MAT257 Tutorial Worksheet 8

Adriano Pacifico – Optimize your studying

Problem 1. Find the extrema of $f(x, y, z) = x^2 + 2y^2 + 3z^2$ on the unit sphere $x^2 + y^2 + z^2 = 1$.

Problem 2. For each of the following functions, find its critical points and determine the nature of the critical point (e.g. local min, local max, saddle or degenerate critical point).

- (a) $y(x) = x^{2019}$
- (b) $f(x,y) = x^4 2x^2 + y^3 6y$
- (c) $g(x,y) = x^2 + 3y^4 + 4y^3 12y^2$
- (d) $h(x,y) = (x-1)(x^2 y^2)$

Problem 3. Consider the quadratic function

$$f(x,y) = ax^2 + bxy + cy^2.$$

Under what conditions (this means find necessary and sufficient conditions) on a, b, c does f have a local maximum at (0, 0)? A local minimum? A saddle point?

Problem 4. Find the largest volume of a box inscribed in the unit sphere.

Problem 5. Show the function

$$f(x,y) = x^4 + 6x^2y^2 + y^4 - \frac{9}{4}x - \frac{7}{4}y$$

achieves a global minimum on \mathbb{R}^2 and find the value of this minimum.

Problem 6. (Hard) Let A be a real symmetric $n \times n$ -matrix and define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = Ax \cdot x$. Show the maximum and minimum of f on the unit sphere, $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$, is the largest and smallest eigenvalues of A respectively.