
SIMPLE HOMOTOPY EQUIVALENCE AND WHITEHEAD GROUPS

ARTHUR LEI QIU

1. Introduction

If you ask a student taking an introductory topology course what the right notion of isomorphism
between topological spaces is, they might respond with “homeomorphism” if they’ve paid attention
in class. If you ask the same question to an algebraic topologist, they might instead choose homotopy
equivalence. Within the world of finite CW complexes, there is a third notion of isomorphism
intermediate to these two which is often useful: that of simple homotopy equivalence.

Roughly speaking, a simple homotopy equivalence of two CW complexes is a map between them
which is given by a finite sequence of “expansions” and “collapses” of cells (to be defined more
rigorously in a moment). Since the operations of “expanding” and “collapsing” undo each other,
it is easy to describe a homotopy inverse for such a map: one simply1 reverses the sequence of
expansions and collapses. Thus, simple homotopy equivalences preserve some of the combinatorial
data of CW complexes. In contrast, a homotopy inverse for an arbitrary homotopy equivalence
need not be so easily describable—even worse, it might only be known to exist by some abstract
nonsense2. Simple homotopy equivalences are just that: simple.

Let us put these ideas on more formal footing. We begin with some notation: denote by Bn ⊂ Rn

the closed n-dimensional unit ball and Sn−1 = ∂Bn its boundary. Let Sn−1
+ and Sn−1

− denote the
closed upper and lower hemispheres of Sn−1, which meet at the “equator” Sn−1

+ ∩ Sn−1
−

∼= Sn−2.
(When n = 1, we have S0

+ = {1} and S0
− = {−1}, so the “equator” is S−1 = ∅.)

Given a finite CW complex X with skeletal filtration ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xd = X
and a map of pairs f : (Sn−1

− , Sn−2) → (Xn−1, Xn−2) where n ≥ 1, we can build a CW complex
structure on the pushout Y := X ⊔Sn−1

−
Bn by attaching cells in a two-step process:

Step 1: Attach the (n − 1)-cell en−1 = Sn−1
+ \ Sn−2 corresponding to the open upper hemisphere of

Sn−1 to X along the restriction f |Sn−2 : Sn−2 → Xn−2 of f to the equator.
Step 2: Attach the n-cell en = Bn \ Sn−1 to the CW complex X ⊔Sn−2 Sn−1

+ resulting from Step 1
via the map f ⊔ id : Sn−1 = Sn−1

− ⊔Sn−2 Sn−1
+ −→ Xn−1 ⊔Sn−2 Sn−1

+ .
The resulting CW complex structure on Y is called an elementary expansion of X; we also refer to
the inclusion map X ↪→ Y as such. For instance, the elementary expansion of the one-point space
X = {∗} along the constant map f : Sn−1

− → {∗} is just Y = Bn.
The inverse operation—that of elementary collapse—can be thought of as undoing this process.

More formally, Sn−1
− is a (deformation) retract of Bn, and any choice of retraction Bn → Sn−1

−
induces a map Y → X by the universal property of pushouts. The homotopy class of this map does
not depend on the choice of retraction, and is such that elementary collapse is homotopy inverse
to elementary expansion.

To illustrate what elementary expansions look like for small values of n, consider the CW complex
structure X on B2 whose 0-skeleton consists of four vertices as depicted in Figure 1.1.

1Pun intended.
2The author means this as a term of endearment for category theory.
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Figure 1.1. A CW complex structure X on B2.

To perform an elementary expansion of X by a 1-cell, we need a map of pairs f : (S0
−, S−1) →

(X0, X−1). Since S0
− is a single point and S−1 = X−1 = ∅, this is equivalent to a choice of a vertex

in X0. Picking, say, the left vertex, we obtain the CW complex Y depicted in Figure 1.2.

X

B1S0
− S0

+

f

Step 1:−−−−−−→
add 0-cell

X ⊔ S0
+

e0 Step 2:−−−−−−→
add 1-cell e1

Y = (X ⊔ S0
+) ⊔S1 B1

Figure 1.2. The outcome Y of performing an elementary expansion on X by a 1-cell.

To further perform an elementary expansion of Y by a 2-cell, we need a map of pairs g : (S1
−, S0) →

(Y 1, Y 0), i.e., a path in Y 1 with endpoints lying in Y 0. Choosing, for example, a path joining the
vertex added in the previous step and the bottom vertex of the disk, we obtain the CW complex
Z depicted in Figure 1.3.

B2

S1
−

S1
+

g

Y

Step 1:−−−−−−→
add 1-cell

e1

Y ⊔S0 S1
+

Step 2:−−−−−−→
add 2-cell e2

Z = (Y ⊔S0 S1
+)⊔S1 B2

Figure 1.3. The outcome Z of performing an elementary expansion on Y by a 2-cell.

Finally, to perform an elementary expansion of Z by a 3-cell, we choose h : (S2
−, S1) → (Z2, Z1)

to be the inclusion of S2
−

∼= B2 as our original CW complex X ⊂ Z. The resulting CW complex
W is shown in Figure 1.4.

B3

S2
−

S2
+

h

Z

Step 1:−−−−−−→
add 2-cell

Z ⊔S1 S2
+

e2

Step 1:−−−−−−→
add 3-cell

e3

W = (Z ⊔S1 S2
+) ⊔S2 B3

Figure 1.4. The outcome W of performing an elementary expansion on Z by a 3-cell.
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In this way, we have constructed a sequence of elementary expansions X → Y → Z → W .
Elementary collapses W → Z → Y → X can be visualized by “smooshing” back down the two cells
added by each elementary expansion. All of these maps are homotopy equivalences, and this idea
is the foundation for our first definition:

Definition 1.1. A map f : X → Y of finite CW complexes is called a simple homotopy equiv-
alence if it is homotopic to a finite sequence of compositions

X = X0
f1−→ X1

f2−→ X2 → · · · fn−→ Xn = Y,

where each fi is either an elementary expansion or an elementary collapse. We say that X and Y
are simple homotopy equivalent if there exists a simple homotopy equivalence between them.

As alluded to before, homeomorphisms (of finite CW complexes) are simple homotopy equiva-
lences3, and simple homotopy equivalences are homotopy equivalences. This raises the question:
when are the converses true? That is,

• Does every simple homotopy equivalence yield a homeomorphism?
• Does every homotopy equivalence yield a simple homotopy equivalence?

Even if we restrict our attention to the subcategory of compact topological manifolds, the answer
to both questions is “sometimes, yes; in general, no”:

• In dimensions d ≤ 3, simple homotopy equivalent d-manifolds are homeomorphic. However,
for every d ≥ 4, there exist d-dimensional manifolds that are simple homotopy equivalent
but not homeomorphic.

• In dimensions d ≤ 2, homotopy equivalent d-manifolds are simple homotopy equivalent.
However, for every odd d ≥ 3, there exist d-dimensional manifolds that are homotopy
equivalent but not simple homotopy equivalent.

One can ask if there is a way to quantify the difference between homeomorphism and simple
homotopy equivalence, or between simple homotopy equivalence and homotopy equivalence. The
latter question has a relatively satisfactory answer—this is the subject of this paper. It goes as
follows: given a (path-connected, say) topological space X with fundamental group G = π1(X),
one associates to G an abelian group Wh(G) called the Whitehead group of G. Every homotopy
equivalence f : X → Y of finite CW complexes yields an element τ(f) of Wh(G), the Whitehead
torsion of f , and it turns out that f is a simple homotopy equivalence if and only if τ(f) = 0.
Thus, the obstruction for a homotopy equivalence to be simple can be characterized in terms of a
purely algebraic description.

In Section 2, we formally introduce the definition of a Whitehead group. This is most succinctly
accomplished by detouring through algebraic K-theory, so we begin by discussing the first K-group
of a ring. In Section 3, we briefly mention some known examples of Whitehead groups before
expositing a general result: the Whitehead group of a finite group is finitely generated. Finally, in
Section 4, we return to the world of CW complexes and show how to define the Whitehead torsion
of a homotopy equivalence. We conclude by compiling some properties of Whitehead torsion and
showcasing several applications to problems in geometry and topology.

2. K-groups and Whitehead groups

Let R be a ring (henceforth always assumed to be associative and unital). For each n ∈ N, we
denote by GLn(R) the group of n × n invertible matrices with entries in R. Given m ≤ n, there is
an inclusion homomorphism

GLm(R) ↪→ GLn(R), A 7→
(

A O
O I

)
,

3This fact is highly nontrivial; see the discussion around Theorem 4.6.

3 of 11



where I and O denote identity and zero matrices of appropriate sizes. We set
GL(R) := colim

−→
GLn(R).

Elements of GL(R) can thus be thought of as “infinite invertible matrices which differ from the
infinite identity matrix by finitely entries”.

Definition 2.1. The first algebraic K-group K1(R) of a ring R is the abelianisation of GL(R).

Remark 2.2. As the name suggests, K1(R) is but one of a sequence of “K-groups” associated to
a ring R. In fact, one can define Kn(R) for any n ∈ Z in a way which gives rise to a long exact
sequence of K-groups, but we will not make use of these beyond the briefest of mentions.

While Definition 2.1 makes it clear that K1 defines a functor from the category of rings to
the category of abelian groups, it is somewhat opaque. To explicate this, let us determine the
commutator subgroup of GL(R). For this, we need the following definition: a shear matrix4 is a
square matrix that coincides with the identity matrix except for one off-diagonal element. Given
non-zero r ∈ R and positive integers i ̸= j, we denote by eij(r) the shear matrix with r in the (i, j)
entry (of unspecified size). The subgroups En(R) := ⟨eij(r) | r ∈ R, i ̸= j⟩ of GLn(R) generated by
these matrices form a direct system, and we set

E(R) := colim
−→

En(R).

It turns out that E(R) is a normal subgroup of GL(R). In fact, more is true:

Lemma 2.3 (Whitehead [10, §1]). The commutator subgroup of GL(R) is E(R).

Thus, given A ∈ GLn(R) ⊂ GL(R), its image in K1(R) = GL(R)/ E(R) measures the obstruction
to reducing A to the identity matrix via shear transformations.

We now define the Whitehead group of a group G. For this, recall that for a ring R, the group
ring R[G] is the R-module of finitely supported functions G → R; it can also be thought of as the
set of all formal finite sums of the form

∑
i rigi where ri ∈ R and gi ∈ G. As the name suggests,

R[G] is also a ring with the product(∑
i

rigi

)(∑
j

sjhj

)
=
∑
i,j

(risj)(gihj).

(This is well-defined by the assumption of finite support.) In general, the group of units R[G]×
is quite mysterious. However, it always contains the subgroup of trivial units, which are elements
of the form rg where r ∈ R× and g ∈ G. There is a homomorphism R× × G → K1(R[G]) given
by mapping (r, g) ∈ R× × G to the trivial unit rg ∈ R[G]× = GL1(R[G]) thought of as a 1 × 1
invertible matrix, then taking its image in K1(R[G]). The Whitehead group of G is the cokernel of
this map in the case where R = Z:

Definition 2.4. The Whitehead group Wh(G) of a group G is the quotient group
Wh(G) := K1(Z[G])/⟨±g|g ∈ G⟩.

Remark 2.5. In some references (notably [10] and [14]), K1(R) of a ring R is sometimes called the
“Whitehead group of R”. This is unfortunate terminology, as K1(R) need not coincide with Wh(R)
(where we regard R as a group); for example, if one considers Z as a ring, then K1(Z) = {±1},
but thinking of Z only as a group, we have Wh(Z) = 0. Thus, calling K1 the “Whitehead group”
leads to seemingly contradictory statements like “the Whitehead group of Z is nontrivial and the
Whitehead group of Z is trivial”.

4These are often called elementary matrices in the literature, but I prefer to use the term “elementary matrix” to
mean a matrix obtained from the identity matrix by applying one of any of the elementary row or column operations
(of which shear matrices are a special case).
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3. Whitehead groups of finite groups

Determining the Whitehead group of a group G is, in general, quite a difficult task. Oftentimes,
it is unclear if Wh(G) is even non-zero. For example:

• The Whitehead group of a free abelian group (including the trivial group) is trivial, though
this fact is not easy to prove [4]; the special case where G = Z is considerably easier [7].

• The Whitehead groups of the cyclic groups Cn of order n ∈ {2, 3, 4, 6} are trivial; however,
Wh(C5) ∼= Z [10, Example 6.6]. In fact, Wh(Cp) is infinite for any prime p ≥ 5.

• It is not known if there exists a torsion-free group with non-trivial Whitehead group.
The main goal of this section is to sketch a proof of the following result. Recall that the rank of

an abelian group A is the dimension of A ⊗Z Q as a Q-vector space.

Theorem 3.1 (Bass [3, §6]). If G is a finite group, then K1(Z[G]) is finitely generated (hence
so too is Wh(G)). Moreover, the ranks of K1(Z[G]) and Wh(G) are both equal to the number of
irreducible real representations of G minus the number of irreducible rational representations of G.

Before proving Theorem 3.1, we recall some necessary algebraic definitions.

3.1. Algebras and orders. By an algebra over a field F (or F -algebra), we mean an F -vector
space A equipped with a bilinear product A × A → A (hence in particular a ring structure). For
the remainder of Section 3, we assume all algebras are associative, unital, and finite-dimensional
over their base field. Thus in particular, F canonically embeds into the centre Z(A) of A.

Definition 3.2. An F -algebra A is called
• central if Z(A) = F ,
• simple if A is non-zero and has no two-sided ideals besides {0} and A, and
• semisimple if A is (isomorphic to) a direct product of simple algebras.

A semisimple F -algebra A is simple if and only if Z(A) is a field. When this is the case, A is
central when regarded as an algebra over Z(A).

Definition 3.3. Let A be a Q-algebra. A finitely generated Z-submodule Λ ⊂ A is called a full
Z-lattice if it spans A over Q (i.e., every element of A can be written as a finite sum of the form∑

qiui, where qi ∈ Q and ui ∈ Λ). If, in addition, Λ is a subring of A, then Λ is called a Z-order.
A maximal Z-order is a Z-order which is maximal with respect to set inclusion.

If G is a finite group, then A = Q[G] is a semisimple Q-algebra by Maschke’s theorem [9, Ch.
XVIII, Theorem 1.2], and Λ = Z[G] is a Z-order in A. Usually Λ is not maximal, but it is contained
in a maximal Z-order. More generally:

Theorem 3.4. Let A be a semisimple Q-algebra.
(i) A contains at least one maximal Z-order, and every Z-order in A is contained in a maximal

Z-order [12, Corollary 10.4].
(ii) Suppose A =

∏n
i=1 Ai where each Ai is simple. A subset Λ ⊂ A is a Z-order if and only if it

splits into a product Λ =
∏n

i=1 Λi, where each Λi ⊂ Ai is a Z-order; moreover, Λ is maximal
if and only if each Λi is maximal [12, Theorem 10.5].

Remark 3.5. One can analogously define the notion of an R-order inside an F -algebra, where R is
any Dedekind domain and F is its field of fractions. In fact, to study K1(Λ) where Λ is a Z-order in
a Q-algebra, one often examines the K-groups of R = Zp-orders over the p-adic numbers F = Qp,
then appeals to localization sequences. We will only need this for one step of the proof of Theorem
3.1 (namely in Corollary 3.8(iii)), which we will take for granted.
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Lemma 3.6. If Λ ⊆ Γ is any pair of Z-orders in a Q-algebra A, then there exists an integer m > 0
such that mΓ ⊆ Λ, where mΓ = {mγ | γ ∈ Γ} denotes the two-sided principal ideal of Γ generated
by 1 + · · · + 1︸ ︷︷ ︸

m times

.

Proof. Choose Q-bases {v1, . . . , vn} and {w1, . . . , wn} of A such that Λ = spanZ{vi} and Γ =
spanZ{wi}. Then for each i, we can write wi =

∑n
j=1 qijvj where qij ∈ Q. Writing qij = aij/bij in

lowest terms with aij ∈ Z and bij ∈ Z>0, let m be the lowest common multiple of all the bij ’s.
We claim that mΓ ⊆ Λ. Indeed, for all x =

∑
i kiwi ∈ Γ where ki ∈ Z, we have mx =

∑
i ki(mwi).

But mwi =
∑

j(maij

bij
)vj , and each coefficient maij/bij is an integer since m is a multiple of bij ;

thus, mx ∈ Λ. ■

3.2. Reduced norms. Given a field F and a central simple F -algebra A, there exists a function
A → F , called the reduced norm, which coincides with the determinant map when A = Matn(F ) is
the algebra of n × n matrices with entries in F . Its precise definition is not of import to us, so we
refer the reader to [12, §9a] for details on its construction. What is important is the following:

• Reduced norm is a multiplicative function, and the reduced norm of a ∈ A is non-zero if
and only if a is invertible. Thus, the reduced norm restricts to a homomorphism A× → F ×

between the groups of units.
• For any integer n > 1, Matn(A) is also a central simple F -algebra, and the reduced norm

Matn(A)× = GLn(A) → F × extends the reduced norm GLn−1(A) → F ×.
By the universal property of colimits, we obtain a corresponding homomorphism GL(A) → F ×.
Since F × is abelian, this factors through the abelianisation to define a map nrA : K1(A) → F ×;
henceforth, “reduced norm” shall refer to this map.

We can extend the notion of reduced norms to semisimple F -algebras: suppose A =
∏n

i=1 Ai,
where each Ai is simple. Then K1(A) ∼=

⊕n
i=1 K1(Ai) [14, III.1.1.3], and each Ai is a central simple

algebra over the field Z(Ai). The reduced norms nrAi : K1(Ai) → Z(Ai)× can be combined to
define

nrA : K1(A) →
n∏

i=1
Z(Ai)× (= Z(A)×) , nrA(x1, . . . , xn) = (nrA1(x1), . . . , nrAn(xn)) .

If F = Q and Λ ⊂ A is a Z-order, we denote by SK1(Λ) the kernel of the map K1(Λ) → K1(A),
and we define nrΛ as the composition

K1(Λ) → K1(A) nrA−−→ Z(A)×.

Let us now list some useful properties of reduced norms for semisimple Q-algebras. Recall that
an algebraic number field is a finite field extension of Q; that is, a field F containing Q such that
dimQ(F ) < ∞. The ring of integers OF of F is the integral closure of Z in F , i.e., the set of
elements in F which are roots of a monic polynomial with coefficients in Z. These concepts apply,
in particular, to the centre of a simple Q-algebra.

Theorem 3.7. Let A be a simple Q-algebra and Λ ⊂ A a maximal Z-order.
(i) The reduced norm nrA : K1(A) → Z(A)× is injective, and coker(nrA) is finite.
(ii) The image of nrΛ : K1(Λ) → Z(A)× is contained in (OZ(A))×, and (OZ(A))×/ im(nrΛ) is

finite.

The proof of Theorem 3.7 is rather lengthy, so we refer the reader to [11, Theorem 2.3] for details.
Analogous statements for semisimple Q-algebras follow immediately; we make them explicit for the
record, along with an additional statement about the kernel of nrΛ.

Corollary 3.8. Let A be a semisimple Q-algebra and Λ ⊂ A a maximal Z-order. Write A =∏n
i=1 Ai where each Ai is simple, and set O =

∏n
i=1 OZ(Ai).
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(i) The reduced norm nrA : K1(A) → Z(A)× is injective, and coker(nrA) is finite.
(ii) The image of nrΛ : K1(Λ) → Z(A)× is contained in O×, and O×/ im(nrΛ) is finite.
(iii) The kernel of nrΛ is finite.

Proof. We have ker(nrA) =
∏n

i=1 ker(nrAi) = 0, and coker(nrA) ∼=
∏n

i=1 coker(nrAi) is finite since
each factor is finite. Item (ii) follows from Theorem 3.4(ii). The fact that ker(nrΛ) is finite requires
several inputs:

• Since nrA is injective by (i), we have SK1(Λ) = ker(nrΛ).
• By a theorem of Bass [2, Proposition 11.2], the map GL2(Λ) → K1(Λ) is surjective.
• A result of Siegel [13] implies that GL2(Λ) is finitely generated, hence so too is SK1(Λ).
• Quillen’s localization sequence (see Remark 3.5 and [11, Theorem 1.17]) implies that SK1(Λ)

is torsion. (This step uses the fact that Λ is maximal.)
Combining these, we see that ker(nrΛ) is a finitely generated abelian group which is torsion; thus
it is finite. ■

Generalizations of Corollary 3.8(ii) and (iii) holds for non-maximal Z-orders (Proposition 3.10
below); to prove these, we will need to be able to compare K1(Λ) and K1(Γ) where Λ ⊆ Γ are
Z-orders in the same Q-algebra.

Lemma 3.9. Let R be a subring of S. If there exists a two-sided ideal I of S such that I ⊆ R and
|S/I2| < ∞, then the map K1(R) → K1(S) has finite kernel and cokernel.

See [11, Lemma 2.4] for a proof (this is where one must discuss the second K-group K2(R)).

Proposition 3.10. Let A be a semisimple Q-algebra, and let Λ ⊂ A be any Z-order. Write
A =

∏n
i=1 Ai where each Ai is simple, and set O =

∏n
i=1 OZ(Ai). Then the map nrΛ : K1(Λ) → O×

has finite kernel and cokernel.

Proof. By Theorem 3.4(i), there exists a maximal Z-order Γ ⊂ A containing Λ. By Lemma 3.6,
there exists an integer m > 0 such that mΓ ⊆ Λ. Then the product ideal (mΓ)2 = m2Γ is
also contained in Γ, and |Γ/(mΓ)2| = |Γ/m2Γ| < ∞. It follows from Lemma 3.9 that the map
K1(Λ) → K1(Γ) has finite kernel and cokernel. Since nrΛ is equal to the composition

K1(Λ) → K1(Γ) nrΓ−−→ O×

and nrΓ : K1(Γ) → O× has finite kernel and cokernel by Corollary 3.8(ii) and (iii), the result
follows. ■

3.3. Towards the theorem of Bass. We are almost in a position to prove Theorem 3.1; the last
few inputs we shall need come from number theory and representation theory.

Theorem 3.11 (Dirichlet unit theorem [8, Theorem 13.12]). Let F be an algebraic number
field, and OF its ring of integers. The group of units (OF )× is finitely generated; moreover, if r
denotes the number of field summands of R ⊗Q F , then rank((OF )×) = r − 1.

For the next result, we make a provisional definition: given a finite group G and g, h ∈ G, we
say that g and h are Q-conjugate if the cyclic subgroups generated by g and h are conjugate; we
say that g and h are R-conjugate if g is conjugate to h or h−1.

Theorem 3.12 (Berman–Witt [6, Theorem 42.8]). Let F be a field of characteristic 0. For any
finite group G, the number of simple F [G]-modules (i.e., the number of simple summands of F [G])
equals the number of F -conjugacy classes of elements in G.
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Since simple F [G]-modules are equivalent to irreducible F -representations of G, the Berman–
Witt theorem provides the link to the rank formula in the statement of Theorem 3.1 when combined
with the following:

Lemma 3.13. Let f : A → B be a homomorphism of abelian groups.
(i) If ker(f) is torsion, then rank(A) ≤ rank(B).
(ii) If coker(f) is torsion, then rank(A) ≥ rank(B).

Proof. Consider the following exact sequence of Z-modules:

0 ker(f) A B coker(f) 0f

Tensoring with Q is an exact functor, so the sequence

0 ker(f) ⊗Z Q A ⊗Z Q B ⊗Z Q coker(f) ⊗Z Q 0f⊗1

is also exact. If ker(f) is torsion, then ker(f) ⊗Z Q = 0. Thus f ⊗ 1 is an injective linear map of
Q-vector spaces, whence it follows that

rank(A) = dimQ(A ⊗Z Q) ≤ dimQ(B ⊗Z Q) = rank(B).

Similarly, if coker(f) is torsion, then coker(f) ⊗Z Q = 0. Thus f ⊗ 1 is surjective, so rank(A) ≥
rank(B). ■

Proof of Theorem 3.1. Let A = Q[G] and Λ = Z[G]. If q denotes the number of simple summands
of A, then we can write Z(A) =

∏q
i=1 Fi where each Fi is a field with ring of integers OFi . Denote

by r and ri the number of field summands of R⊗QZ(A) and R⊗QFi, respectively, so that r =
∑

i ri.
By the Dirichlet unit theorem, each (OFi)× is finitely generated, hence so too is

∏q
i=1(OFi)×. By

Proposition 3.10, the same is true of K1(Λ); moreover, Lemma 3.13 implies that

rank(K1(Λ)) = rank
( q∏

i=1
(OFi)×

)
=

q∑
i=1

rank((OFi)×) =
q∑

i=1
(ri − 1) = r − q,

which yields the desired rank formula when combined with the Berman–Witt theorem. ■

4. Whitehead torsion

Henceforth, we assume all rings R satisfy the invariant basis number property: if Rm is isomor-
phic to Rn (as left or right R-modules), then m = n. This is the case, for example, if R admits
a non-zero ring homomorphism to a division ring. The integral group rings R = Z[G] considered
previously are examples of such rings, as they admit a non-zero homomorphism to Q given by
sending all elements of G ⊂ Z[G] to 1.

To build up to the definition of Whitehead torsion, we must first discuss torsion for chain com-
plexes and maps between them. We mostly follow the exposition of Jacob Lurie’s notes for the
remainder of this section.

4.1. Torsion for chain complexes. Let R be a ring. By a based chain complex over R, we
mean a bounded chain complex C• = (C•, ∂) of finitely generated free R-modules, together with a
preferred choice of unordered bases for each Cn. Suppose, in addition, that C• is acyclic (i.e., the
homology groups H•(C) all vanish). Then the identity map C• → C• is chain homotopic to zero;
that is, there exist module homomorphisms Pn : Cn → Cn+1 such that ∂P + P∂ = idC• . If we set

Ceven =
⊕
n∈Z

C2n, Codd =
⊕
n∈Z

C2n+1,
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then ∂ + P defines homomorphisms Ceven → Codd and Codd → Ceven. In fact, these are isomor-
phisms: since (∂ + P )2 = ∂2 + ∂P + P∂ + P 2 = id +P 2, the geometric series formula suggests that
an inverse for (∂ + P )2 should be given, at least formally, by

(id +P 2)−1 = id −P 2 + P 4 − P 6 + · · · .

But this sum is finite since C• is bounded and P increases degree, and hence the right-hand side
defines an actual inverse for (∂ + P )2.

We can build bases for the free R-modules Ceven and Codd from the preferred bases of the Cn’s,
and therefore identify Ceven ∼= Rm and Codd ∼= Rn. Since R has the invariant basis number property
and Ceven ∼= Codd, we have m = n. Expressing ∂ + P : Ceven → Codd as a matrix with respect to
these bases, we may regard ∂ + P ∈ GLn(R). Of course, this matrix will depend on how we
chose to order the bases of Ceven and Codd; however, any two orderings will yield matrices which
are equivalent up to multiplication by permutation matrices. It turns out that the image of any
permutation matrix under the map GLn(R) → GL(R) → K1(R) is given by [ε], where ε = ±1 is
the sign of the permutation. Thus, if we work with the reduced K1-group

K1(R) := K1(R)/⟨±1⟩,
then we can make the following definition:

Definition 4.1. The torsion τ(C•) ∈ K1(R) of the based acyclic chain complex C• is the image
of ∂ + P ∈ GLn(R) under the map GLn(R) → GL(R) → K1(R) → K1(R).

It turns out that τ(C•) is independent of the choice of the chain null-homotopy P .
To define the Whitehead torsion of a homotopy equivalence of CW complexes, we will also need

to be able to make sense of torsion for certain maps of chain complexes f : (C•, ∂C) → (D•, ∂D).
This can be defined as follows: let C[−1]• := (C•−1, −∂C) denote the chain complex obtained from
C• by shifting each degree down by 1 and changing the sign of the boundary operator. The mapping
cone of f is the chain complex Cone(f)• = C[−1]• ⊕ D•, with the boundary operator

∂(x, y) :=
(

−∂C 0
f ∂D

)(
x
y

)
= (−∂Cx, f(x) + ∂Dy).

The mapping cone of f is acyclic if and only if f is a quasi-isomorphism (i.e., induces isomorphisms
on all homology groups). If C• and D• are based, then assembling the preferred bases of C• and
D• yields a basis for Cone(f)•; again, the ordering is unimportant for our purposes.

Definition 4.2. The torsion τ(f) ∈ K1(R) of a quasi-isomorphism f : C• → D• of based chain
complexes is the torsion of Cone(f)• in the sense of Definition 4.1.

4.2. Torsion for CW complexes. Let f : X → Y be a cellular homotopy equivalence of finite
connected CW complexes.5 Fixing a basepoint x ∈ X, we set G = π1(X, x) ∼= π1(Y, f(x)). Choose
a universal cover Ỹ → Y and let X̃ = X ×Y Ỹ → X be the corresponding universal cover of X,
both equipped with the natural CW complex structures obtained by lifting the cells of X and Y
along the respective covering maps. Then the lift f̃ : X̃ → Ỹ induces a chain homotopy equivalence
f̃∗ : C•(X̃,Z) → C•(Ỹ ,Z). By choosing a lift for each cell in X and Y , we may regard C•(X̃,Z) and
C•(Ỹ ,Z) as chain complexes of free Z[G]-modules and apply the previously detailed constructions
to obtain an element of K1(Z[G]). This element depends on the choice of lifts for each cell, and
therefore is only determined up to the action of G by deck transformations of X̃ and Ỹ . Notice,
however, that

K1(Z[G])/G =
(
K1(Z[G])

/
⟨±1⟩

)/
G = Wh(G).

5If X and Y are disconnected, then the following discussion can be applied to each connected component.
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Definition 4.3. The Whitehead torsion τ(f) ∈ Wh(G) is the image of the chain homotopy
equivalence f̃∗ : C•(X̃,Z) → C•(Ỹ ,Z) in Wh(G).

Let us make some remarks about Whitehead torsion and its properties. First, note that changing
the basepoint x ∈ X induces isomorphisms of Z[G] which come from conjugation by a path in X.
This does not affect the Whitehead torsion, as conjugation acts trivially on the Whitehead group:

(gxg−1) ∼
(

gxg−1 0
0 1

)
∼
(

xg−1 0
0 g

)
∼
(

x 0
0 1

)
∼ (x).

Thus τ(f) is also independent of the basepoint. Second, Whitehead torsion is homotopy invariant:

Proposition 4.4. Let f : X → Y and g : X → Y be cellular homotopy equivalences of finite
connected CW complexes. If f and g are homotopic, then τ(f) = τ(g).

In particular, using the cellular approximation theorem, we can extend Whitehead torsion to
homotopy equivalences which are not necessarily cellular. As promised, this provides a way of
distinguishing arbitrary homotopy equivalences from those which are simple:

Theorem 4.5. A homotopy equivalence f : X → Y of finite connected CW complexes is simple if
and only if τ(f) = 0.

As mentioned at the beginning of Section 3, the Whitehead group of the trivial group is trivial;
thus, Theorem 4.5 implies that there is no difference between homotopy equivalence and simple
homotopy equivalence for simply connected CW complexes.

In the earliest papers discussing simple homotopy theory, it was conjectured that simple homo-
topy equivalence is a topological invariant, i.e., does not depend on the cellular structure. It would
take decades for this to be proven:

Theorem 4.6 (Chapman [5], Theorem 1). Every homeomorphism of finite connected CW com-
plexes is a simple homotopy equivalence.

4.3. Epilogue. We have developed a most impressive algebraic apparatus for detecting when a
homotopy equivalence of finite CW complexes can be seen from within the world of finite CW com-
plexes. Let us conclude by mentioning a few applications of simple homotopy theory to questions
in differential topology. Throughout, all manifolds are smooth.

Recall that a cobordism between two compact d-dimensional manifolds M and N is a compact
(d + 1)-dimensional manifold with boundary W such that ∂W = M ⊔ N . If the inclusions M ↪→ W
and N ↪→ W are both homotopy equivalences, then W is called an h-cobordism.

Theorem 4.7 (s-cobordism6 theorem). Let M and N be compact manifolds of dimension
d ≥ 5. A path-connected h-cobordism W between M and N is diffeomorphic to M × [0, 1] relative
to M if and only if the inclusion M ↪→ W is a simple homotopy equivalence.

The s-cobordism theorem provides a tool for constructing diffeomorphisms M → N in higher
dimensions. For instance, in view of the fact that Wh(Zd) = 0 for all integers d ≥ 0, the s-cobordism
theorem implies that any manifold of dimension d ≥ 5 which is h-cobordant to the d-torus is also
diffeomorphic to it.

For a second application of simple homotopy theory, recall that a lens space is a quotient of the
unit sphere S2n−1 ⊂ C2n by a finite cyclic subgroup of the unitary group U(n).

6If the h in “h-cobordism” stands for “homotopy”, then we propose that the s in “s-cobordism” should stand for
“shmotopy”. Homotopy shmotopy.
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Theorem 4.8 (Franz–Reidemeister [10, §12]). Two lens spaces are diffeomorphic if and only
if they are simple homotopy equivalent.

In fact, lens spaces produce examples of odd-dimensional manifolds that are homotopy equivalent
but not simple homotopy equivalent as mentioned in Section 1.

Finally, the author cannot resist mentioning an application within symplectic topology. For
any closed smooth manifold M , the cotangent bundle π : T ∗M → M admits a canonical exact
symplectic form on its total space. The nearby Lagrangian conjecture states that every closed exact
Lagrangian submanifold of T ∗M is Hamiltonian isotopic to the zero section. While this conjecture
is wide open in general, progress has been made recently:

Theorem 4.9 (Abouzaid–Kragh [1]). If L ⊂ T ∗M is a closed exact Lagrangian, then the
projection π|L : L → M is a simple homotopy equivalence.

As a consequence, we have the following:

Corollary 4.10. Two lens spaces are diffeomorphic if and only if their cotangent bundles are
symplectomorphic.

Indeed, if L1 and L2 are lens spaces such that there exists a symplectomorphism T ∗L1 → T ∗L2,
then the image of L1 in T ∗L2 under this symplectomorphism is a closed exact Lagrangian; thus L1
and L2 are simple homotopy equivalent, and the corollary follows from Theorem 4.8.
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