), \ldots, B^{(n)}\left(t_{k}\right)\right) \xrightarrow{n \rightarrow \infty} k$ dimensional Gaussian Covariance $E\left[B^{(n)}(t) B^{(n)}(s)\right] \rightarrow t \wedge s$

Diffusion with variance σ^{2} and drift μ as limit of random walks

$X^{(n)}(t)$ jumps at time increments $1 / n$ either $\frac{\sigma}{\sqrt{n}}+\frac{\mu}{n}$ or $-\frac{\sigma}{\sqrt{n}}+\frac{\mu}{n}$ with probability $1 / 2$
$X^{(n)}(t)-\frac{\mu}{n}\lfloor n t\rfloor=\sigma B^{(n)}(t)$
So $X^{(n)}(t) \rightarrow X(t)=\sigma B(t)+\mu t$ or $d X=\sigma d B+\mu d t$

Geometric Brownian motion as limit of Binomial model

For each $n=1,2,3, \ldots$ consider a Binomial model $S^{(n)}$ with $u_{n}=1+\frac{\sigma}{\sqrt{n}}$ and $d_{n}=1-\frac{\sigma}{\sqrt{n}}$ and $r_{n}=0$ and step size $1 / n$

$$
\tilde{p}=\frac{1+r_{n}-d_{n}}{u_{n}-d_{n}}=\frac{1}{2}=\tilde{q}
$$

$X^{(n)}(t)=\log S^{(n)}(t)$ jumps at time increments $1 / n$ either $\log u_{n}$ or $\log d_{n}$, each with probability $1 / 2$

$$
\log u_{n}=\log \left(1+\frac{\sigma}{\sqrt{n}}\right)=\frac{\sigma}{\sqrt{n}}+\frac{\sigma^{2}}{2 n}+o\left(\frac{1}{n}\right)
$$

$$
\log d_{n}=\log \left(1-\frac{\sigma}{\sqrt{n}}\right)=-\frac{\sigma}{\sqrt{n}}+\frac{\sigma^{2}}{2 n}+O\left(\frac{1}{n}\right)
$$

$X^{(n)}(t) \rightarrow \sigma B(t)-\frac{1}{2} \sigma^{2} t$
$S^{(n)}(t) \rightarrow S(t)=e^{\sigma B(t)-\frac{1}{2} \sigma^{2} t}$ Geometric Brownian motion $d S=\sigma S d B$
If $r_{n}=\frac{r}{n}$ get $d S=\sigma S d B+r S d t$

Option pricing formula

$$
V_{0}=\tilde{E}\left[\left(1+\frac{r}{n}\right)^{-\lfloor n T\rfloor}\left(S_{\lfloor n T\rfloor}-K\right)_{+}\right]
$$

becomes

$$
V_{0}=E\left[e^{-r T}\left(S_{T}-K\right)_{+}\right] \quad d S=\sigma S d B+r S d t
$$

At time $t \in[0, T]$

$$
V(t)=E\left[e^{-r(T-t)}\left(S_{T}-K\right)_{+} \mid \mathcal{F}_{t}\right]
$$

But we can compute transition probabilities for S_{t}

$$
\begin{gathered}
p(t, x, y) d y=P\left(x e^{\sigma B(t)+\left(r-\frac{1}{2} \sigma^{2}\right) t} \in d y\right)=\frac{1}{\sigma y \sqrt{2 \pi t}} e^{-\frac{\left(\log \frac{y}{x}-\left(r-\frac{1}{2} \sigma^{2}\right) t\right)^{2}}{2 t \sigma^{2}}} d y \\
V(t)=\int e^{-r(T-t)}(y-K)_{+} p\left(T-t, S_{t}, y\right) d y \\
=S(t) \Phi\left(\frac{\log \frac{s_{t}}{K}+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right)-e^{-r(T-t)} K \Phi\left(\frac{\log \frac{s_{t}}{K}+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) \quad \Phi(x)=\int_{-\infty}^{x} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}
\end{gathered}
$$

Risk Neutral Valuation

We have a stock and a risk free bond
Stock price $d S(t)=S(t)(\sigma(t) d B(t)+\mu(t) d t)$ Hold $\Delta(t)$ stock at time t wealth process assumed to satisfy

$$
d X(t)=\Delta(t) d S(t)+r(t)(X(t)-\Delta(t) S(t)) d t
$$

Note that this does not follow directly from differentiating equation for the wealth. The extra term is set to be 0 and called self-financing condition

The risk-neutral measure is a probability measure \tilde{P} on $\left(C([0, T]), \mathcal{F}_{t}\right)$ equivalent to P under which all tradable assets are martingales after discounting by $e^{-\int_{0}^{t} r(s) d s}$

If there is a risk neutral measure then the value at time t of claim paying asset $V(T)$ at time T is

$$
V(t)=\tilde{E}\left[e^{-\int_{t}^{T} r(s) d s} V(T) \mid \mathcal{F}_{t}\right]
$$

To find the risk neutral measure we write

$$
d\left(e^{-\int_{0}^{t} r(s) d s} S(t)\right)=e^{-\int_{0}^{t} r(s) d s} \sigma(t) S(t)(\theta(t) d t+d B(t)) \quad \theta(t)=\frac{\mu(t)-r(t)}{\sigma(t)}
$$

$$
\text { Define } \tilde{B}(t)=\int_{0}^{t} \theta(s) d s+B(t)
$$

$$
d\left(e^{-\int_{0}^{t} r(s) d s} S(t)\right)=e^{-\int_{0}^{t} r(s) d s} \sigma(t) S(t) d \tilde{B}(t)
$$

define for Borel sets $A \in C([0, T])$,

$$
\tilde{P}(A)=\int_{A} Z(T) d P \quad Z(T)=e^{-\int_{0}^{T} \theta(t) d B(t)-\frac{1}{2} \int_{0}^{T} \theta^{2}(t) d t}
$$

By Cameron-Martin-Girsanov $\tilde{B}(t)$ is a Brownian motion under \tilde{P} and all tradable assets in our model are martingales under \tilde{P}, so \tilde{P} is the risk neutral measure

European call

$$
\begin{gathered}
V(T)=(S(T)-K)_{+} \\
V(0)=u(T, S)=\tilde{E}_{S}\left[e^{-\int_{0}^{T} r(t) d t}(S(T)-K)_{+}\right] \\
\frac{\partial u}{\partial T}=\frac{1}{2} \sigma^{2} S^{2} \frac{\partial u}{\partial S^{2}}+r S \frac{\partial u}{\partial S}-r u \quad u(0, S)=(S-K)_{+} \\
V(0)=u(T, S(0))
\end{gathered}
$$

Constructing the hedge

Let

$$
M(t)=\tilde{E}\left[e^{-\int_{0}^{T} r(s) d s} V(T) \mid \mathcal{F}_{t}\right]
$$

$M(t)$ is a martingale with respect to \tilde{E}. By the martingale representation theorem there exists a progressively measurable $\gamma(t)$ so that

$$
\begin{gathered}
M(t)=M(0)+\int_{0}^{t} \gamma(s) d \tilde{B}(s) \\
\Delta(t)=e^{\int_{0}^{t} r(s) d s} \frac{\gamma(t)}{\sigma(t) S(t)}
\end{gathered}
$$

$$
X(t)=e^{\int_{0}^{t} r(s) d s} M(t)
$$

$$
d X(t)=\Delta(t) d S(t)+r(t)(X(t)-\Delta(t) S(t)) d t \quad X(T)=V(T)
$$

So we have constructed a hedge

Interest rate models

An easy model for interest rates is

$$
d r(t)=(\theta-\alpha r(t)) d t+\sigma d B(t)
$$

called mean reverting. This is called Vasicek model although it is just Ornstein-Uhlenbeck process $+\theta$. If coefficients are nonrandom functions of time it is called Hull-White
Discount function

$$
\begin{gathered}
Z_{t, T}=E\left[e^{-\int_{t}^{T} r(s) d s} \mid \mathcal{F}_{t}\right] \quad Z_{t, T}=Z_{t, T}(r(t)) \\
\frac{\partial Z}{\partial T}=(\theta-\alpha r) \frac{\partial Z}{\partial r}+\sigma^{2} \frac{1}{2} \frac{\partial Z}{\partial r^{2}}-r Z
\end{gathered}
$$

explicit solution in Hull-White case

Example. Cox-Ingersol-Ross model

The interest rate $r(t)$ is assumed to satisfy the equation

$$
d r(t)=(\alpha-\beta r(t)) d t+\sigma \sqrt{r(t)} d B(t) .
$$

Note that the Lipschitz condition is not satisfied, but existence/uniqueness holds by the stronger theorem we did not prove

