MAT257 Tutorial Worksheet 7

Adriano Pacifico - It's implicit in the detail

Problem 1.

(a) Show the equation $x^{2}+y^{2}=25$ defines y as a function of x in a neighbourhood of $(5 / 2,5 \sqrt{3} / 2)$. Compute $\frac{d y}{d x}$ at this point.
(b) Show the system

$$
\begin{aligned}
x^{2} u+v y & =1 \\
x^{2}+y^{2}+u^{2}+\frac{v^{2}}{2} & =\frac{5}{2}
\end{aligned}
$$

defines u and v as functions of x and y in a neighbourhood around $(x, y, u, v)=(1,1,0,1)$ and compute $\frac{\partial u}{\partial x}$ at this point.

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonconstant \mathcal{C}^{1} function such that $f^{\prime}(0) \neq 0$ and $f(x+y)=$ $f(x) f(y)$. Define $F(x, y)=f(x) f(y)$. Determine what conditions (if any) must be imposed on y to ensure that y can be solved as a \mathcal{C}^{1} functions of x on the set $\{(x, y): F(x, y)=1\}$ and write down an explicit formula for y in terms of x where possible.

Problem 3. Show that the following system always has a solution for sufficiently small a,

$$
\begin{aligned}
x+y+\sin (x y) & =a \\
\sin \left(x^{2}+y\right) & =2 a
\end{aligned}
$$

Problem 4.

(a) Show there are \mathcal{C}^{1} functions $u(x, y, z)$ and $v(x, y, z)$ defined in a neighbourhood of $p=(1,1,1)$ such that $u(p)=1=v(p)$ and

$$
\begin{aligned}
x^{3}+y+2 x z u+v^{3} & =5 \\
x y v^{3}+3 x z-7 u v & =-3 .
\end{aligned}
$$

(b) Compute $\frac{\partial u}{\partial z}$ at p.
(c) Show that the equations $u(x, y, z)=1, v(x, y, z)=1$ defines any one of x, y or z as a function of the other two near p.

Problem 5. Let $p(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ be a polynomial with n distinct roots. Show that if we perturb the coefficients slightly, then the resulting polynomial still has n distinct roots. That is, show that there exists a neighborhood U of $\left(a_{1}, \ldots, a_{n}\right)$ such that if $\left(b_{1}, \ldots, b_{n}\right) \in U$, then $p(x)=x^{n}+b_{1} x^{n-1}+\ldots+b_{n}$ also has n distinct roots.

Problem 6. (Very hard)
(a) Let $f(x, y)=(x, S(x))$ be a \mathcal{C}^{1} mapping on \mathbb{R}^{2}. Show there is a map ψ such that $\psi \circ f(x, y)=$ $(x, 0)$.
(b) Let $f(x, y)=(u(x, y), v(x, y))$ be a \mathcal{C}^{1} mapping on \mathbb{R}^{2}. Suppose $D f(x)$ has rank 1 for all $x \in U$, for some open subset U of \mathbb{R}^{2}, and moreover that $\frac{\partial u}{\partial x} \neq 0$ in U. Define $\varphi(x, y)=$ $(u(x, y), y$,$) . Show that \varphi$ is (locally) invertible and that there is a \mathcal{C}^{1} mapping, ψ, for which $\psi \circ f \circ \varphi^{-1}(x, y)=(x, 0)$.
(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a \mathcal{C}^{1} map such that for each $y \in \mathbb{R}^{2}$, the set $f^{-1}(y)$ is finite. Show that $\operatorname{det} D f(x)$ cannot vanish identically on any open subset of \mathbb{R}^{2}.

