MAT257 Tutorial Worksheet 9

Adriano Pacifico – Man-I-Fold

November 20, 2019

The definition of a manifold comes in essentially 3 different flavours:

- 1. (Smooth level sets) Given $f : \mathbb{R}^{n+k} \to \mathbb{R}^n$ a \mathcal{C}^r -function, let $S = f^{-1}(y)$ for some $y \in \mathbb{R}^k$, e.g. S is a level set of f. If Df(x) has rank k for all $x \in S$ (smoothness), then S is an n dimensional \mathcal{C}^r -manifold.
- 2. (Locally a graph) We say $S \subset \mathbb{R}^{n+k}$ is an *n* dimensional \mathcal{C}^r -manifold if for all $(x_0, y_0) \in S$, there is an neighbourhood U of (x_0, y_0) in \mathbb{R}^{n+k} for which there exists a \mathcal{C}^r function $g : \mathbb{R}^n \to \mathbb{R}^k$ such that $S = \{(x, y) \in U : y = g(x)\}.$
- 3. (Collection of charts) A set $S \subset \mathbb{R}^m$ is an *n* dimensional \mathcal{C}^r -manifold if for each $x \in S$, there is are open sets $U \subset \mathbb{R}^m$ containing x and $V \subset \mathbb{R}^n$ and a continuous invertible map $\varphi : U \cap S \to V$ for which $\varphi^{-1} : V \to U \cap S$ is continuous (the pair (V, φ^{-1}) is called a chart), and given any other chart, (V', ψ^{-1}) , the map $\phi \circ \psi^{-1}$ is \mathcal{C}^r (provided $\psi^{-1}(V') \cap \varphi^{-1}(V)$ is nonempty).

And for each definition, we get 3 flavours of tangent spaces.

Problem 1. Consider the ellipse E defined by

$$4x^2 + 9y^2 = 36.$$

- (a) Show using the level set definition of a manifold that the ellipse is indeed a manifold. That is show $\nabla f(x, y) \neq (0, 0)$ at points on the ellipse.
- (b) Use the implicit function theorem to conclude that near each point $p \in E$, E can be expressed as the graph of a smooth function.
- (c) For any $p \in E$, construct a chart near p. (*Hint:* Think about the projection map $\pi : \mathbb{R}^2 \to \mathbb{R}$ given by $\pi(x, y) = x$.)

Problem 2. Let E be the ellipse as in problem 1.

(a) Describe the tangent space of E at $p = (3/2, \sqrt{3})$. What is it at (5/2, 3/2)?

- (b) Using your description of E as a graph near p, describe the tangent space of E at p.
- (c) Using charts around E describe the tangent space of E at p.

Problem 3. Repeat problem 1 and 2 with the ellipsoid

$$x^2 + 4y^2 + 9z^2 = 37$$

and the point $p = (1, 3/2, \sqrt{3})$.

Problem 4. Consider the orthogonal group of \mathbb{R}^2 given by

$$O_2(\mathbb{R}) = \{ A \in M_{2 \times 2}(\mathbb{R}) : AA^t = I \}.$$

Show that $O_2(\mathbb{R})$ is a manifold and compute its dimension.

Problem 5. Is the figure eight a manifold?

For concreteness, one possible description of the firgure eight is the following: A figure eight is the image of the map

$$\gamma: (-\pi/2, 3\pi/2) \to \mathbb{R}^2$$
$$t \mapsto (\sin(2t), \cos(t))$$

Problem 6. (Hard) An alternative characterization of tangent spaces is based on the following problem (which is described for \mathbb{R}^n at 0 for simplicity).

Let $v: \mathcal{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ be a linear map such that for every $c \in \mathbb{R}$, and every $f, g \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ we have

- v(c) = 0;
- v(fg) = v(f)g(0) + v(g)f(0).

Show there exists $w \in \mathbb{R}^n$ such that $v(f) = Df(0) \cdot w$.