MAT257 Tutorial Worksheet 8

Adriano Pacifico - Optimize your studying

Problem 1. Find the extrema of $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

Problem 2. For each of the following functions, find its critical points and determine the nature of the critical point (e.g. local min, local max, saddle or degenerate critical point).
(a) $y(x)=x^{2019}$
(b) $f(x, y)=x^{4}-2 x^{2}+y^{3}-6 y$
(c) $g(x, y)=x^{2}+3 y^{4}+4 y^{3}-12 y^{2}$
(d) $h(x, y)=(x-1)\left(x^{2}-y^{2}\right)$

Problem 3. Consider the quadratic function

$$
f(x, y)=a x^{2}+b x y+c y^{2}
$$

Under what conditions (this means find necessary and sufficient conditions) on a, b, c does f have a local maximum at $(0,0)$? A local minimum? A saddle point?

Problem 4. Find the largest volume of a box inscribed in the unit sphere.

Problem 5. Show the function

$$
f(x, y)=x^{4}+6 x^{2} y^{2}+y^{4}-\frac{9}{4} x-\frac{7}{4} y
$$

achieves a global minimum on \mathbb{R}^{2} and find the value of this minimum.

Problem 6. (Hard) Let A be a real symmetric $n \times n$-matrix and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=$ $A x \cdot x$. Show the maximum and minimum of f on the unit sphere, $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$, is the largest and smallest eigenvalues of A respectively.

