A GUIDE TO DRAWING PICTURE PROOFS

Arthur Lei Qiu

1 Introduction

Sometimes, a picture really is worth a thousand words. Complex mathematical ideas can often
be greatly clarified with the use of visual aids. One common type of visual aid is a “picture proof™:
a drawing or figure which captures the logical reasoning underlying a proof of some mathematical
truth, or which supplements a written argument proving some mathematical truth.

For instance, here is a famous picture proof of the Pythagorean theorem:

Figure adapted from Wikipedia.

The outer square (outlined in black) formed by the four coloured triangles has side length a + b,
hence its area is (a + b)?. This must equal the sum of the area of the white square and the areas
of the four triangles; that is,

(a +b)? :c2+4%b,

and after a little algebraic manipulation, one obtains a® 4 b?> = ¢2. Of course, this is but one way of
proving the Pythagorean theorem; many other picture proofs of the same fact have been discovered
throughout history (Figure 1.1).
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Figure 1.1: Left: A diagram from an article published in the New England Journal of Education
(Vol. 3, No. 14, April 1, 1876) presenting a new proof of the Pythagorean theorem by James
A. Garfield, better known as the 20'" President of the United States. Right: An illustration of

the Pythagorean theorem for the special case of a 3 : 4 : 5 triangle from the Zhoubi Suanjing, an
ancient Chinese text dated to the 11*" century BC.
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As another example, recall that the n'* triangular number T, is defined as the sum of the first
n positive integers:

T,=1+24---+(n—1)+n.

It is a well-known fact that T}, = % Here is a picture proof of this identity when n = 4:
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Figure adapted from Wikipedia.

There are a total of 27y circles (T4 many yellow circles and T; many green circles). When
arranged as in the picture, the circles form a 4 x 5 rectangle, which shows that 27y = 4 x 5, hence
T, = 45

=20,

Lastly, here is a picture proof of the geometric series expansion 1 + % + ;11 + % 4+ =2:

Figure adapted from Wikipedia.

Being able to draw convincing picture proofs is an incredibly useful skill for the modern math-
ematician. Pictures help build intuition, and can help communicate your ideas to others. At the
same time, the ability to draw convincing picture proofs is a skill, and like any other skill, it requires
practice. In this document, we will outline some general rules to follow when preparing picture
proofs meant to supplement (or even replace) written proofs. These rules are illustrated' with
guided examples. We will also discuss some software packages you may find useful to help make
your figures.

Development of this guide was supported by the Writing-Integrated Teaching program, an
initiative of the University of Toronto’s Faculty of Arts and Science dedicated to helping instructors
and academic units embed discipline-specific writing instruction into undergraduate courses and
programs. The author is also grateful to Adam Morgan for generously allowing the adaptation of
content from his Guidelines and Tips for Making Figures handout in the making of this document,
and to Asif Zaman for permission to use content from MAT237 as examples.

'Pun intended.
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2 Picture Proofs

2.1 Example 1: Limit points

Let’s try to draw a picture proof of the following fact:
PROPOSITION 2.1. The point p = (2,2) is a boundary point of the set S = {(x,y) € R? | y > x}.
Any time you are asked to draw a picture proof, you should ask yourself two questions:

1. How would I write a formal proof of this fact?
2. How can I translate the key ideas of my written proof into a visual?

Let’s start by addressing the first of these questions for Proposition 2.1. There are two possible
approaches, depending on what one takes as the definition of “boundary point”. Recall that the
following statements are equivalent for a point p € R? and a set S C R?:

p is a boundary point of S.
T
For every € > 0, the open ball B.(p) of radius ¢ centred at p has non-empty intersection with both
S and R?\ S.

There exist sequences (z)ren in S and (yx)ren in R?\ S such that both x;, and y, converge to p
as k — oo.

To make sure we’re all on the same page, let us briefly outline how each proof would go.

Proof sketch (ball definition). Fix e > 0. Show that B.(p) NS is non-empty by explicitly giving an
element of it. Do the same for B.(p) N (R?\ S). Conclude using the arbitrariness of e. [

Proof sketch (sequence definition). Explicitly define two sequences (x1)ren and (yx)ren in R, Ver-
ify that z; € S and y, € R?\ S for all k € N. Show that limg_,o 7 = p and limy_,0 Y1 = p. [ |

Just like how the steps of a written proof will depend on which one of these definitions we choose,
so too will a picture proof. However, there will be some commonalities to start with. For instance,
any picture proof will start with roughly the same “background canvas”: the space on which we
will draw our picture proof. Proposition 2.1 is a statement about the relationship between a point
and subset of R>—but more than that, it is a statement about a point with specific coordinates
and a subset defined by a specific inequality of coordinates. A written proof will have to refer to
these coordinates at some point, so our picture proof should start by drawing the coordinate axes
of a two-dimensional plane.
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As simple as this may seem, there are already several points worth mentioning.

e Conventions and consistency. Humans can only accurately make drawings of one-, two-,
or three-dimensional objects. [citation needed] Ty thege dimensions, the components of R, R2, and
R3 are often given distinguished labels.

— An arbitrary element of R is often written as z, so the letter x usually refers to its
only component. Sometimes the letter ¢ is used instead when one wants to think of R
as representing “time” (such as in a parametrization of a curve describing an object’s
motion).

— An arbitrary element of R? is often written as (z,y), so the letters z and y usually refer
to the first and second components, respectively.

— An arbitrary element of R3 is often written as (z,v, 2), so the letters x, y, and z usually
refer to the first, second, and third components, respectively.

We labelled the axes x and y for two reasons. The first is that it matches with the convention
above. The second (and arguably more important!) reason is that the problem statement used
these letters.

If a problem is given to you with stated notation already, then you should stick with that
notation when writing a proof or drawing a figure. For example, if Proposition 2.1 were stated
such that we were asked to show that (2,2) is a boundary point of {(z1,z2) € R? | 2o > 11},
then we should label our coordinate axes x1 and x9 instead of x and y. The reader will expect
that the notation used in a fact statement is the same as the notation used in a proof of that
statement, so choose your notation in a way that is consistent with previously introduced
notation.
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If a problem is given to you with stated notation already, then you should stick with
that notation when labelling elements of your figure.

If a problem is given to you without stated notation, then you may come up with your
own notation, which should be sensible and align with conventions.

If we were illustrating a three-dimensional statement, we could label the axes (z,y, z), or
(z1,x2,x3), or another set of three labels. The choice will depend on whether the problem
statement already introduced notation for the coordinates of R3, among other factors.

As our drawing gets more complicated, we will likely have to introduce more labels to dis-
tinguish objects. Importantly, we should make sure there are no notational clashes. For
instance, since we used (z,y) as coordinates, we should think of those letters as reserved
only for that purpose; we should not use x and y to refer to specific numbers or points else-
where in the picture proof, for instance. Similarly, if we use (x1,z2,23) as coordinates in a
three-dimensional drawing, then we should definitely not label a sequence of points in R? as
x1,X2,x3,T4,..., as this would get confusing. Instead, we should search for a different label.

Once an element of your drawing has been labelled with a given letter or symbol, that
letter or symbol should not be used to mean something different elsewhere.

Let us continue by drawing the set S and the point p.

Y

A

Note that we are abiding by a convention specifically for subsets of R:
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The boundary of an open subset of R? is typically drawn as a dashed (— — —) or dotted (---)
curve. The boundary of a closed subset of R? is typically drawn as a solid curve (—).

Bear in mind that there are sets which are both open and closed, as well as sets which are
neither open nor closed. For such sets, you must decide how to draw their boundary in a way that
will not confuse the reader.

At this point, it is worth introducing perhaps the most important rule of picture proofs:

A good picture proof must accurately reflect whether a quantity is “arbitrary” or “special”.

We will explore this more later, but for now, let us note how this rule is already reflected in our
drawing so far:

1. The set S = {(z,y) € R? | y > z} is given to us; it is not arbitrary. As such, our picture
proof should match the description of this set. We would not be off to a great start if we
accidentally shaded in the set {(z,y) € R? | y < z}, or drew some other random set.

2. Similarly, the point p = (2,2) is given to us; it is not arbitrary. Since we have not yet
introduced a sense of scale to the z- and y-axes (i.e., how far one unit distance is), we have
some freedom in deciding where to draw p; however, we should at the very least ensure that
the indicated point appears in the upper right quadrant of R? in our picture proof, and on
the line y = . Once we have drawn p, the drawing’s scale is fixed, and we should ensure that
all other features of the drawing are consistent with this scale. (For instance, if we had to
draw the point 2p, then it should be drawn twice as far from the origin as p.) To make the
scale clear, we could label the coordinates of p, or introduce a coordinate grid. These options
are shown separately below.
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Both options have pros and cons to them. For instance, introducing a coordinate grid makes the
sense of scale clearer to the reader; however, it may be difficult to draw such a grid using pen and
paper without the figure becoming cluttered. Below, we will take a compromise between these two
approaches by giving the coordinates of p and introducing a grid, while omitting the tick marks on
the z- and y-axes.
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At this point, the two ways in which we can prove Proposition 2.1 diverge in their approaches.
Let us consider them separately.

2.1.1 The ball approach

Recall that this method of proof went as follows:

Proof sketch (ball definition). Fix € > 0. Show that B.(p) NS is non-empty by explicitly giving an
element of it. Do the same for B.(p) N (R?\ S). Conclude using the arbitrariness of e. [ |

The written proof involves a statement about open balls of arbitrarily small radius € > 0, and
yet we can only draw finitely many. One workaround for this is to draw just one such ball, but
ensure that it is sufficiently “generic” to capture the idea for arbitrary . (You could also draw a
sequence of open balls which get smaller and smaller, but this comes at the risk of cluttering up
your drawing.)

Here is a first attempt at illustrating this proof by depicting B.(p) and two points lying in
B:(p) NS and B:(p) N (R%\ S):
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However, here we must ask whether we satisfied the rule about whether our picture proof accurately
reflects which quantities are “arbitrary” and which ones are “special”. For one, we have drawn the
ball so that it lies exactly tangent to the z- and y-axes. This might lead a viewer to wonder: “Is
there something important about the fact the ball depicted is tangent to the coordinate axes?

Of course, the answer is no, but this is not accurately captured in the picture. To fix this, let
us make two changes:

o Shrink the ball slightly (after all, the main idea of the proof is that the argument must hold
for balls of arbitrarily small radius), and
e Label a radius of the ball by ¢ without giving € a specific value, to emphasize its genericity.
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Making these changes produces the picture below.
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We are still not done yet, though. A written proof will require us to specify the point in B.(p) NS
and the point in B.(p) N (R?\ S) explicitly—e.g., by giving their coordinates (which will depend on
). On the other hand, while our picture depicts these two points, it does not explain how to come
up with their coordinates! Since we have drawn these points as lying on the same vertical line as
p, plausible formulas for the points above and below p might look like (2,2 +¢/2) and (2,2 —¢/2),
respectively. To finish our picture, we will label our points with these formulae. (To make the
formulae visually consistent with the size of the ball, we will also have to shift the points slightly.)
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This is more or less a complete picture proof: we have drawn and labelled all the important objects
that come into play in a way so that a viewer could feasibly reproduce the written proof based off
the picture. You might reasonably ask questions like:

o« The sets B.(p) NS and B.(p) N (R?\ S) are both important to the proof; why didn’t we label
those?

o Should my picture proof somehow explain why the two points lie inside of Bc(p) NS and
B:(p) N (R?\ S) respectively as claimed?

The truth is that there is no one correct answer for these types of questions. You will have to use
your judgement to decide what the most important aspects of the written proof are that you wish
to highlight in the picture, and what details to suppress. Here is one guiding principle to help you
decide:

Picture proofs should be labelled with the same key quantities that would appear in a written
proof.

Note that this is only a rule of thumb: sometimes you may want to illustrate an idea which
would require lots of notation to communicate in writing. If you try to put too much notation in
a single picture, it runs the risk of becoming cluttered and difficult to separate the key steps of
the proof from the relatively minor details. In our final picture, we have abided by this rule in a
minimal way: the most important quantities are the point p, the set S, the radius €, and the points
(2,2 +¢/2), and we have decided that the sets B.(p) NS and B.(p) N (R?\ S) are not important
enough to warrant their own labels.

2.1.2 The sequence approach

Let us recall how this proof outline goes.
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Proof sketch (sequence definition). Explicitly define two sequences (x1)ren and (yx)ren in R2. Ver-
ify that 3, € S and y, € R?\ S for all k € N. Show that limj_, 21 = p and limy_,0 yx = p. [ |

Roughly speaking, you can think of “arbitrary” as corresponding to the quantifier “for all” (V),
and “special” as corresponding to the quantifier “there exists” (3). Using the sequence approach,
we have to show that there exist two sequences with certain properties. As such, when drawing
these two sequences, they should be considered “special”.

To illustrate this, let us start off with a bad picture proof using the sequence definition.

Y

I

Figure 2.1: A bad picture proof of Proposition 2.1 using sequences.

On the surface, this might seem okay: we have depicted the sequence (zy) lying in S and the
sequence (y) lying inside R? \ S, and both look like they converge to p. But there is a serious
problem: the sequences we drew are too generic. In the written proof, explicitly defining (xj) and
(yx) would typically involve giving a formula for their coordinates for each k—but, for instance, I
certainly don’t know a formula which describes the red sequence.

In order to fix this, we have to decide once and for all what our sequences z; and y; should be.
There are many valid choices; one such choice is depicted in the picture below. (See if you can fill
in the written proof using just this picture—note that you might not be able to do so had we not
labelled x and y; and given their formulae!)
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Warning: Be careful about using colour in mathematical figures. While it can be very useful
in the right circumstances, bear in mind that some of your audience members may not be able to
perceive or distinguish certain colours; for instance, studies suggest that red—green colourblindness
affects up to 1 in 12 men and 1 in 200 women. This website demonstrates how colourblindness can
affect visuals, and has suggestions on colourblind-friendly palettes to use.

Also ask yourself: will your picture be printed out? If so, your reader may lose the ability to
distinguish colours should your picture be rendered in black/white or grayscale.

2.2 Example 2: Path-connectedness
First, let us recall an important definition from topology.

DEFINITION 2.2. A subset S C R" is path-connected if, for any x,y € S, there exists an interval
[a,b] C R and a continuous curve v: [a,b] — R™ such that y(a) = x, y(b) =y, and y(t) € S for all
t € [a,b].

Less formally, a set S is path-connected if any two points in it can be joined by a continuous
curve which lies entirely within S. This informal description lends itself well to picture proofs, and
is what we will try to illustrate for a picture proof of the following statement:

PROPOSITION 2.3. An open ball in R? is path-connected.’

Note the generality of Proposition 2.3: it does not depend on the radius of the ball or the point
that the ball is centred at. As such, neither a written proof nor a picture proof should directly
depend on these quantities.

The proof idea of Proposition 2.3 is simple enough: given two points z,y inside an open ball
B, connect them with the line segment joining them. (Actually proving that every point on this

2This statement is true in all dimensions, of course, but the picture in 1 dimension is not very interesting, and
while the picture in 3D is doable, the proof’s main idea is already captured by the 2D case.
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line segment lies inside B requires the triangle inequality, but we will not be focusing on this in the
picture). Below is a corresponding illustration.

—————

______

Given how simple this statement and its proof is, we might call it a day here. But if we wanted to
be thorough, we could add a few labels. For one, we could give the curve a name (), and we could
give a formula for the function parametrizing the line segment. One possible choice among many
is y(t) = (1 — t)z + ty for t € [0, 1]; this yields the following picture.

—————

______

—————
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This picture is a bad picture proof for the same reason that Figure 2.1 is a bad picture proof:
namely, in the written argument, one would have to explicitly construct the curve v, e.g., by
specifying what «(¢) is for each time ¢ in the parametrization interval. But from this picture, it is
virtually impossible to tell what the formula for ~(¢) might look like.

Connecting the points x and y via the line segment joining them is not the only valid way of
proving Proposition 2.3, however. Another perfectly valid method is to first connect x to the centre
of the ball with a line segment, then connect the centre of the ball to y with another line segment.
A basic illustration of this alternative approach is below.
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—————

This picture does lack two things, though:

e It might be hard for a viewer to recognize that the “turning point” of the curve is exactly the
centre of the ball. As such, it might be worth labelling the centre somehow.

o Since this curve is a bit harder to describe than the straight line segment connecting x and
y, it is definitely worth including a formula for +(¢) in the picture.

EXERCISE 2.4. Finish the picture proof above by labelling the centre and finding a formula for a
curve which describes 7(¢). You may need to use piecewise notation.

EXERCISE 2.5. Draw a picture proof of the following fact: the set {(x,y) € R? | x # 0} is not
path-connected.

EXERCISE 2.6. Draw a picture proof of the following fact: the union of two path-connected sets
with non-empty intersection is path-connected.

Let us summarize some of the important points to remember when drawing picture proofs.

Guidelines for Drawing Picture Proofs

o First, come up with a written proof; translate it into a picture proof afterwards. This
helps you decide what the most important aspects of the proof are that should appear
in your illustration.

e Picture proofs should communicate the same key ideas as a written proof.

e Picture proofs should be labelled with the same quantities that would appear in a
written proof.

e Picture proofs should accurately reflect whether a quantity is “arbitrary” or “special”.

e Objects should be drawn to scale whenever a sense of scale is important for the proof.

e Colour can be helpful in small doses, but overusing colours can make pictures visually
confusing and alienate some viewers.

3 Technology and Tools for Making Figures

Below are some options you might want to consider when deciding how you want to draw your
pictures. The computer applications we mention are quite popular and well-documented, so with
some web searching you can quickly figure out how to do pretty much anything you want with any
of them (and for this reason, this document will not give you a comprehensive tutorial on how to
use these).

¢ Good old fashioned pen-and-paper. But please make sure your drawing and any hand-
writing on it is legible, including after possibly being scanned into a computer!
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Electronic tablets. On most tablets, you can download notetaking applications which
include features that make drawing mathematical figures a bit easier; for instance, some
applications will detect when you are trying to draw a circle with a stylus and replace your
handwriting with a perfect circle, and similarly with straight lines or polygons.

Desmos (https://www.desmos.com/calculator): Good for generating pictures in R? in-
cluding graphs, curves, and subsets. As of 2025, Desmos has also released a beta version of
Desmos 3D (https://www.desmos.com/3d).

Math3D (https://www.math3d.org/): Good for generating pictures in R? including curves,
surfaces, and vector fields.

Geogebra: has a graphing calculator similar to Desmos (https://www.geogebra.org/graphing)
and a 3D plotter similar to Math3D (https://www .g,oog(bm.mh/.)(l). However, Geogebra
tends to be quite laggy as the complexity of the objects drawn increases.

TikZ: If you use IWTEX, you might consider learning how to use the TikZ package, which is
what was used to generate the figures in this document. The syntax can be rather hard to
learn, but online tutorials such as Overleaf’s are available, and if you want to know how to
draw something in TikZ, chances are someone else has asked how to do so on Stack Exchange.
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