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1. Introduction

Non-quantum physicists are wont to seek out theories which are deterministic: when given a
physical system’s state at some fixed time, it should be possible to fully predict how the system
will evolve in time, at least in theory. In particular, solutions to the equations of motion describing
a system’s evolution should be unique in some sense upon fixing suitable initial data, such as the
initial positions and velocities of the system’s constituent particles at some fixed time.

When trying to adapt this idea to the framework of general relativity, however, one is immediately
faced with several (surmountable) challenges. To start with, the ambient space modelling the
universe is not given in advance—one must simultaneously find the spacetime manifold in which
dynamics takes place, as well as the Lorentzian metric on this manifold which determines the
dynamics and satisfies Einstein’s equations. As such, the notion of “initial data” is not well-
defined a priori. Moreover, it is not immediately clear how to quantify the notion of “uniqueness
of solutions”.

In this essay, we will describe how to make sense of the Cauchy problem for the Einstein vacuum
equations. In Section 2, we explain what it means to specify initial data for Einstein’s equations,
what that initial data should consist of, and what it means to solve Einstein’s equations with
prescribed initial data. We will then state a result (Theorem 2.5) which guarantees local existence
and uniqueness of solutions to Einstein’s equations for any admissible initial data set, thereby
reassuring the physicist that general relativity is at least locally deterministic. This result, however,
does not exclude the possibility that a relativistic system could evolve in two different ways beyond
some point in spacetime. In Section 3, we upgrade this result by showing that, in fact, every initial
data set admits a unique maximal solution. The proof we sketch, however, will have a potentially
undesirable feature, in that it is not a consequence of Zermelo–Fraenkel set theory alone; in fact,
it will rely on Zorn’s lemma twice. Section 4 is dedicated to a much more recent proof of the same
fact, but which does not require Zorn’s lemma.

2. Preliminary definitions

For simplicity, we assume that all manifolds are smooth (C∞), Hausdorff, and without boundary,
and that all maps between manifolds are smooth unless specified otherwise. Henceforth, by a
spacetime we mean a 4-dimensional Lorentzian manifold (M, g) with signature (−, +, +, +); if g
satisfies the Einstein vacuum equations (i.e., has vanishing Ricci curvature), then we call (M, g) a
vacuum spacetime.

Definition 2.1. A Cauchy hypersurface in a spacetime (M, g) is a 3-dimensional submanifold
Σ ⊂ M such that every inextensible timelike curve in M intersects Σ exactly once. We say that
(M, g) is globally hyperbolic if it admits a spacelike Cauchy hypersurface.

Very loosely speaking, a Cauchy hypersurface can be thought of as an “instantaneous snap-
shot of the entire universe at a moment of time”—indeed, the prototypical examples of Cauchy
hypersurfaces are the constant-t hyperplanes in Minkowski space (R1+3, −dt2 + dx2 + dy2 + dz2).
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Suppose (M, g) is a globally hyperbolic vacuum spacetime with spacelike Cauchy hypersurface
Σ ⊂ M . Let K denote the second fundamental form of Σ taken with respect to the future-oriented
unit normal. Then by taking suitable traces of the Gauss–Codazzi equations, one finds that{

Rscal − |K|2 + (tr K)2 = 0,

div(K) − d(tr K) = 0,
(1)

where the scalar curvature Rscal, divergence, etc. are defined using the induced Riemannian metric
on Σ.

On the other hand, if we start with any Riemannian 3-manifold (Σ, g0) (that is, not necessarily
embedded as a submanifold of a larger manifold) and a symmetric (0, 2)-tensor K on Σ, then we
can use the metric g0 to make sense of Equations (1). In fact, these equations provide a sufficient
condition for Σ to be realizable as a spacelike Cauchy hypersurface with induced metric g0 and
second fundamental form K in some vacuum spacetime. For this reason, Equations (1) are known
as the constraint equations, and we refer to a triple (Σ, g0, K) satisfying the constraint equations
as an initial data set.

Definition 2.2. Let (Σ, g0, K) be an initial data set. A globally hyperbolic development
(or GHD) of (Σ, g0, K) is a triple (M, g, ι), where (M, g) is a time-oriented, globally hyperbolic
vacuum spacetime and ι : (Σ, g0) → (M, g) is an isometric embedding1 such that

• ι(Σ) is a spacelike Cauchy hypersurface, and
• the pullback along ι of the second fundamental form of ι(Σ) with respect to the future-

oriented unit normal is given by K.

We will sometimes suppress the embedding map ι and refer to a GHD by the shorthand notation
(M, g), or even just M .

Remark 2.3. Is it possible for two universes to join together? That is, can an initial data set
(Σ, g0, K) where Σ is disconnected admit a GHD (M, g) where M is connected?

In fact, the answer is no. A 1970 theorem of Geroch [4] shows that, if (M, g) is a globally
hyperbolic spacetime and Σ ⊂ M is a spacelike Cauchy hypersurface, then M is homeomorphic
to R × Σ. Thus it is not possible for a connected spacetime to admit a disconnected Cauchy
hypersurface. Geroch’s result was improved in 2003 by Bernal and Sánchez [1], who proved that
M is in fact diffeomorphic to R × Σ.

The Cauchy hypersurface {t = 0} in Minkowski space (R1+3, −dt2+dx2+dy2+dz2) has {|t| < T}
as a GHD, for every T > 0. Of course, there is a GHD of {t = 0} which contains all of these GHDs:
namely, all of Minkowski space. We now give a name to more general situations in which one GHD
can be thought of as “sitting inside” another GHD, without a priori assuming that the “smaller”
one is actually a subset of the “bigger” one.

Definition 2.4. Fix an initial data set (Σ, g0, K), and suppose that (M1, g1, ι1) and (M2, g2, ι2)
are GHDs of this initial data. We say that (M2, g2, ι2) is an extension of (M1, g1, ι1) if there exists
an isometric embedding φ : (M1, g1) → (M2, g2) respecting the time orientations on M1 and M2
and such that the following diagram commutes:

Σ

M1 M2

ι1 ι2

φ

1“Isometric embedding” is meant in the differential-geometric sense, i.e., ι is an embedding of smooth manifolds
and the pullback along ι of g is g0.
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The embedding M1 → M2 realizes M1 as an open subset of M2 as both manifolds have the same
dimension, and thus M1 can be thought of as an open neighbourhood of (the image of) Σ in M2.

With preliminary definitions out of the way, we can now precisely state what it means for the
Cauchy problem for the Einstein vacuum equations to be locally well-posed.

Theorem 2.5 (Local well-posedness [3]). Let (Σ, g0, K) be an initial data set.
(i) (Local existence) (Σ, g0, K) admits a GHD.
(ii) (Local uniqueness) Any two GHDs M1 and M2 of (Σ, g0, K) have a common GHD; that is,

there exists a GHD M of (Σ, g0, K) such that M1 and M2 are both extensions of M .

A common GHD of M1 and M2 can be thought of as an “open neighbourhood of Σ on which M1
and M2 agree”.

3. From local to global

We now state a theorem by Choquet-Bruhat and Geroch which, in particular, upgrades Theorem
2.5 from local to global existence and uniqueness.

Theorem 3.1 ([2]). Every initial data set (Σ, g0, K) admits a maximal GHD, i.e., a GHD that
is an extension of every other GHD of (Σ, g0, K). The maximal GHD is unique up to isometry.

Choquet-Bruhat and Geroch’s proof goes roughly as follows. By Theorem 2.5(i), the collection
M of GHDs of (Σ, g0, K) is non-empty. Given M1, M2 ∈ M, Theorem 2.5(ii) yields a common
GHD of these; thus there are open subsets U ⊆ M1 and V ⊆ M2 which are GHDs of the initial
data, and a time orientation-preserving isometry φ : U → V making the relevant diagram commute.

Let C(M1, M2) denote the set of all such pairs (U, φ). A short argument shows that, if (U, φ)
and (U ′, φ′) are elements of C(M1, M2), then φ and φ′ agree on U ∩ U ′. Thus, φ and φ′ can
be glued together to define an isometric embedding of U ∪ U ′ into M2 as a GHD. It follows that
C(M1, M2) is partially ordered by declaring that (U, φ) ≤ (U ′, φ′) whenever U ⊆ U ′, and every
chain in C(M1, M2) has an upper bound. Thus, by Zorn’s lemma, C(M1, M2) has a maximal
element (U, φ), which is necessarily unique by the discussion above. If U = M1 (i.e., M2 is an
extension of M1), write M1 ⪯ M2.

In fact, ⪯ is a partial order on M, and we claim that every chain {Mα}α∈A ⊆ M has an
upper bound. To see this, we first introduce the notation φβα : Mα → Mβ for α, β ∈ A such that
Mα ⪯ Mβ. Then the uniqueness argument above shows that the cocycle condition is satisfied:

φγα = φγβ ◦ φβα whenever Mα ⪯ Mβ ⪯ Mγ .

Thus, we may form the direct limit topological space

lim−→
α∈A

Mα =
( ⊔

α∈A

Mα

)/
∼,

where the equivalence relation ∼ is defined by (α, p) ∼ (β, q) if Mα ⪯ Mβ and q = φβα(p). In
fact, lim−→α

Mα admits the structure of a smooth Lorentzian 4-manifold, and there is an isometric
embedding making it a GHD of (Σ, g0, K). This yields an upper bound for the chain {Mα}α∈I .

Applying Zorn’s lemma again, one obtains a maximal element M̃ of M. We claim that M̃ is
an extension of every other GHD; thus, M̃ this is the desired maximal GHD of (Σ, g0, K). Indeed,
given any other GHD M , let (U, φ) be the (unique) maximal element of C(M, M̃) and consider the
adjunction space

M ∪φ M̃ =
(
M ⊔ M̃

)/
∼,
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where x ∼ φ(x) for x ∈ U . It is straightforward to see that M ∪φ M̃ satisfies the requirements to be
a GHD except for possibly the Hausdorff condition, which must be verified separately. Assuming by
way of contradiction that M∪φM̃ is not Hausdorff, one can show that points which fail the Hausdorff
condition come in pairs p ̸= p′ where p ∈ ∂U and p′ ∈ ∂φ(U); in fact, p uniquely determines p′ and
vice versa. Given such a pair, one can construct a spacelike 3-dimensional hypersurface T ⊂ M
passing through p such that T \ {p} ⊆ U . Then T ′ := φ(T \ {p}) ∪ {p′} is a spacelike 3-dimensional
hypersurface in M̃ . But these hypersurfaces come with isometric initial data, and so by Theorem
2.5(ii), the maximal common GHD of M and M̃ can actually be extended to a neighbourhood of
p. This contradicts maximality of the maximal common GHD. (An extensively detailed proof of
Hausdorffness can be found in [5, Chapter 23].)

Having shown that M ∪φM̃ is Hausdorff, it follows that this space is a GHD which is an extension
of both M and M̃ . On the other hand, M̃ being a maximal element with respect to ⪯ implies that
M ∪φ M̃ = M̃ . Thus M̃ is an extension of M , as desired. Finally, uniqueness of the maximal GHD
follows from uniqueness of the maximal elements in each set C(M1, M2).

At this junction, we must note two small fibs in the above proof sketch:
• The collection M of GHDs is not a set (which is why we avoided calling it such), but a

proper class—thus, one would have to invoke a “Zorn’s lemma for proper classes” to make
their proof go through fully. This can be rectified by redefining M to be the set of GHDs
(M, g, ι) of (Σ, g0, K) such that M is an open subset of Σ ×R which contains Σ × {0}, and
such that ι(x) = (x, 0) for all x ∈ Σ.

• The “partial order” ⪯ on M is not actually a partial order, as it fails to be antisymmetric:
if M1 ⪯ M2 and M2 ⪯ M1, then M1 and M2 are isometric,2 but they need not be literally
equal. This is fixed by identifying isometric GHDs and working with isometry classes.

Remark 3.2. As noted by Choquet-Bruhat and Geroch in [2], this local-to-global result does not rely
on the particular form of the Einstein vacuum equations; it only relies on the local well-posedness
property (Theorem 2.5). Thus their argument also works for more general Cauchy problems, such
as those for the Einstein field equations with sources given by perfect fluids or electromagnetic
fields.

4. De-Zornification

It is interesting to note that Choquet-Bruhat and Geroch’s proof of Theorem 3.1 invokes Zorn’s
lemma twice: first to guarantee the existence of a maximal common GHD of two GHDs, and second
to guarantee the existence of a maximal element of M. From a philosophical point of view, this
can seem somewhat objectionable: if a maximal GHD is supposed to model a physical universe,
one would hope to have an explicit description of it, and yet the proof presented does not offer
any insight into what the maximal GHD looks like. Moreover, our models of physics appear to be
mostly agnostic towards accepting or rejecting Zorn’s lemma.3 One might therefore reasonably ask
if Theorem 3.1 truly requires Zorn’s lemma.

In fact, Sbierski [6] has given a proof of Theorem 3.1 which, after blackboxing some results from
PDE theory, explicitly constructs the maximal GHD in the setting of ZF + CC (Zermelo–Fraenkel
set theory with the axiom of countable choice); in particular, the proof does not rely on Zorn’s
lemma. The black boxes use the axiom of dependent choice, which is stronger than the axiom of

2This fact is not immediate; it can be deduced from [6, Corollary 3.2].
3Although quantum mechanics uses functional analysis to great extent and many results in functional analysis

rely on Zorn’s lemma/the axiom of choice in some way, it seems that the spaces encountered in quantum mechanics
are at worst separable (to the best of the author’s knowledge). For such spaces, the full power of Zorn’s lemma is
not needed to prove most functional-analytic results; one can get away with weaker axioms, such as the axiom of
dependent choice.
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countable choice but weaker than the full axiom of choice, thus making the existence of the maximal
GHD a theorem in ZF + DC. For the remainder of this section, all mentions of GHDs will be meant
in reference to a fixed initial data set (Σ, g0, K).

To begin, we introduce a slightly different definition of “common GHD” from the one referred to
in Theorem 2.5(ii). The main difference is that, whereas before, a common GHD was a GHD with
preferred embeddings into two given GHDs, now a common GHD will actually be a subset of one
of the two GHDs and come with an embedding into the other.

Definition 4.1. A common GHD of two GHDs (M1, g1, ι1) and (M2, g2, ι2) is a GHD (U, g1|U , ι1)
where U ⊆ M1 is an open neighbourhood of ι1(Σ), and such that (M2, g2, ι2) is an extension of
(U, g1|U , ι1) in the sense of Definition 2.4.

Of course, a common GHD in the sense of Theorem 2.5(ii) yields a common GHD in the sense of
Definition 4.1. One might wonder why we introduce this definition—after all, it seems to break the
symmetry between M1 and M2 by requiring that a common GHD be an actual subset of M1. The
reason is that this approach avoids the use of Zorn’s lemma to ensure the existence of a maximal
common GHD as is done in Choquet-Bruhat and Geroch’s proof. With this definition, one can
instead take the literal union of all common GHDs of M1 and M2 to construct the maximal common
GHD as a submanifold of M1 [6, Theorem 3.4]—all the desired properties then follow immediately.

Definition 4.2. Let U ⊆ M1 be a common GHD of M1 and M2 with embedding φ : U → M2.
Two points p ∈ ∂U and p′ ∈ ∂φ(U) are called corresponding boundary points if for all
neighbourhoods V of p and V ′ of p′, respectively, we have φ−1(V ′ ∩ φ(U)) ∩ V ̸= ∅.

This condition should be thought of as meaning that the images of p and p′ in the adjunction
space M1 ∪φ M2 form a pair of points which fail the Hausdorff condition. Analogously to Choquet-
Bruhat and Geroch’s proof that the adjunction space is Hausdorff, Sbierski shows [6, Theorem 3.6]
that the maximal common GHD does not have any corresponding boundary points by proving that
any common GHD that does have corresponding boundary points can be extended to a strictly
larger common GHD. (The axiom of countable choice is used in the proof of this fact.)

As a stepping stone to constructing the maximal GHD, Sbierski first proves the following global
uniqueness result.

Theorem 4.3. For any two GHDs M1 and M2, there exists a GHD which is a common extension
of M1 and M2.

Indeed, let U ⊆ M1 be the maximal common GHD of M1 and M2, and let φ : U → M2 be its
embedding into M2. Then M1 ∪φ M2 is Hausdorff by the discussion in the preceding paragraph,
and this furnishes the desired common extension once equipped with a suitable smooth structure,
Ricci-flat Lorentzian metric, and time orientation.

To construct the maximal GHD of (Σ, g0, K), the goal is to “glue all GHDs together along their
maximal common GHDs”. This cannot work on the nose, however: as we mentioned at the end of
Section 3, the collection M of all GHDs is not a set, but a proper class. To sidestep this issue,
we again replace M with the set(!) {Mα | α ∈ A} of GHDs which are an open neighbourhood of
Σ×{0} in Σ×R, and for which the embedding Σ → Σ×{0} maps x 7→ (x, 0). Given two such GHDs
Mα and Mβ, we let Uαβ ⊆ Mα denote the their maximal common GHD, and φαβ : Uαβ → Mβ the
corresponding embedding. Then the maximal GHD is given by

M̃ :=
( ⊔

α∈A

Mα

)/
∼,

where we identify (α, p) ∼ (β, q) if p ∈ Uαβ and q = φαβ(p). Verifying that this quotient space can
be endowed with the structure of a GHD is done similarly to before; to construct an embedding
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from any other GHD M into M̃ , one uses the flow of a globally timelike vector field on M (which is
provided by the time orientation on M). Uniqueness of the maximal GHD follows, unsurprisingly,
from maximality.

We conclude by remarking that Wong [7] has given a construction of the maximal GHD in an
even weaker framework than ZF + CC (again, after blackboxing some background results); namely,
Wong’s proof is valid in ZF + “every countable union of countable sets is countable”.
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