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1 Introduction
The no-hair conjecture of general relativity states that all black hole solutions to Einstein’s field

equations are characterized by their mass, angular momentum, and electric charge. That is, in some
sense, black holes are very simple objects: outside of their event horizons, the geometry of spacetime
is determined by only three quantities. The conjecture is known to hold in several astrophysically
relevant situations1 (see [10] for a physical test of the conjecture using data from the binary black
hole merger GW150914) but lacks a complete rigorous mathematical proof, with resolution only in
some special cases. For example, there are proofs in the classical setting of stationary electrovacuum
spacetimes with some additional assumptions, but the conjecture is known to be false in more
general settings (which we will not discuss).

In this paper, we examine some of these classical cases. Specifically, in Section 3, we outline
the proof of the no-hair theorem in the case of non-rotating black holes with no electric charge.
We extend this proof to the case of non-zero electric charge in Section 4. Finally, in Section 5, we
briefly discuss the no-hair theorem in the context of rotating black holes both with and without
electric charge.

We adopt the following conventions throughout:

• (M, g) denotes a four-dimensional Lorentzian manifold with metric signature (−,+,+,+).
The metric induces a natural inner product on each tensor bundle, which we denote by 〈·, ·〉.
• We work in units where G = c = 1. Greek indices denote both space and time components,
while Latin indices are reserved for spatial components only.

2 Preliminaries
For details on the statements included in Section 2.1, we refer the reader to [15]; for the proof

of Theorem 2.1 specifically, see [5]. In Section 2.2, we refer heavily to [7] and [8].

2.1 Conformal geometry of 3-manifolds

Recall that two Riemannian metrics h and ĥ on the same underlying 3-dimensional manifold Σ
are conformally equivalent if there exists a strictly positive function Ω ∈ C∞(Σ) such that

ĥ = Ω2h.

The scalar curvatures R and R̂ corresponding respectively to h and ĥ are related by

Ω4

2 R̂ = Ω2

2 R− 2Ω∆Ω + 〈grad Ω, grad Ω〉, (2.1)

where the Laplacian ∆ and the inner product 〈·, ·〉 are taken with respect to h.
We say that (Σ, h) is conformally flat if h is conformally equivalent to a flat metric on Σ. In

three dimensions, we have a characterization of conformal flatness in terms of a particular tensor.
1Indeed, many physicists refer to the general statement as the no-hair theorem.
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Theorem 2.1. A 3-dimensional Riemannian manifold (Σ, h) is conformally flat if and only if the
Cotton tensor

Ckij := 2∇[iRj]k + 1
2hk[i∇j]R = ∇iRjk −∇jRik + 1

4 (hki∇jR− hkj∇iR) (2.2)

vanishes identically. (Here and throughout the paper, square brackets denote antisymmetrization.)

2.2 Static spacetimes

We say a spacetime (M, g) is stationary if it admits a global timelike Killing vector field k. Such
a stationary Killing field gives rise to the 3-dimensional quotient manifold Σ = M/G, where G is
the one-parameter group of isometries generated by the flow of k. If, in addition, k is hypersurface-
orthogonal (i.e. (M, g) is static), then Σ can be realized as a spacelike hypersurface ofM orthogonal
to the trajectories of k, whose induced Riemannian metric we denote by g̃. In this case, the metric
on M can be written as

g = −S2 dt2 + g̃, (2.3)

where S2 = −〈k, k〉 is positive on Σ. One can then use Cartan’s structure equations to express
the Ricci tensor and scalar curvature of the static metric (2.3) in terms of S and the Levi-Civita
connection ∇̃ on (Σ, g̃). Specifically, letting tildes denote quantities associated to (Σ, g̃), we have

Rtt = S∆̃S, Rij = R̃ij − S−1∇̃j∇̃iS, R = R̃− 2S−1∆̃S. (2.4)

In particular, when we are interested in the Einstein vacuum equations Rµν = 0, we obtain

∆̃S = 0, R̃ij = S−1∇̃j∇̃iS, R̃ = 0. (2.5)

These equations characterize the geometry of (Σ, g̃), a spacelike hypersurface embedded in (M, g)
which physically represents the “t = 0 slice” exterior to a black hole2. In general, Σ has non-empty
boundary H = ∂Σ, representing the event horizon; we assume that S = 0 on H, so that H is a
Killing horizon. Then the surface gravity κ of H is defined by

grad(S2) = 2κk on H. (2.6)

The assumption that the horizon is regular (i.e. non-degenerate) means that κ 6= 0. Lastly, we
assume that Σ ∪H is orientable.

We can compute the Cotton tensor (2.2) of (Σ, g̃) in a vacuum spacetime by using the vacuum
equations (2.5) and Rµν = 0. Letting S|k := ∇̃kS, we find that

Ckij = 2
S2S|[jS|i]|k + 1

S
R̃jinkS

|n. (2.7)

In three dimensions, the Riemann tensor satisfies

R̃jink = 2g̃j[nR̃k]i − 2g̃i[nR̃k]j + R̃g̃j[kg̃n]i. (2.8)

Substituting this into (2.7) and using (2.5) results in

Ckij = 4
S2S|[jS|i]|k + 2

S2 gk[iS|j]|nS
|n, (2.9)

2Or possibly several, a priori—we will actually not need to assume that H is connected.
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an expression which will be important in proving Israel’s theorem.
Notice that the vacuum equations (2.5) can be made sense of independently from the ambient

spacetime by specifying an arbitrary positive function S ∈ C∞(Σ) (the positivity of S corresponding
to stationarity). Before proceeding, we need an appropriate notion of asymptotic flatness for
spacelike hypersurfaces without reference to an embedding into an ambient spacetime.

Definition 2.2. We say a 3-dimensional Riemannian manifold (Σ, g̃) satisfying the vacuum equa-
tions (2.5) is asymptotically flat with mass M ≥ 0 if there exists a compact set K ⊂ Σ such
that

1. Σ \K is diffeomorphic to R3 \D, where D denotes the closed unit ball in R3 centred at 0.
2. With respect to the standard coordinates {y1, y2, y3} on R3 and the standard Euclidean metric
δ = diag(1, 1, 1), we have g̃ = δ +O(|y|−1) and S = 1−M |y|−1 +O(|y|−2) in Σ \K.

If Σ is an embedded hypersurface of a spacetime (M, g), we also refer to (M, g) as asymptotically
flat.

In this case, equations (2.5) allow us to choose coordinates {x1, x2, x3} on Σ such that (denoting
r = |x|)

g̃ =
(

1 + 2M
r

)
δ +O(r−2), S = 1− M

r
+O(r−2), (2.10)

where the first derivatives of the O(r−2) terms are themselves O(r−3).
The last ingredient we need is a corollary of the positive mass theorem; for details, see [14].

Theorem 2.3. Let (N,h) be a complete, orientable 3-dimensional Riemannian manifold with non-
negative scalar curvature. If (N,h) is asymptotically flat with vanishing mass in the sense of
Definition 2.2, then (N,h) is isometric to R3 with the standard Euclidean metric.

3 Uniqueness of the Schwarzschild black hole
The first “no-hair” result was proven in [11]. Its original formulation can be paraphrased as:

Theorem 3.1 (Israel 1967). The Schwarzschild metric is the unique static, asymptotically flat
vacuum spacetime with closed, simply connected equipotential surfaces and regular event horizon.

Israel’s original proof consisted of the construction of two integral identities used to determine
the geometric properties of the 2-dimensional equipotential hypersurfaces V = −〈k, k〉 = constant,
where k is the static Killing vector field. By assuming that these surfaces are regular and home-
omorphic to S2, Israel was able to deduce spherical symmetry, and hence the uniqueness of the
Schwarzschild metric.

Over the decades, numerous simplifications of the arguments used in Israel’s seminal paper have
arisen. The strategy we present, first published by Bunting and Masood-ul-Alam [3] in 1987, is
to look for conformal transformations of the 3-dimensional hypersurface (Σ, g̃). By working on a
conformally transformed version of (Σ, g̃), we may use the positive mass theorem (Theorem 2.3) to
deduce conformal flatness. One particular advantage of this proof is that we need not assume that
the event horizon is connected; instead, we will deduce its connectedness as a consequence (and
hence, multiple black holes cannot exist in an asymptotically flat static vacuum spacetime).

We restate Theorem 3.1 with our relaxed assumption.
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Theorem 3.2 (Bunting and Masood-ul-Alam 1987). The Schwarzschild metric is the unique
static, asymptotically flat vacuum spacetime with regular event horizon.

Our goal is to turn (Σ, g̃) into an asymptotically flat, complete Riemannian manifold with
vanishing scalar curvature and mass by making a suitably chosen conformal transformation and
gluing along the boundary (i.e. forming the double). The following is adapted from [3], with
simplifications provided by [8].

Lemma 3.3. Suppose (Σ, g̃) is a 3-dimensional Riemannian manifold with boundary H which
satisfies the vacuum equations (2.5) and the asymptotic condition (2.10) with S > 0 in Σ and
S = 0 on H. Let h+ and h− be the metrics on Σ defined by

h± = Ω2
±g̃, where Ω± = (1± S)2

4 . (3.1)

Then

1. Ω± vanishes nowhere in Σ;
2. (Σ, h+) and (Σ, h−) both have zero scalar curvature;
3. (Σ, h+) is asymptotically flat with vanishing mass, in the sense of Definition 2.2;
4. h− “compactifies the infinity”, in the sense that h− extends to Σ ∪ {∞}, where ∞ denotes

the point at infinity.

Proof sketch. 1. Under the assumption of stationarity (S > 0 on Σ), we immediately obtain
Ω+ > 1

4 in Σ. To show that Ω− 6= 0 in Σ, one can show the surface gravity (2.6) satisfies
κ2 = −〈gradS, gradS〉, from which it follows that the outward unit normal of H is given by

n = −κ−1 gradS. (3.2)

Regularity of the horizon (κ 6= 0) then implies that
∂(S − 1)
∂n

< 0 on H.

On the other hand, we have from (2.10) that

S − 1 = −M
r

+O(r−2) as r →∞,

but S − 1 is harmonic (2.5) and hence can only attain its maximum of 0 at ∞, so Ω− < 0 on Σ.
2. Let R̂ denote the scalar curvatures of both h+ and h−. From (2.1), we obtain

Ω4
±

2 R̂ =
Ω2
±

2 R− Ω±(S ± 1)∆S,

which vanishes by (2.5).
3. From the expansion of S given by (2.10), we have Ω+ = 1 −M/r + O(r−2) as r → ∞.

Combining this with the expansion of g̃ also given by (2.10), we obtain

h+ = Ω2
+g̃ = δ +O(r−2) as r →∞.

Thus, (Σ, h+) is asymptotically flat with vanishing mass.
4. Using the asymptotic expansion (2.10) in coordinates zi = xi/|x|2, one can show that

hε(z) =

h−(z) if 0 < |z| < ε,(
M
2

)4
δij dz

i ⊗ dzj if z =∞

defines a metric on the compactification Σ ∪ {∞}. �
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Unfortunately, it is not enough to pass from g̃ to one of the conformally equivalent metrics h±
to use Theorem 2.3, the reason being that the boundary has negative mean curvature relative to
the outward unit normal. However, we can bypass this obstruction; recall that the double of a
manifold with boundary Σ is the manifold N = (Σ×{0, 1})/ ∼ where (x, 0) ∼ (x, 1) for all x ∈ ∂Σ.

Since S = 0 on H, the metrics h+ and h− match continuously on H and hence define a metric
h on N . In fact, the same is true of the second fundamental forms corresponding to h±. We
compactify one end of N by adjoining a point at infinity; by Lemma 3.3, h extends to a metric on
N∗ = N ∪ {∞}. By construction, the manifold (N∗, h) satisfies the hypotheses of Theorem 2.3.
We thus obtain:

Corollary 3.4. The spatial geometry (Σ, g̃) of the domain of outer communications of an asymp-
totically flat, static vacuum spacetime with regular event horizon is conformally flat. In fact, if k
denotes the hypersurface-orthogonal Killing field and S2 = −〈k, k〉, then the flat metric conformally
equivalent to g̃ is given by 1

16(1 + S)4g̃.

Proof of Theorem 3.2. All that remains is to establish spherical symmetry. For this, we will use
the conformal flatness of (Σ, g̃) along with the characterization given by Theorem 2.1 to deduce
spherical symmetry of the 2-dimensional equipotential hypersurfaces Σ′ (i.e. those of constant S).
The unit normal to Σ′ is given by

n = w−1/2 gradS, where w = 〈gradS, gradS〉,

and the induced metric on Σ′ is
βij = g̃ij − ninj .

The extrinsic curvature Hij is
Hij = βmi β

k
j nk|m

with trace-free part
H̊ij = Hij −

1
2Hβij .

One can show the (purely geometric) identity

H̊ijH̊
ij + 1

8w2β
ijwiwj = S4

8w2

( 4
S2S[jSi]k + 2

S2 gk[iSj]S
n
)2
− 1

2w (∆̃S)2, (3.3)

where wi := w|i and Sij := S|i|j := ∇̃j∇̃iS. Combined with expression (2.9) for the Cotton tensor
in vacuum spacetime and the fact that ∆̃S = 0, we obtain

S4

8w2CkijC
kij = H̊ijH̊

ij + 1
8w2β

ijwiwj . (3.4)

Using conformal flatness of (Σ, g̃), i.e. Ckij = 0, we deduce that

Hij −
1
2Hβij = 0, βijw;j = 0,

yielding spherical symmetry. It follows that Σ is diffeomorphic to the product S2 × R with metric

g̃ = f2 dS2 + r2 dΩ2, (3.5)
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where f and r are functions of the radial coordinate S only and dΩ2 = dθ2 + sin2(θ) dϕ2 is the
metric on S2. Laplace’s equation and the R̃SS equation (2.5) become

(
r2f−1

)′
= 0,

(
r′

r

)′
− f ′r′

fr
+
(
r′

r

)2
= 1

2S
f ′

f
.

Applying the asymptotic expansion (2.10) for S yields the solution f = r2

M and r(S) = 2M
1−S2 . Thus,

combining (2.3) with (3.5) and f2 dS2 = S−2 dr2 yields

g = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2 dΩ2,

which concludes the proof. �

4 Uniqueness of the Reissner–Nördstrom black hole
We now generalize the results of Section 3 to the case of non-vanishing electric charge. Specifi-

cally, we will sketch a proof of the following:

Theorem 4.1 (Masood-ul-Alam 1992). The Reissner–Nordström metric is the unique static,
asymptotically flat electrovacuum spacetime with regular event horizon.

Again, we emphasize that connectedness of the horizon is not assumed. The proof of Theorem
4.1 is similar to that of Theorem 3.2: we apply the positive mass theorem to show that (Σ, g̃)
is conformally flat, and then use the vanishing of the Cotton tensor (2.2) to deduce spherical
symmetry. For details, see [12].

Once more, we use the decomposition (2.3) and assume that (Σ, g̃) is asymptotically flat with
asymptotic expansion (2.10). The electric potential φ is defined by dφ = E, the gauge chosen so
that φ vanishes at spacelike infinity. One can show that, in the same coordinates used in (2.10), φ
has asymptotic expansion

φ = Q

r
+O(r−2), (4.1)

where Q denotes the total electric charge. Similarly to before, we assume that the first derivatives
of the O(r−2) terms are themselves O(r−3).

Let φi := ∇̃iφ and 〈·, ·〉 denote the inner product with respect to g̃. Then the stress-energy
tensor on Σ is given by

Ttt = 1
8π 〈gradφ, gradφ〉, Tij = 1

8πS2 (g̃ij〈gradφ, gradφ〉 − 2φiφj) .

Combined with Einstein’s equations Rµν − 1
2Rgµν = 8πTµν , the analogous equations to (2.4) are

∆̃S = S−1〈gradφ, gradφ〉, (4.2)
R̃ij = S−1∇̃j∇̃iS + S−2(g̃ij〈gradφ, gradφ〉 − 2φiφj), (4.3)
R̃ = 2S−1∆̃S, (4.4)

and Maxwell’s equation for φ is

∆̃φ = S−1〈gradφ, gradS〉. (4.5)

We now state a generalization of Lemma 3.3.
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Lemma 4.2. Suppose (Σ, g̃) satisfies the electrovacuum equations (4.2) – (4.5) and the asymptotic
conditions (2.10) and (4.1) with S > 0 in Σ and S = 0 on ∂Σ. Let h± be the metrics on Σ defined
by

h± = Ω2
±g̃, where Ω± = (1± S)2 − φ2

4 .

Then, provided that |Q| < M :

1. Ω± vanishes nowhere in Σ;
2. (Σ, h+) and (Σ, h−) both have non-negative scalar curvature;
3. (Σ, h+) is asymptotically flat with vanishing mass;
4. h− extends to Σ ∪ {∞}.

That is, the conclusions of Lemma 3.3 still hold, with the exception that “zero scalar curvature”
be replaced with “non-negative scalar curvature”.

Proof sketch. 1. Since S is non-negative, it suffices to show that (1−S)2−φ2 = (S+φ−1)(S−φ−1)
is positive to prove the result for both Ω+ and Ω−. By (4.2) and (4.5), these two factors satisfy

∆̃(S ± φ− 1)∓ S−1〈gradφ, grad(S ± φ− 1)〉 = 0.

Similarly to before, regularity of the event horizon implies that the outward unit normal of ∂Σ is
given by (3.2), and we have

∂(S ± φ− 1)
∂n

< 0 on ∂Σ.

Then using the asymptotic expansion

S ± φ− 1 = −M ±Q
r

+O(r−2) as r →∞

and the maximal principle shows that S ± φ− 1 is non-positive in Σ and can vanish only at ∞, so
both factors are negative in Σ. (This argument fails if |Q| = M .)

2. We have
dΩ± = 1

2 ((S ± 1) dS − φdφ)

and
∆̃Ω± = 1

2
(
〈gradS, gradS〉 − 〈gradφ, gradφ〉+ (S ± 1)∆̃S − φ∆̃φ

)
.

Combining (4.2), (4.4), and (4.5) with (2.1) and some algebraic manipulation, we see that the
conformally transformed scalar curvature R̂ satisfies

Ω4
±

2 R̂ = 1
S2

(
Ω2
± ∓ Ω±S + 1

4S
2φ2

)
| gradφ|2 + 1

4φ
2| gradS|2 + φ

4S (1− S2 − φ2)〈gradφ, gradS〉

= 1
S2

(
1− S2 − φ2

4

)2

| gradφ|2 + 1
4φ

2| gradS|2 + φ

4S (1− S2 − φ2)〈gradφ, gradS〉

=
∣∣(1− S2 − φ2) gradφ+ 2φS gradS

∣∣2
(4S)2 ,

which is a perfect square and hence non-negative.
The proofs of assertions 3 and 4 are similar to that of Lemma 3.3, so we omit them. �
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Once more, we pass to the double N of Σ and compactify it by adjoining a point at infinity
to one end. The Riemannian 3-manifold (N∗, h) obtained in this way satisfies the hypotheses of
Theorem 2.3. We thus obtain:

Corollary 4.3. The spatial geometry (Σ, g̃) of the domain of outer communications of an asymp-
totically flat, static electrovacuum spacetime with regular event horizon is conformally flat. In
fact, if k denotes the hypersurface-orthogonal Killing field and S2 = −〈k, k〉, then the flat metric
equivalent to g̃ is given by 1

16((1 + S)2 − φ2)2g̃. Moreover, the electric and gravitational potentials
satisfy

S2 − φ2 + 2M
Q
φ = 1. (4.6)

We conclude the proof of Theorem 4.1 by establishing spherical symmetry. The technique is
similar to the vacuum case but requires more algebra, some of which we will omit.

Proof of Theorem 4.1. First, we eliminate φ from the electrovacuum equations: by (4.6), we have
dφ = S

φ−m dS, where m := M/Q. Thus, (4.2) – (4.4) become

∆̃S = S

S2 − 1 +m2 〈gradS, gradS〉, (4.7)

R̃ij = 1
S
Sij + 1

S2 − 1 +m2 (g̃ij〈gradS, gradS〉 − 2SiSj) , (4.8)

R̃ = 2
S2 − 1 +m2 〈gradS, gradS〉, (4.9)

where Sij = S|i|j as before. Then, by using the electrovacuum analogues of (2.7) and (2.8), one can
show that the electrovacuum analogue of equation (2.9) for the Cotton tensor is

Ckij =
(

1− S2

S2 − 1 +m2

)( 4
S2S[jSi]k + 2

S2 g̃k[iSj]nS
n + 2SnSn

S2 − 1 +m2
1
S
g̃k[jSi]

)
. (4.10)

More (tedious and not terribly enlightening, hence omitted) algebraic manipulation involving
(3.3) yields

S4

8w2CkijC
kij =

(
m2 − 1

S2 − 1 +m2

)2
H̊ijH̊

ij + 1
8w2β

ijwiwj + 1
2

(
∆̃S
w
− S

S2 − 1 +m2

)2


=
(

m2 − 1
S2 − 1 +m2

)2 (
H̊ijH̊

ij + 1
8w2β

ijwiwj

)
,

where the term in the right-most paranthesis vanishes by (4.7) (recall that w = 〈gradS, gradS〉).
This shows that

S4

8w2CkijC
kij =

(
M2 −Q2

M2 +Q2(S2 − 1)

)(
H̊ijH̊

ij + 1
8w2β

ijwiwj

)
,

which is the same expression as (3.4) up to the first factor. But this first factor cannot vanish as
|Q| < M , so we deduce that

Hij −
1
2Hβij = 0, βijw;j = 0,
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once more yielding spherical symmetry. Thus, as before, the metric on Σ can be written in the form
(3.5), where f and r are functions of S. In this case however, the Poisson equation (4.7) becomes(

r2f−1)′
r2f−1 = Q2S

Q2(S2 − 1) +M2 ,

which has solution

f(S) = r2(S)√
Q2(S2 − 1) +M2 . (4.11)

The R̃SS component of (4.8) becomes(
r′

r

)′
− f ′r′

fr
+
(
r′

r

)2
= 1

2S

(
f ′

f
+ Q2S

Q2(S2 − 1) +M2

)

which is satisfied provided that r′(S) = Sf(S) with f given by (4.11). Using asymptotic expansion
once more, we obtain

r(S) = Q2

M −
√
Q2(S2 − 1) +M2 ,

yielding the Reissner–Nördstrom metric

g = −
(

1− 2M
r

+ Q2

r2

)
dt2 +

(
1− 2M

r
+ Q2

r2

)−1

dr2 + r2 dΩ2.

�

Remark 4.4. We have proven uniqueness of the two-parameter Reissner–Nördstrom metric. Some
theories of electromagnetism, however, predict the existence of magnetic charge, which we did not
account for. Actually, it is relatively straightforward to generalize the techniques we have used to
the case of magnetic charge P 6= 0, provided that M2 > Q2 + P 2. The key idea is to perform a
“duality rotation” to reduce to the purely electric case. Details can be found in [8].

5 Uniqueness of the Kerr–Newman black hole
The three-parameter Kerr–Newman metric describes the geometry exterior to a black hole of

mass M , angular momentum J , and electric charge Q, subject to the inequality

M2 > (J/M)2 +Q2.

This generalizes both the Schwarzschild and Reissner–Nördstrom metrics as derived in Sections 3
and 4. The special case Q = 0, J 6= 0 is known as the Kerr metric.

Currently, the no-hair conjecture only has partial resolution in this general setting: even in the
case Q = 0, combined results from Hawking [6], Carter [4], and Robinson [13] demonstrate that the
Kerr family is unique among stationary vacuum solutions with regular event horizons, but require
the additional assumption of real analyticity of spacetime, which is both restrictive and difficult to
justify from a physical standpoint. More recent work by Ionescu and Klainerman [9] has shown that
this requirement can be relaxed to that of smoothness and a technical condition relating the Ernst
potential and Killing scalar. Shortly thereafter, Alexakis, Ionescu, and Klainerman [1] extended
this result to “small perturbations” of Kerr spaces.
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One may also consider extremal Kerr(–Newman) black holes, which satisfy

M2 = (J/M)2 +Q2.

Here also, we have a (much more recent) proof of uniqueness among stationary, rotating, asymptot-
ically flat electrovacuum solutions, but again, only with the additional assumption of analyticity.
For details, see [2].
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