MAT257 Tutorial Worksheet 7

Adriano Pacifico – It's implicit in the detail

Problem 1.

- (a) Show the equation $x^2 + y^2 = 25$ defines y as a function of x in a neighbourhood of $(5/2, 5\sqrt{3}/2)$. Compute $\frac{dy}{dx}$ at this point.
- (b) Show the system

$$x^{2}u + vy = 1$$
$$x^{2} + y^{2} + u^{2} + \frac{v^{2}}{2} = \frac{5}{2}$$

defines u and v as functions of x and y in a neighbourhood around (x, y, u, v) = (1, 1, 0, 1)and compute $\frac{\partial u}{\partial x}$ at this point.

Problem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a nonconstant \mathcal{C}^1 function such that $f'(0) \neq 0$ and f(x+y) = f(x)f(y). Define F(x,y) = f(x)f(y). Determine what conditions (if any) must be imposed on y to ensure that y can be solved as a \mathcal{C}^1 functions of x on the set $\{(x,y) : F(x,y) = 1\}$ and write down an explicit formula for y in terms of x where possible.

Problem 3. Show that the following system always has a solution for sufficiently small *a*,

$$x + y + \sin(xy) = a$$
$$\sin(x^2 + y) = 2a$$

Problem 4.

(a) Show there are C^1 functions u(x, y, z) and v(x, y, z) defined in a neighbourhood of p = (1, 1, 1) such that u(p) = 1 = v(p) and

$$x^{3} + y + 2xzu + v^{3} = 5$$

$$xyv^{3} + 3xz - 7uv = -3.$$

- (b) Compute $\frac{\partial u}{\partial z}$ at p.
- (c) Show that the equations u(x, y, z) = 1, v(x, y, z) = 1 defines any one of x, y or z as a function of the other two near p.

Problem 5. Let $p(x) = x^n + a_1 x^{n-1} + \ldots + a_n$ be a polynomial with *n* distinct roots. Show that if we perturb the coefficients slightly, then the resulting polynomial still has *n* distinct roots. That is, show that there exists a neighborhood *U* of (a_1, \ldots, a_n) such that if $(b_1, \ldots, b_n) \in U$, then $p(x) = x^n + b_1 x^{n-1} + \ldots + b_n$ also has *n* distinct roots.

Problem 6. (Very hard)

- (a) Let f(x, y) = (x, S(x)) be a \mathcal{C}^1 mapping on \mathbb{R}^2 . Show there is a map ψ such that $\psi \circ f(x, y) = (x, 0)$.
- (b) Let f(x,y) = (u(x,y), v(x,y)) be a \mathcal{C}^1 mapping on \mathbb{R}^2 . Suppose Df(x) has rank 1 for all $x \in U$, for some open subset U of \mathbb{R}^2 , and moreover that $\frac{\partial u}{\partial x} \neq 0$ in U. Define $\varphi(x,y) = (u(x,y,), y)$. Show that φ is (locally) invertible and that there is a \mathcal{C}^1 mapping, ψ , for which $\psi \circ f \circ \varphi^{-1}(x,y) = (x,0)$.
- (c) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathcal{C}^1 map such that for each $y \in \mathbb{R}^2$, the set $f^{-1}(y)$ is finite. Show that det Df(x) cannot vanish identically on any open subset of \mathbb{R}^2 .