MAT257 Tutorial Worksheet 9

Adriano Pacifico - Man-I-Fold

November 20, 2019

The definition of a manifold comes in essentially 3 different flavours:

1. (Smooth level sets) Given $f: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n}$ a \mathcal{C}^{r}-function, let $S=f^{-1}(y)$ for some $y \in \mathbb{R}^{k}$, e.g. S is a level set of f. If $D f(x)$ has rank k for all $x \in S$ (smoothness), then S is an n dimensional \mathcal{C}^{r}-manifold.
2. (Locally a graph) We say $S \subset \mathbb{R}^{n+k}$ is an n dimensional \mathcal{C}^{r}-manifold if for all $\left(x_{0}, y_{0}\right) \in S$, there is an neighbourhood U of $\left(x_{0}, y_{0}\right)$ in \mathbb{R}^{n+k} for which there exists a \mathcal{C}^{r} function $g: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{k} such that $S=\{(x, y) \in U: y=g(x)\}$.
3. (Collection of charts) A set $S \subset \mathbb{R}^{m}$ is an n dimensional \mathcal{C}^{r}-manifold if for each $x \in S$, there is are open sets $U \subset \mathbb{R}^{m}$ containing x and $V \subset \mathbb{R}^{n}$ and a continuous invertible map $\varphi: U \cap S \rightarrow V$ for which $\varphi^{-1}: V \rightarrow U \cap S$ is continuous (the pair $\left(V, \varphi^{-1}\right)$ is called a chart), and given any other chart, $\left(V^{\prime}, \psi^{-1}\right)$, the map $\phi \circ \psi^{-1}$ is \mathcal{C}^{r} (provided $\psi^{-1}\left(V^{\prime}\right) \cap \varphi^{-1}(V)$ is nonempty).

And for each definition, we get 3 flavours of tangent spaces.
Problem 1. Consider the ellipse E defined by

$$
4 x^{2}+9 y^{2}=36
$$

(a) Show using the level set definition of a manifold that the ellipse is indeed a manifold. That is show $\nabla f(x, y) \neq(0,0)$ at points on the ellipse.
(b) Use the implicit function theorem to conclude that near each point $p \in E, E$ can be expressed as the graph of a smooth function.
(c) For any $p \in E$, construct a chart near p. (Hint: Think about the projection map $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $\pi(x, y)=x$.)

Problem 2. Let E be the ellipse as in problem 1.
(a) Describe the tangent space of E at $p=(3 / 2, \sqrt{3})$. What is it at $(5 / 2,3 / 2)$?
(b) Using your description of E as a graph near p, describe the tangent space of E at p.
(c) Using charts around E describe the tangent space of E at p.

Problem 3. Repeat problem 1 and 2 with the ellipsoid

$$
x^{2}+4 y^{2}+9 z^{2}=37,
$$

and the point $p=(1,3 / 2, \sqrt{3})$.
Problem 4. Consider the orthogonal group of \mathbb{R}^{2} given by

$$
O_{2}(\mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}): A A^{t}=I\right\}
$$

Show that $O_{2}(\mathbb{R})$ is a manifold and compute its dimension.
Problem 5. Is the figure eight a manifold?
For concreteness, one possible description of the firgure eight is the following: A figure eight is the image of the map

$$
\begin{aligned}
\gamma:(-\pi / 2,3 \pi / 2) & \rightarrow \mathbb{R}^{2} \\
t & \mapsto(\sin (2 t), \cos (t))
\end{aligned}
$$

Problem 6. (Hard) An alternative characterization of tangent spaces is based on the following problem (which is described for \mathbb{R}^{n} at 0 for simplicity).

Let $v: \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ be a linear map such that for every $c \in \mathbb{R}$, and every $f, g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

- $v(c)=0$;
- $v(f g)=v(f) g(0)+v(g) f(0)$.

Show there exists $w \in \mathbb{R}^{n}$ such that $v(f)=D f(0) \cdot w$.

