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Abstract. Euler-like vector fields provide a convenient framework for obtaining normal
form results for various geometric structures, as the proofs of such results can often be
reduced to constructing an Euler-like vector field that is compatible with a given structure
and exploiting homogeneity. We introduce Euler-like vector fields on Rn and demonstrate
this heuristic principle with proofs of Morse’s lemma and Darboux’s theorem. We then
discuss how this framework generalizes to Euler-like vector fields for submanifolds.

1. Introduction: Euler vector fields

Given a vector space V and ξ ∈ V , there is a natural linear isomorphism V ∼= TξV mapping
u ∈ V to d

dt

∣∣∣
t=0

(ξ + tu) ∈ TξV . When V = TxM is the tangent space of a smooth manifold
M at a point x ∈M , this isomorphism is called the vertical lift vlξ : TxM → Tξ(TxM). This
terminology comes from the fact that Tξ(TxM) can be naturally identified with the vertical
space ker(Dπ(x, ξ)) ⊆ T(x,ξ)(TM), where π : TM → M is the footpoint map π(x, ξ) = x.
Using this identification, we define a section of the double tangent bundle

E : TM → T (TM), E(x, ξ) = vlξ(ξ).

If (xi) are local coordinates on M and vi = dxi, then E = ∑
i v

i ∂
∂vi with respect to the local

coordinates (xi, vi) on TM . Thus E defines a smooth vector field, i.e. an element of X(TM).
The existence of such a vector field on tangent bundles is analogous to the existence of the
tautological one-form on cotangent bundles.

The above construction generalizes to any vector bundle π : E → M . Namely, the Euler
vector field E ∈ X(E) is defined as follows: given x ∈M , the fibre Ex := π−1(x) is a vector
space, so for ξ ∈ Ex, the vertical lift vlξ : Ex → Tξ(Ex) identifies Ex with the vertical space
ker(Dπ(ξ)) ⊆ TξE. We then set E(ξ) = vlξ(ξ). As is the case when E = TM , the coordinate
expression of E in bundle coordinates (xi, vi) is given by E = ∑

i v
i ∂
∂vi , hence E is smooth.

2. Euler-like vector fields on Rn

The Euler vector field of Rn is obtained by regarding Rn as a vector bundle over a one-
point space. In this case, we relabel the fibre coordinates from vi to xi, so that E = ∑

i x
i ∂
∂xi .

The notion of Euler-like vector fields in this setting is given by those vector fields which are
equal to E up to first order near the origin.

Definition 2.1. Let X be a vector field on a neighbourhood of 0 ∈ Rn such that X(0) = 0.
The linear approximation of X (at 0) is the vector field X[0] ∈ X(Rn) obtained by writing
X = ∑

iX
i ∂
∂xi and replacing each X i with its first-order Taylor expansion at 0. We say X

is Euler-like if X[0] = E .

In the proofs to come of Morse’s lemma and Darboux’s theorem, we will use the following
crucial lemma, which asserts that Euler-like vector fields on Rn are smoothly linearizable.
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Lemma 2.2 ([2]). If X ∈ X(Rn) is Euler-like, then there exists a diffeomorphism ϕ of two
neighbourhoods of 0 such that ϕ(0) = 0, Dϕ(0) = id, and ϕ∗X = E .

The proof we present of Lemma 2.2, from [2], follows a variation of Moser’s method.

Proof. Write X = ∑
iX

i ∂
∂xi and consider the time-dependent vector field

Xt :=
∑
i

t−1X i(tx) ∂

∂xi
, t 6= 0.

This extends smoothly to t = 0 by X0 = X[0] = E , and a straightforward computation shows
that

dXt

dt
= t−1[E , Xt].

Since Xt = E + o(t) as t→ 0 (in little-o notation), the time-dependent vector field
Wt := t−1(Xt − E)

also extends smoothly to t = 0. Letting t 7→ Φt denote the flow generated by (Wt), we have1

d

dt
Φ∗tXt = Φ∗t

(
dXt

dt
+ LWtXt

)
= Φ∗t ([t−1E +Wt, Xt]) = Φ∗t (t−1[Xt, Xt]) = 0.

Thus, Φ∗tXt is constant, so ϕ := Φ1 satisfies
ϕ∗X = Φ∗1X1 = Φ∗0X0 = (id)∗E = E .

For any fixed t, the vector field Wt vanishes to second order at x = 0, hence Φt(0) = 0 and
DΦt(0) = id; in particular, ϕ satisfies ϕ(0) = 0 and Dϕ(0) = id. �

Although Lemma 2.2 was stated for Euler-like vector fields on Rn, a similar result holds for
Euler-like vector fields X defined on a neighbourhood of 0. (For example, choose a smooth
function η which equals 1 in a neighbourhood of 0 and has compact support contained in
the domain of X, and apply the lemma to ηX.)

We will use the following two facts, which demonstrate how differentiation along the Euler
vector field E can detect homogeneity:

(1) A smooth function f ∈ C∞(Rn) (or in a neighbourhood of 0) satisfies LEf = kf if
and only if f is a homogeneous polynomial of degree k.

(2) A smooth k-form ω ∈ Ωk(Rn) (or in a neighbourhood of 0) satisfies LEω = kω if and
only if ω has constant coefficients.

Neither facts are terribly difficult to prove; for example, fact (1) follows from Euler’s homo-
geneous function theorem and Taylor expanding at 0.

Lemma 2.3 (Morse). Let f ∈ C∞(Rn) be a smooth function with f(0) = 0. If f has a non-
degenerate critical point at 0, then there exists a diffeomorphism ϕ of two neighbourhoods
of 0 such that ϕ(0) = 0 and ϕ∗f is a homogeneous quadratic polynomial.

Proof. By a second-order version of Hadamard’s lemma, we have

f(x) = 1
2
∑
i,j

Aij(x)xixj,

1To keep in line with the rest of the course, our sign convention for the flow differs from that used in [2].
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where the matrix-valued function x 7→ A(x) = (Aij(x)) is smooth, takes values in symmetric
matrices, and satisfies A(0) = Hess f(0). It follows that

∂f

∂xj
(x) =

∑
k

Bjk(x)xk,

where Bjk = Ajk + 1
2
∑
`
∂Ak`

∂xj x
`. The smooth matrix-valued function x 7→ B(x) = (Bjk(x))

satisfies B(0) = A(0), hence B(x) is invertible for x in a neighbourhood of 0. Thus, the
expression

X =
∑
i,j

(A(x)B(x)−1)ijxi
∂

∂xj

gives a well-defined vector field near 0, which is Euler-like because A(x)B(x)−1 equals the
identity matrix up to higher order terms. By Lemma 2.2, we obtain a diffeomorphism ϕ
with ϕ(0) = 0 and ϕ∗X = E . More computation yields LXf = 2f , and pulling this equality
back along ϕ yields LEϕ∗f = ϕ∗(LXf) = 2ϕ∗f . Thus ϕ∗f is a homogeneous polynomial of
degree 2. �

Theorem 2.4 (Darboux). Let ω ∈ Ω2(Rn) be a closed 2-form. If ω is non-degenerate at
0, then there exists a diffeomorphism ϕ of two neighbourhoods of 0 such that ϕ(0) = 0 and
ϕ∗ω is constant.

Proof. By the Poincaré lemma, ω has a primitive α ∈ Ω1(Rn). By Taylor expanding the
coordinate expression for ω at 0, we have

ω =
∑
i<j

(cij +O(|x|)) dxi ∧ dxj,

so we may choose α to be of the form
α =

∑
i<j

(cijxi +O(|x|2)) dxj.

Since ω is non-degenerate at 0, hence near 0 by continuity, the equation ιXω = 2α can be
solved for a vector field X in a neighbourhood of 0, which we see is Euler-like in view of
the coordinate expressions for ω and α. By Lemma 2.2, we obtain a diffeomorphism ϕ with
ϕ(0) = 0 and ϕ∗X = E . Since dω = 0, Cartan’s magic formula yields

LXω = dιXω + ιXdω = 2dα = 2ω,
and by pulling this equality back along ϕ, we obtain LEϕ∗ω = 2ϕ∗ω. �

3. Euler-like vector fields for submanifolds

We have seen how Euler-like vector fields on Rn can be used to simplify proofs of normal
form results such as Morse’s lemma and Darboux’s theorem. These results are pointwise, in
the sense that they describe how geometric objects behave only in a neighbourhood of a point
satisfying certain non-degeneracy conditions. This should be unsurprising: Euler-like vector
fields on Rn need only behave like the Euler vector field near the submanifold {0} ⊂ Rn.
To generalize these proofs to their analogues along more general submanifolds, we will also
need to generalize the notion of Euler-like vector fields. We do so in this section, contenting
ourselves with introducing the main definitions and statements; we direct the reader to [1]
and [2] for more detailed discussion.
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We denote by Man the category of smooth manifolds and smooth maps between them. We
will also make use of the category Man2, whose objects are pairs (M,N) with M a smooth
manifold and N ⊆ M a closed submanifold, and whose morphisms ϕ : (M,N) → (M ′, N ′)
are smooth maps ϕ : M →M ′ with ϕ(N) ⊆ N ′. The normal bundle functor ν : Man2 → Man
assigns to each object (M,N) the normal bundle

ν(M,N) := TM |N/TN,
a vector bundle over N , and to each morphism ϕ : (M,N) → (M ′, N ′) the vector bundle
morphism

ν(ϕ) : ν(M,N)→ ν(M ′, N ′)
along ϕ|N : N → N ′ induced by Dϕ : TM |N → TM ′|N ′ .

The normal bundle functor is compatible with the tangent bundle functor T : Man→ Man
in the sense that there is a natural isomorphism ν(TM, TN) ∼= Tν(M,N); see [1, Appendix
A] for details. Thus, if X ∈ X(M) is tangent to N (meaning X(x) ∈ TxN for all x ∈ N),
then X can be regarded as a morphism (M,N) → (TM, TN) in Man2. By applying the
normal bundle functor, we obtain

ν(X) : ν(M,N)→ ν(TM, TN) ∼= Tν(M,N).
We define the linear approximation of X to be X[0] := ν(X) ∈ X(ν(M,N)), and we say
that X is Euler-like for (M,N) if X[0] equals the Euler vector field of ν(M,N). Definition
2.1 is recovered when M is an open neighbourhood of 0 ∈ Rn and N = {0}.

The following theorem is a generalization of Lemma 2.2; its proof is analogous, and can
be found in [1].
Theorem 3.1 ([1]). An Euler-like vector field X for (M,N) determines a unique maximal
tubular neighbourhood embedding ϕ : O → M of a star-shaped open neighbourhood O ⊆
ν(M,N) of the zero section of ν(M,N) such that ϕ∗X = E .

Here, star-shaped means invariant under multiplication by scalars in [0, 1], and a tubular
neighbourhood embedding means a morphism ϕ : (O,N) → (M,N) which is an embedding
ϕ : O → M such that ν(ϕ) is the identity map on ν(M,N) after making the canonical
identification ν(O,N) ∼= ν(M,N).

As one might expect, Theorem 3.1 plays the same role in proving normal form results that
Lemma 2.2 played in our proofs of Morse’s lemma and Darboux’s theorem. More can be said
about the tubular neighbourhood embedding ϕ obtained from the theorem. For example,

(1) there is a more-or-less explicit description of the image ϕ(O);
(2) this construction is functorial;
(3) if X is complete, then O can be taken to be all of ν(M,N).

Examples of normal form results that can be proven using Theorem 3.1 include the Morse–
Bott lemma and Weinstein’s Lagrangian neighbourhood theorem. Euler-like vector fields also
find applications in linearization results for proper Lie groupoids and symplectic groupoids.
We defer the reader to [2] for proofs of these and more.
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