MAT257 Tutorial Worksheet 6

Adriano Pacifico – Review

Problem 1.

- (a) Show there is no continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$ such that $f(S^2) = \mathbb{R}^2$, where $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ denotes the unit sphere.
- (b) Does there exist a continuous map $f : \mathbb{R}^2 \to \mathbb{R}^3$ with $f(\mathbb{R}^2) = S^2$?

Problem 2. Let M be a subset of \mathbb{R}^n . Suppose $f: M \to \mathbb{R}$ is a function whose graph,

$$\Gamma_f = \{ (x, y) \in \mathbb{R}^n \times \mathbb{R} : x \in M, y = f(x) \},\$$

is compact. Show that f is continuous.

Problem 3. Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ and $h: \mathbb{R}^3 \to \mathbb{R}$ be \mathcal{C}^1 functions. Define

$$F(x,y) = \int_{f(x,y)}^{g(x,y)} h(x,y,t)dt.$$

Compute $\frac{\partial F}{\partial y}$.

Problem 4. Consider the equation

$$xe^y + ye^x = 0.$$

Show we can solve for x (as a smooth function) in terms of y or y (as a smooth function) in terms of x near (0,0). Compute $\frac{\partial y}{\partial x}$ near (0,0).