EULER-LIKE VECTOR FIELDS

Arthur Lei Qiu

April 28, 2021

A motivating example

- Recall: for a vector space V and $\xi \in V$, there is a canonical linear isomorphism $V \cong T_{\xi}V$ given by $u \mapsto \frac{d}{dt}|_{t=0}(\xi + tu)$.
- When $V = T_x M$, this is called the **vertical lift** $\text{vl}_{\xi} : T_x M \to T_{\xi}(T_x M)$.
- Identifying $T_{\xi}(T_xM)$ with a subspace of $T_{(x,\xi)}(TM)$, we obtain the **Euler vector field** $\mathcal{E} \in \mathfrak{X}(TM)$:

$$\mathcal{E}(x,\xi) = \operatorname{vl}_{\xi}(\xi) \in T_{(x,\xi)}(TM).$$

• In coordinates $(x^i, v^i = dx^i)$, $\mathcal{E} = \sum_{i=1}^n v^i \frac{\partial}{\partial v^i}$.

(c.f. tautological one-form
$$\alpha = \sum_{i=1}^{n} p_i dx^i \in \Omega^1(T^*M)$$
)

Same game, arbitrary vector bundles

• For a vector bundle $\pi \colon E \to M$, the **Euler vector field** $\mathcal{E} \in \mathfrak{X}(E)$ is defined for $x \in M$, $\xi \in E_x := \pi^{-1}(x)$ by

La vector space

$$\mathcal{E}(\xi) = \operatorname{vl}_{\xi}(\xi) \in T_{\xi}E,$$

[V_{\xi} E, "vertical space of \xi"]

 $E_x \cong T_{\varepsilon}(E_x) \hookrightarrow T_{\varepsilon}E$

where $\operatorname{vl}_{\xi} \colon E_x \xrightarrow{\sim} T_{\xi}(E_x) \hookrightarrow T_{\xi}E$.

• In bundle coordinates (x^i, v^i) , $\mathcal{E} = \sum_{i=1}^n v^i \frac{\partial}{\partial v^i}$.

Euler-like vector fields on \mathbb{R}^n

• Take $M = \{*\}$, $E = \mathbb{R}^n$, $\mathcal{E} = \sum_{i=1}^n x^i \frac{\partial}{\partial x^i}$ (relabel $v^i \to x^i$).

Figure: The Euler vector field $\mathcal{E} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .

• Idea: a vector field $X \in \mathfrak{X}(\mathbb{R}^n)$ (or in a neighbourhood of 0) is Euler-like if " $X = \mathcal{E}$ + higher order terms".

Euler-like vector fields on \mathbb{R}^n

• If X(0) = 0, the **linear approximation** of $X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$ is the vector field $X_{[0]} \in \mathfrak{X}(\mathbb{R}^{n})$ obtained by replacing each X^{i} with its first-order Taylor expansion at 0:

$$X_{[0]} = \sum_{i,j=1}^{n} a_j^i x^j \frac{\partial}{\partial x^i}, \qquad a_j^i = \frac{\partial X^i}{\partial x^j}(0).$$

• X is Euler-like if $X_{[0]} = \mathcal{E} \ (\Leftrightarrow a_j^i = \delta_j^i)$.

(a) The Euler vector field $\mathcal{E} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

(b) The Euler-like vector field $X = \sin(x) \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Euler-like vector fields on \mathbb{R}^n are linearizable

Lemma (Linearization)

If $X \in \mathfrak{X}(\mathbb{R}^n)$ is Euler-like, then there exists a germ at 0 of a diffeomorphism φ of \mathbb{R}^n such that $\varphi(0) = 0$, $D\varphi(0) = \mathrm{id}$, and $\varphi^*X = \mathcal{E}$.

Proof (Moser-type argument).

Write
$$X = \sum_{i} X_{i}^{i} \frac{\partial}{\partial x_{i}}$$
. The TDVF $X_{i} := \sum_{i} \frac{1}{4} X_{i}^{i} (t_{x}) \frac{\partial}{\partial x_{i}}$ (\$\darksimple t_{x} \in \text{\$\frac{1}{2}\$} \

 $\mathcal{M}_{osei}: \stackrel{d}{\underset{d+}{\overset{}}} \underline{\underline{\tau}}_{+}^{*} X_{+} = \underline{\underline{\tau}}_{+}^{*} \left(\stackrel{dX_{+}}{\underset{d+}{\overset{}}} + \mathcal{L}_{\omega_{+}} X_{+} \right) = \underline{\underline{\tau}}_{+}^{*} (+^{-}[X_{+}, X_{+}]) = 0 \implies \underline{\underline{\tau}}_{+}^{*} X_{+} \text{ const.}$

Set $\varphi := \overline{\Phi}_{i} \Rightarrow \varphi^{*}X = \overline{\Phi}_{i}^{*}X_{i} = \overline{\Phi}_{o}^{*}X_{o} = \mathcal{E}_{i}$ $\forall +, \ U_{+} \ vanishes \ to \ 2^{rd} \ poler \ af \ x = 0 \Rightarrow \varphi(0) = 0, \ D\varphi(0) = id.$

Hadamard's Lemma:

$$f \in C^{\infty}(\mathbb{R}^n) \Rightarrow \exists g_1,...g_n \in C^{\infty}(\mathbb{R}^n) \omega / g_1(0) = \frac{\partial f}{\partial x^i}(0), \quad f(x) = f(0) + \hat{Z}_i x^i g_1(x).$$

Euler-like vector fields on \mathbb{R}^n : applications

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with f(0) = 0. If f has a non-degenerate critical point at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* f$ is a homogeneous quadratic polynomial.

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^*\omega$ is constant.

Facts

We will use two facts about the Euler vector field $\mathcal{E} \in \mathfrak{X}(\mathbb{R}^n)$:

- A smooth function $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}f = kf$ if and only if f is a homogeneous polynomial of degree k.
- 2 A smooth k-form $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}\omega = k\omega$ if and only if ω has constant coefficients.

Application: Morse's lemma

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with f(0) = 0. If f has a non-degenerate critical point at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* f$ is a homogeneous quadratic polynomial.

Fact: $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}f = kf$ if and only if f is a homogeneous polynomial of degree k. (Relevant: k = 2.)

Proof.

Jaylor expand
$$f(x) = \frac{1}{2} \sum_{i,j} A_{ij}(x) x^{i} x^{j} \omega / x \mapsto A(x) = (A_{ij}(x))$$
 smooth, symptocia, $A(0) = \text{Hess } f(0)$. Computation $\Rightarrow \frac{\partial f}{\partial x^{j}} = \sum_{k} B_{jk}(x) x^{k}$, where $B_{jk} = A_{jk} + \frac{1}{2} \sum_{k} \frac{\partial A_{ik}}{\partial x^{j}} x^{k}$. $B(0) = A(0)$ non-degenerate $\Rightarrow B(x)$ non-degenerate for x near 0 . Thus $X := \sum_{i,j} (A(x)B(x)^{-1})_{ij} x^{i} \frac{\partial}{\partial x^{j}}$ is well-defit, $E - L$ near 0 .

Linearization lemma
$$\Rightarrow \exists \Psi \omega | \Psi^* X = \mathcal{E}$$
.
Computation $\Rightarrow \mathcal{L}_X f = 2f \Rightarrow \mathcal{L}_{\mathcal{E}} \Psi^* f = \Psi^* \mathcal{L}_X f = 2\Psi^* f$.

Application: Darboux's theorem

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^*\omega$ is constant.

Fact: $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}\omega = k\omega$ if and only if ω has constant coefficients. (Relevant: k = 2.)

Proof.

Taylor expand
$$\omega = \sum_{i,j} (c_{ij} + O(|x|)) dx^i n dx^j$$
. Poincaré lemma $\Rightarrow \exists \alpha \in \Omega^i(\mathbb{R}^n)$ s.t. $d\alpha = \omega$. Corrolinate expression $\Rightarrow \alpha$ can be chosen of the form $\alpha = \sum_{i,j} (c_{ij}x^i + O(|x|^2)) dx^j$. ω man-observate at $0 \Rightarrow$ non-observate near $0 \Rightarrow$ can notice $\ell_x \omega = 2\alpha$ for X near 0 . Corrolinate expression $\Rightarrow X$ is $E-L \Rightarrow \exists Y$. Cortan $\Rightarrow L_X \omega = dr_X \omega + r_X d\omega = 2d\omega = 2\omega$ $\Rightarrow L_{\varepsilon} \varphi^* \omega = \varphi^* L_X \omega = 2\varphi^* \omega$.

Euler-like vector fields for submanifolds: setting up

- The category Man:
 - objects: smooth manifolds
 - morphisms from M to M': smooth maps $\varphi \colon M \to M'$

- The category Man²:
 - objects: pairs (M, N) with M a smooth manifold and $N \subseteq M$ a closed submanifold
 - morphisms from (M,N) to (M',N'): smooth maps $\varphi \colon M \to M'$ with $\varphi(N) \subseteq N'$

Euler-like vector fields for submanifolds: setting up

- The tangent bundle functor $T : \mathsf{Man} \to \mathsf{Man}$:
 - objects M sent to TM
 - morphisms $\varphi \colon M \to M'$ sent to $D\varphi \colon TM \to TM'$
- The normal bundle functor ν : Man² \rightarrow Man:
 - objects (M, N) sent to $\nu(M, N) := TM|_N/TN$ (vector bundle over N)
 - morphisms $\varphi \colon (M,N) \to (M',N')$ sent to $\nu(\varphi) \colon \nu(M,N) \to \nu(M',N')$

$$\begin{array}{c} \varphi(N) \leq N' \Rightarrow D\varphi \colon TMI_{N} \to TM'I_{N'} \\ \forall x \in \mathbb{N}, \ D\varphi(x)[T_{x}N] \leq T_{\varphi(x)}N' \ \ (\text{chain rule}) \\ \downarrow v(\varphi)(x) \colon \frac{T_{x}M}{T_{x}N} \to \frac{T_{\varphi(x)}M'}{T_{\varphi(x)}N'} \end{array}$$

• Compatibility: $\nu(TM, TN) \cong T\nu(M, N)$

Euler-like vector fields for submanifolds: definitions

Vector field
$$X \in \mathfrak{X}(M)$$
 tangent to submanifold N $(\forall x \in N, X(x) \in T_x N)$ \downarrow Morphism $X \colon (M,N) \to (TM,TN)$ in Man^2 $\downarrow \nu$ $\nu(X) \colon \nu(M,N) \to \nu(TM,TN) \cong T\nu(M,N)$ \downarrow Linear approximation $X_{[0]} := \nu(X) \in \mathfrak{X}(\nu(M,N))$ \downarrow Euler-like if $X_{[0]} = \mathcal{E}$ (of $\nu(M,N)$).

• Previous definition: when $(M, N) = \text{(open neighbourhood of } 0 \in \mathbb{R}^n, \{0\}).$

Euler-like vector fields for submanifolds: applications

Theorem (Bursztyn, Lima, Meinrenken)

An Euler-like vector field X for (M,N) determines a unique maximal tubular neighbourhood embedding $\varphi \colon O \to M$ of a star-shaped open neighbourhood $O \subseteq \nu(M,N)$ of the zero section of $\nu(M,N)$ such that $\varphi^*X = \mathcal{E}$. + Functoriality

Corollaries:

- Weinstein's Lagrangian neighbourhood theorem
- Morse–Bott lemma
- Grabowski–Rodkievicz theorem
- Linearization of proper Lie groupoids
- Linearization of proper symplectic groupoids
- + G-equivariant versions!