MAT257 Tutorial Worksheet 5

Adriano Pacifico — Invert that frown upside down.

Problem 1. Is f(z,y, 2) = (ye* + sin(my) cos(z), cos(yz), z%) invertible near (0,1, 7/2)?

Problem 2. Let M3(R) denote the set of 2 x 2 matrices. Define a map g : Ma(R) — Ms(R) by
g(A) = A%, Determine whether g is invertible in a neighbourhood of the identity matrix I.

Problem 3. Let f(z,y) = (sinh(z) + y,sinh(y) — ). Show that if U C R? is open, then f2919(U)
is also open.

Problem 4. Construct a function f : R — R with f/(0) = 0 but nevertheless is invertible in every
neighbourhood of 0. What can you say about the regularity of the inverse?

Problem 5.
(a) If f: R — R satisfies f'(a) # 0 for all a € R, show that f is injective.

(b) Define f : R? — R? by f(z,y) = (e*cosy,e*siny). Show that det Df(x,y) # 0 for all
(z,y) € R? but f is not injective.

An alternate proof of the Inverse Function Theorem
A very useful idea in mathematics is hat often times an existence theorem can be rephrased as the
existence of a fixed point of some map. This is the basic idea in the following proof of IFT. Many

of these ”fixed point existence theorems” rely on the following theorem:

Problem 6. (Contraction mapping principle/Banach’s fixed point theorem). If f :
(X,d — (X,d) is a constraction of a complete metric space, then f has a unique fixed point.

The basic idea is to pick any point an iterate f. To understand this result, we recall some
Definitions:
(a) A metric space, (X,d), is a set X equipped with a function d : X x X — Rx¢ sastisfying:
(i) Vo € X, d(z,z) = 0 (positive definite)

(i) Va,y € X, d(r,y) = d(y,x) (symmetry)



(iii) Vr,y,z € X, d(z,y) < d(z,z) + d(z,y) (triangle inequality)

(b) A subset U C X is called open if for each € U, there is an ¢ > 0 such that the epsilon
ball around z is constained in U. Remark. Similarly, notions like sequence convergence
and Cauchy sequences generalizes to metric spaces by replacing |x — y| with d(z,y) in the
corresponsing definitions.

(¢) The metric space (X, d) is complete if every Cauchy seugence converges.

(d) Amap f:(X,d) = (X,d) is a contraction if there exists ¢ < 1 such that for all z,y € X we
have d(f(x), £(y)) < cd(a, ).

The other lemma on which our proof of IFT will rely upon is the following exercise:

Problem 7. If U is convex and f : U — R" is differentiable with derivative satisfying sup . |[Df(z)| <
M, then |f(a) — f(b)] < Mla —b|.

We now tackle the main theorem. Recall the statement

Theorem. (Inverse function theorem). Let f : R” — R" be a C! mapping with det D f(p) # 0.
There there exists open sets U, V around p and f(p on which f is a bijection and its inverse is C!.

Problem 8. (A symplifying assumeption). Show we can assume WLOG that f(p) =0 =p
and that Df(0) = I.

Problem 9. We want to build and inverse to f. The key is to consider

eyo(@) =2+ (Yo — f(@)).

Notice that a fixed point of varphiy, is equivalent to y + 0 = f(z). In particular, if we can show
each ¢y, has a unique fixed point as yp varies in some open set, then we have successfully defined
an inverse to f. Show, using the contraction mapping principle, that this is the case. Specifically,
show problem 7 and continuous differentiability imply there is some r > 0 such that ¢,, constracts
B, (the ball of radius r centered at 0) by a factor of 10. Use this to show f maps B, onto B, ;.
Find open sets U, V as in the statement of the theorem on which f is invertible.

The next part is to show g = f]ljl is C1.

Problem 10. Show "Z‘ < |g(y)| < 2|y|. Using this and the fact y = g(f(y)) show that ¢g(y) =
h
y + h(y) where h is some function satisfying lim ‘(y’) = 0. Use this to conclude Dg(0) = I.
y—oo |y

Problem 11. Show U = {z | det Df(z) # 0} is open. Use this and the fact that our starting
point (which we did take to be 0) was arbitrary to conclude g is differentiable for y € V. Use chain
rule to show g is C!.



