MAT257 Tutorial Worksheet 5

Adriano Pacifico - Invert that frown upside down.

Problem 1. Is $f(x, y, z)=\left(y e^{x}+\sin (\pi y) \cos (z), \cos (y z), z^{2}\right)$ invertible near $(0,1, \pi / 2)$?
Problem 2. Let $M_{2}(\mathbb{R})$ denote the set of 2×2 matrices. Define a map $g: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ by $g(A)=A^{2}$. Determine whether g is invertible in a neighbourhood of the identity matrix I.

Problem 3. Let $f(x, y)=(\sinh (x)+y, \sinh (y)-x)$. Show that if $U \subset \mathbb{R}^{2}$ is open, then $f^{2019}(U)$ is also open.

Problem 4. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime}(0)=0$ but nevertheless is invertible in every neighbourhood of 0 . What can you say about the regularity of the inverse?

Problem 5.

(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}(a) \neq 0$ for all $a \in \mathbb{R}$, show that f is injective.
(b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that $\operatorname{det} \operatorname{Df}(x, y) \neq 0$ for all $(x, y) \in \mathbb{R}^{2}$ but f is not injective.

An alternate proof of the Inverse Function Theorem

A very useful idea in mathematics is hat often times an existence theorem can be rephrased as the existence of a fixed point of some map. This is the basic idea in the following proof of IFT. Many of these "fixed point existence theorems" rely on the following theorem:

Problem 6. (Contraction mapping principle/Banach's fixed point theorem). If f : $(X, d \rightarrow(X, d)$ is a constraction of a complete metric space, then f has a unique fixed point.

The basic idea is to pick any point an iterate f. To understand this result, we recall some

Definitions:

(a) A metric space, (X, d), is a set X equipped with a function $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ sastisfying:
(i) $\forall x \in X, d(x, x)=0$ (positive definite)
(ii) $\forall x, y \in X, d(x, y)=d(y, x)$ (symmetry)
(iii) $\forall x, y, z \in X, d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality)
(b) A subset $U \subset X$ is called open if for each $x \in U$, there is an $\varepsilon>0$ such that the epsilon ball around x is constained in U. Remark. Similarly, notions like sequence convergence and Cauchy sequences generalizes to metric spaces by replacing $|x-y|$ with $d(x, y)$ in the corresponsing definitions.
(c) The metric space (X, d) is complete if every Cauchy seuqence converges.
(d) A map $f:(X, d) \rightarrow(X, d)$ is a contraction if there exists $c<1$ such that for all $x, y \in X$ we have $d(f(x), f(y)) \leq c d(x, y)$.

The other lemma on which our proof of IFT will rely upon is the following exercise:

Problem 7. If U is convex and $f: U \rightarrow \mathbb{R}^{n}$ is differentiable with derivative satisfying sup $x_{x \in U}|D f(x)| \leq$ M, then $|f(a)-f(b)| \leq M|a-b|$.

We now tackle the main theorem. Recall the statement

Theorem. (Inverse function theorem). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a \mathcal{C}^{1} mapping with $\operatorname{det} D f(p) \neq 0$. There there exists open sets U, V around p and $f\left(p\right.$ on which f is a bijection and its inverse is \mathcal{C}^{1}.

Problem 8. (A symplifying assumeption). Show we can assume WLOG that $f(p)=0=p$ and that $D f(0)=I$.

Problem 9. We want to build and inverse to f. The key is to consider

$$
\varphi_{y_{0}}(x)=x+\left(y_{0}-f(x)\right) .
$$

Notice that a fixed point of varphi $i_{y_{0}}$ is equivalent to $y+0=f(x)$. In particular, if we can show each $\varphi_{y_{0}}$ has a unique fixed point as y_{0} varies in some open set, then we have successfully defined an inverse to f. Show, using the contraction mapping principle, that this is the case. Specifically, show problem 7 and continuous differentiability imply there is some $r>0$ such that $\varphi_{y_{0}}$ constracts B_{r} (the ball of radius r centered at 0) by a factor of 10 . Use this to show f maps B_{r} onto $B_{r / 2}$. Find open sets U, V as in the statement of the theorem on which f is invertible.

The next part is to show $g=\left.f\right|_{U} ^{-1}$ is \mathcal{C}^{1}.
Problem 10. Show $\frac{|y|}{2} \leq|g(y)| \leq 2|y|$. Using this and the fact $y=g(f(y))$ show that $g(y)=$ $y+h(y)$ where h is some function satisfying $\lim _{y \rightarrow \infty} \frac{h(y)}{|y|}=0$. Use this to conclude $D g(0)=I$.

Problem 11. Show $U=\{x \mid \operatorname{det} D f(x) \neq 0\}$ is open. Use this and the fact that our starting point (which we did take to be 0) was arbitrary to conclude g is differentiable for $y \in V$. Use chain rule to show g is \mathcal{C}^{1}.

