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1. Introduction

A fundamental question in the study of manifolds is that of classification up to isomorphism (in
some appropriate category). Closely linked to this is the question of tractability: how difficult is
it to determine when two manifolds are isomorphic? Ideally, one would like not only to have such
a classification, but also to find explicit recipes or decision processes which determine when two
manifolds are isomorphic. The answers to these questions depend highly on the dimension of the
manifolds in consideration.

(0) Zero-dimensional manifolds are trivial: they are completely classified by cardinality.
(1) One-dimensional manifolds are not much more complicated: up to isomorphism, the only

connected 1-manifolds without boundary are the line R and the circle S1, and these are
distinguished by simple criteria such as compactness or homotopy type.

(2) The classification of surfaces famously states that a connected closed (i.e., compact and
without boundary) 2-manifold is homeomorphic to either the sphere S2, a connected sum of
tori T2 = S1×S1, or a connected sum of real projective planes RP 2. These are distinguished
by Euler characteristic and orientability; thus, by using triangulations, we can come up with
algorithms which distinguish surfaces from each other.

(3) In dimension 3, the situation is considerably more subtle, but there is still a semi-affirmative
answer: oriented closed 3-manifolds are classified by Thurston’s geometrization, and from
this it follows that there is an algorithm for classifying them up to orientation-preserving
homeomorphism. However, the computational complexity of this algorithm is, as a function
of the number of simplices in a triangulation, a tower of exponentials [4].

Our luck begins to run out in dimension 4, however. This is due to the following result, which
implies that classifying manifolds in dimensions 4 and up is at least as hard as classifying finitely
presentable groups—and the latter problem is quite difficult, to say the least (Section 3).

Theorem 1.1. For any finitely presentable group G and fixed n ≥ 4, there exists a closed smooth
n-manifold M such that π1(M) ∼= G.

Proof sketch. Given a finite presentation G ∼= ⟨g1, . . . , gk | r1, . . . , rℓ⟩, consider the k-fold connected
sum

M0 = (S1 × Sn−1) # · · · # (S1 × Sn−1)︸ ︷︷ ︸
k times

.

Repeated application of van Kampen’s theorem shows that π1(M0) ∼= ⟨g1, . . . , gk⟩ is isomorphic to
the free group of rank k. Represent the word r1 in π1(M0) by a simple closed curve γ in M0 (which
can be assumed to be smoothly embedded by the Whitney approximation theorem and a general
position argument). Since M0 is orientable, a small tubular neighbourhood of γ is diffeomorphic
to S1 × Dn−1; perform surgery on this neighbourhood to replace it with D2 × Sn−2 and call the
resulting smooth manifold M1. By van Kampen’s theorem, M1 has fundamental group given by
the amalgamated free product

π1(M1) ∼= π1(M0) ∗π1(S1×Sn−2) π1(D2 × Sn−2).
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Since n ≥ 4, we have π1(D2 × Sn−2) = 0; on the other hand, π1(S1 × Sn−2) is the cyclic subgroup
generated by γ. It follows that π1(M1) ∼= ⟨g1, . . . , gk | r1⟩. Repeat this process with M1 by finding a
representative curve of r2 and performing surgery on a tubular neighbourhood to obtain a manifold
M2 with π1(M2) ∼= ⟨g1, . . . , gk | r1, r2⟩. By further iterating this process, we obtain a sequence of
manifolds with an additional relator killed off at each step; after ℓ iterations, we obtain the desired
manifold M = Mℓ. ■

One might hope that imposing requirements such as the existence of certain geometric structures
might make the classification problem more tractable. For instance, recall that a symplectic form
on a (necessarily even-dimensional) smooth manifold M is a closed, non-degenerate 2-form ω on
M ; the pair (M, ω) is called a symplectic manifold. Is it possible to classify symplectic manifolds
up to isomorphism? In this essay we will show that, in fact, all finitely presentable groups are also
realized as fundamental groups of symplectic manifolds; thus, the classification problem is no easier
for symplectic manifolds than it is for general smooth manifolds.
Theorem 1.2 (Gompf [3]). For any finitely presentable group G, there exists a closed symplectic
4-manifold (M, ω) such that π1(M) ∼= G. (The same is true in all even dimensions greater than 4
by taking products with S2 suitably many times.)

There is little hope in adapting the proof sketch of Theorem 1.1 as written. For one, the
starting manifold M0 has vanishing second de Rham cohomology and therefore never admits a
symplectic form. Even if it did, one cannot generally expect the usual notion of surgery to preserve
additional geometric structures on a manifold. To remedy this, Gompf introduced a new kind of
surgery operation which allows one to form connected sums of symplectic manifolds along certain
symplectic submanifolds of codimension 2; the resulting manifold has a canonical isotopy class
of symplectic forms, and therefore this surgery operation yields a new construction of symplectic
manifolds. In particular, this operation allows us to explicitly cook up symplectic manifolds whose
fundamental groups realize any finitely presentable group.

2. Gompf Gluing

We begin by stating a special case of Weinstein’s tubular neighbourhood theorem which says,
in essence, that symplectic submanifolds admit symplectic tubular neighbourhoods. Denote by
B2(ε) = {(x, y) ∈ R2 | x2 + y2 < ε2} the open disk in R2 centred at the origin with radius ε > 0,
taken with the symplectic form ωstd = dx ∧ dy induced from R2.
Theorem 2.1 (Weinstein [9]). Let (M2n, ω) and (Q2n−2, τ) be symplectic manifolds, where Q
is compact. For any symplectic embedding ι : Q → M with trivial normal bundle, there exists a
symplectic embedding f : Q × B2(ε) → M such that f(q, 0) = ι(q) for all q ∈ Q, where Q × B2(ε)
has the product symplectic form τ × ωstd.

Now let (M1, ω1) and (M2, ω2) be symplectic manifolds of equal dimension 2n, and let (Q, τ) be
a compact symplectic manifold of dimension 2n − 2. Suppose we are given symplectic embeddings
ι1 : Q → M1 and ι2 : Q → M2 with trivial normal bundles, and let fj : Q × B2(ε) → Mj be
the symplectic embeddings given by Theorem 2.1. From each fibre B2(ε), remove a smaller disk
of radius δ < ε. The resulting annulus A(δ, ε) admits a symplectomorphism ϕ : A(δ, ε) → A(δ, ε)
which interchanges the two boundary components (for example, the map given in polar coordinates
by (r, θ) 7→ (

√
δ2 + ε2 − r2, −θ)). This allows us to glue M1 \ ι1(Q) and M2 \ ι2(Q) along their

punctured neighbourhoods.
Definition 2.2. The fibre connected sum of (M1, ω1) and (M2, ω2) along Q is given by

M1 #Q M2 =
(
M1 \ f1

(
Q × B2(δ)

))
∪ϕ

(
M2 \ f2

(
Q × B2(δ)

))
,

where we identify f2(q, z) with f1(q, ϕ(z)) for q ∈ Q and δ < |z| < ε.
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The symplectic forms ω1 and ω2 agree on the overlap Q×A(δ, ε), and therefore yield a symplectic
form on M1 #Q M2. While this construction depends on many choices (the constant δ and the
framings fj , for instance), we shall not concern ourselves with questions of uniqueness. The curious
reader is referred to [3, Theorem 1.3] for details.

Remark 2.3. Why is the codimension 2 condition necessary for symplectic summing? This is
because a symplectomorphism of a punctured d-disk which swaps the boundary components exists
only when d = 2; otherwise, one could construct a symplectic structure on a homotopy d-sphere,
which is impossible as the second Betti number of Sd vanishes for d ̸= 2.

Remark 2.4. More generally, the fibre connected sum can be performed in the case where the
normal bundles ν1 and ν2 of the embeddings are non-trivial, provided that their Euler classes
satisfy e(ν1) = −e(ν2). However, we will not need this.

Note that if dim M1 = dim M2 = 2 and Q is a single point, then the fibre connected sum
M1 #Q M2 is the usual connected sum. Besides this special case, our main application of the fibre
connected sum will be to kill elements of a symplectic manifold’s fundamental group, as in the
following example.

Example 2.5. We shall use the following fact: there exists a symplectic 4-manifold V and a
symplectically embedded 2-torus T ⊂ V with trivial normal bundle such that V \ T is simply
connected. (Such a V can be found by considering the elliptic surface obtained by blowing up
CP 2 at nine distinct points lying on the intersection of two transverse nonsingular cubics—see
[5, Example 7.1.7] for details.) Thus, given a symplectic 4-manifold X and a symplectic 2-torus
T ′ ⊂ X with trivial normal bundle, we may form the fibre connected sum

X ′ = X #T ′ V,

perhaps after rescaling the symplectic form on V so that T and T ′ have equal area. (In dimension
2, the notions of symplectomorphism and area-preserving diffeomorphism coincide.) From van
Kampen’s theorem, it follows that this kills π1(T ′); that is, if ι : T ′ → X denotes the inclusion, then

π1(X ′) ∼= π1(X)/⟨ι∗π1(T ′)⟩,
where ⟨ι∗π1(T ′)⟩ denotes the normal closure of ι∗π1(T ′).

Proof of Theorem 1.2. Fix a finite presentation G ∼= ⟨g1, . . . , gk | r1, . . . , rℓ⟩. Let Σk be a compact,
oriented Riemann surface of genus k; this is, in particular, a symplectic manifold. Choose a standard
homology basis of H1(Σk) represented by oriented simple closed curves α1, . . . , αk, β1, . . . , βk such
that the αi’s are pairwise disjoint, as are the βj ’s, and the intersection numbers satisfy αi ·βj = δij .1
The genus k = 3 case is depicted in Figure 2.1.

β1 β2 β3

α1 α2 α3

Figure 2.1. A standard homology basis of H1(Σ3).

Upon attaching all curves to a common base point, we have
π1(Σk) ∼= ⟨α1, . . . , αk, β1, . . . , βk | [α1, β1] · · · [αk, βk]⟩,

1c.f. the notion of a Darboux basis of a symplectic vector space.
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so the quotient π1(Σk)/⟨β1, . . . , βk⟩ is the free group generated by the αi’s. For i ∈ {1, . . . , ℓ}, let γi

be an immersed oriented closed curve in Σk which represents the word ri in π1(Σk). Set γℓ+i = βi

for i ∈ {1, . . . , k}. Then
G ∼= π1(Σk)/⟨γ1, . . . , γℓ+k⟩.

For the moment, suppose that there exists a closed 1-form ρ on Σk whose restrictions to each
γi is a volume form compatible with the orientation on γi. (Such a 1-form may not always exist
for homological reasons, but we will show later how to modify the proof for such cases.) Denoting
by T2 = S1 × S1 the standard symplectic 2-torus, we consider the 4-manifold X = Σk × T2 with
the product symplectic form ω. Let α ⊂ T2 be an oriented simple closed curve which is nontrivial
in H1(T2), and choose a 1-form θ on T2 that restricts to a volume form on α which is compatible
with its orientation. Set η = ρ ∧ θ.

For i ∈ {1, . . . , ℓ+k}, let Ti = γi ×α; then Ti is an immersed torus in X which is Lagrangian with
respect to ω (being a product of Lagrangian submanifolds), and η restricts to a symplectic form on
Ti. If ρ and θ are chosen sufficiently small (as measured by some Riemannian metric, say), then
ω′ := ω + η is symplectic, and (X, ω′) contains the symplectically immersed tori Ti and {z} × T2,
where z ∈ Σk is disjoint from the γi’s. Since each Ti lies in the 3-dimensional submanifold Σk × α,
we may perturb the Ti’s and {z} × T2 to make them disjoint and symplectically embedded, with
trivial normal bundle. As in Example 2.5, we attach ℓ + k + 1 copies of the elliptic surface V to X
along these tori; this has the effect of killing the homotopy classes represented by the γi’s and by
π1(T2). The resulting symplectic manifold M therefore has π1(M) ∼= G.

We are left with explaining what to do when the desired closed 1-form ρ on Σk does not exist. Let
x, y ∈ S1 be distinct points and consider the curves α = S1×{x}, β = {x}×S1, and γ = {y}×S1 in
T2, where γ is oriented to be parallel to β. Choose a disk D ⊂ T2 that is disjoint from α and β, and
intersects γ in an arc. Then there exists a closed 1-form ρ∗ on T2 that vanishes in a neighbourhood
of D such that

∫
α ρ∗,

∫
β ρ∗, and

∫
γ\D ρ∗ are all strictly positive; this can be seen by collapsing a

neighbourhood of D to a point and pulling back a volume form on the diagonal copy of S1 ⊂ T2

along a projection T2 → S1 which maps α, β, and γ with degree 1.
By a general position argument, we may assume that the γi’s have pairwise transversal intersec-

tions; their union therefore can be viewed as an oriented graph Γ on Σk. Let E denote the set of
oriented edges and isolated circles in Γ. For each e ∈ E, choose a disk in Σk which intersects the
interior of e in an arc and is disjoint from all other edges; take the connected sum with a copy of
T2 by gluing in a copy of T2 \ D so that γ \ D “matches up” with e, including orientations, and the
curves α, β ⊂ T2 are added to the graph Γ (Figure 2.2).

Figure 2.2. Attaching a copy of T2 \ D so that γ \ D matches up with e.
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Call the resulting surface F . Since ρ∗ vanishes near each copy of D ⊂ T2, we can extend by
zero to obtain a closed 1-form, which we continue to denote by ρ∗, defined on all of F such that∫

e ρ∗ > 0 for all edges e ∈ Γ. Let {γ1, . . . , γm} be the set of curves containing the original γi’s after
summing with copies of γ, as well as each added copy of α and β in F . For each i ∈ {1, . . . , m},
there exists a volume form θi on γi such that

∫
e θi =

∫
e ρ∗ for every e ∈ Γ which lies in γi. Then

(θi − ρ∗)|γi = dfi for some fi ∈ C∞(γi) which vanishes at the vertices of Γ lying on γi. From the
fi’s, we obtain a smooth function f ∈ C∞(F ) such that ρ := ρ∗ + df is a closed 1-form on F which
restricts to compatible volume forms on each γi. This is the desired ρ; since

G ∼= π1(F )/⟨γ1, . . . , γm⟩,
the argument from before works with F replacing Σk and γ1, . . . , γm replacing the original γi’s. ■

Gompf used Theorem 1.2 to give an alternative proof of the following.

Theorem 2.6 (A’campo–Kotschick [1]). Every finitely presentable group G is realized as the
fundamental group of a closed contact 5-manifold.

Recall that a contact structure on a (2n+1)-dimensional smooth manifold M is a 2n-dimensional
distribution ξ ⊂ TM which is “maximally non-integrable” in the following sense: for any open set
U ⊆ M such that ξ|U = ker(α) for a 1-form α defined on U (such α’s always exist locally), we have
α ∧ (dα)n ̸= 0 everywhere on U . The pair (M, ξ) is called a contact manifold. Contact manifolds
are, in many ways, the odd-dimensional analogues of symplectic manifolds.

We shall need the following result to prove Theorem 2.6.

Lemma 2.7. If a closed manifold M admits a symplectic form ω, then it admits an integral sym-
plectic form, i.e., a symplectic form ω′ whose cohomology class [ω′] lies in H2(M ;Z).

Proof. Fix a Riemannian metric on M and let Bε be the open ball of radius ε > 0 in the space
of all harmonic 2-forms with respect to this metric. Since non-degeneracy is an open condition,
ω + Bε consists entirely of symplectic forms for sufficiently small ε, and it contains an open set in
H2

dR(M). In particular, ω + Bε contains some symplectic form ω′′ whose cohomology class [ω′′] lies
in H2(M ;Q). Scaling ω′′ by a suitable integer, we obtain the desired symplectic form ω′. ■

Proof of Theorem 2.6. By Theorem 1.2 and Lemma 2.7, there exists a closed symplectic 4-manifold
(M, ω) such that π1(M) ∼= G and [ω] ∈ H2(M ;Z). Up to rescaling ω by an integer, we may
symplectically blow up (M, ω) to obtain another symplectic 4-manifold (M ′, ω′) with π1(M ′) ∼= G,
[ω′] ∈ H2(M ′,Z), and an embedded 2-sphere S ⊂ M ′ such that

∫
S ω′ = 1.

Let P → M ′ denote the principal circle bundle over M ′ with first Chern class [ω′]. Then P |S → S
is the Hopf fibration, and so inclusion of a fibre into P yields the zero map on π1. From the long
exact sequence of homotopy groups, we deduce that π1(P ) ∼= π1(M ′) ∼= G. A result of Boothby
and Wang [2, Theorem 3] furnishes a contact structure on P ; it is essentially determined by the
connection 1-form on P whose curvature is given by ω′ up to a constant. ■

Let us summarize the main results we have seen so far and note a small generalization to higher
dimensions, thus fully subsuming Theorem 1.1.

Corollary 2.8. For any finitely presentable group G and fixed n ≥ 4, there exists a closed smooth
n-manifold M such that π1(M) ∼= G, which can be taken to be symplectic (if n is even) or contact
(if n is odd).

Proof. For even n ≥ 4, this is the content of Theorem 1.2; the n = 5 case is covered by Theorem 2.6.
For odd n = 2k − 1 with k ≥ 4, there exists a closed smooth k-manifold N such that π1(N) ∼= G by
Theorem 1.1. The unit cotangent sphere bundle M = ST ∗N of N with respect to any Riemannian
metric then yields the desired contact n-manifold, as π1(M) ∼= π1(N) ∼= G by the long exact
sequence of homotopy groups. ■
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3. Non-Computability of Classification

We conclude by briefly discussing some consequences of the fact that all finitely presentable
groups are realized as fundamental groups of n-manifolds for any n ≥ 4. A famous problem in
group theory is the word problem for a finite presentation of a group G ∼= ⟨S | R⟩: given a word in
the alphabet determined by elements of S and their formal inverses, determine whether this word
represents the identity element in G.

Theorem 3.1 (Novikov–Boone [7, Chapter 12]). There exists a finitely presented group G ∼=
⟨S | R⟩ for which there does not exist an algorithm that takes as input a word in the alphabet
S ∪ S−1 and outputs whether this word represents the identity element in G or not.

Closely related to the word problem is the isomorphism problem: given two finite presentations,
determine whether they represent isomorphic groups. In fact, it can be deduced from Theorem
3.1 that the isomorphism problem is also undecidable [8, Theorem 5]: there is no algorithm to
determine whether or not two finite presentations represent the same group. As a consequence,
we see that there can also be no algorithm which determines whether or not two n-manifolds are
homeomorphic (or even homotopy equivalent), for any n ≥ 4.

One might ask what questions about groups do admit solvable decision problems. A reasonably
large class of properties that includes many elementary properties of groups is the following:

Definition 3.2. A property P of finitely presentable groups is called a Markov property if the
following conditions hold:

• P is preserved by group isomorphism.
• There exists a finitely presentable group satisfying P .
• There exists a finitely presentable group that does not embed into any finitely presentable

group satisfying P .

For instance, the following are Markov properties:
• Being abelian.
• Being finite.
• Being trivial.
• Being free.
• Being torsion-free.
• Being cyclic.

Unfortunately, the following “no-go” theorem shows that decision problems for Markov properties
are undecidable.

Theorem 3.3 (Adian–Rabin). For any Markov property P , there does not exist an algorithm
which takes as input a finite presentation for a group G and outputs whether G satisfies P or not.

The proof of this theorem can be reduced to the Novikov–Boone theorem. An English translation
of the original papers proving this theorem is recently available on arXiv [6].

In light of the results we have seen in Sections 1 and 2, we see that many decision problems
about the topology of n-manifolds are undecidable for n ≥ 4. For example, there is no algorithm
to decide whether a manifold is simply connected: if there were, then there would be an algorithm
to determine whether a finitely presented group is trivial, which is impossible by Theorem 3.3.
Moreover, Corollary 2.8 shows that the situation does not improve even if we restrict attention to
symplectic or contact manifolds.
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