
MAT257 Tutorial Worksheet 5

Adriano Pacifico – Invert that frown upside down.

Problem 1. Is f(x, y, z) =
(
yex + sin(πy) cos(z), cos(yz), z2

)
invertible near (0, 1, π/2)?

Problem 2. Let M2(R) denote the set of 2 × 2 matrices. Define a map g : M2(R) → M2(R) by
g(A) = A2. Determine whether g is invertible in a neighbourhood of the identity matrix I.

Problem 3. Let f(x, y) =
(

sinh(x) + y, sinh(y)− x
)
. Show that if U ⊂ R2 is open, then f2019(U)

is also open.

Problem 4. Construct a function f : R→ R with f ′(0) = 0 but nevertheless is invertible in every
neighbourhood of 0. What can you say about the regularity of the inverse?

Problem 5.

(a) If f : R→ R satisfies f ′(a) 6= 0 for all a ∈ R, show that f is injective.

(b) Define f : R2 → R2 by f(x, y) = (ex cos y, ex sin y). Show that detDf(x, y) 6= 0 for all
(x, y) ∈ R2 but f is not injective.

An alternate proof of the Inverse Function Theorem

A very useful idea in mathematics is hat often times an existence theorem can be rephrased as the
existence of a fixed point of some map. This is the basic idea in the following proof of IFT. Many
of these ”fixed point existence theorems” rely on the following theorem:

Problem 6. (Contraction mapping principle/Banach’s fixed point theorem). If f :
(X, d→ (X, d) is a constraction of a complete metric space, then f has a unique fixed point.

The basic idea is to pick any point an iterate f . To understand this result, we recall some

Definitions:

(a) A metric space, (X, d), is a set X equipped with a function d : X ×X → R≥0 sastisfying:

(i) ∀x ∈ X, d(x, x) = 0 (positive definite)

(ii) ∀x, y ∈ X, d(x, y) = d(y, x) (symmetry)
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(iii) ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

(b) A subset U ⊂ X is called open if for each x ∈ U , there is an ε > 0 such that the epsilon
ball around x is constained in U . Remark. Similarly, notions like sequence convergence
and Cauchy sequences generalizes to metric spaces by replacing |x − y| with d(x, y) in the
corresponsing definitions.

(c) The metric space (X, d) is complete if every Cauchy seuqence converges.

(d) A map f : (X, d)→ (X, d) is a contraction if there exists c < 1 such that for all x, y ∈ X we
have d

(
f(x), f(y)

)
≤ cd(x, y).

The other lemma on which our proof of IFT will rely upon is the following exercise:

Problem 7. If U is convex and f : U → Rn is differentiable with derivative satisfying supx∈U |Df(x)| ≤
M , then |f(a)− f(b)| ≤M |a− b|.

We now tackle the main theorem. Recall the statement

Theorem. (Inverse function theorem). Let f : Rn → Rn be a C1 mapping with detDf(p) 6= 0.
There there exists open sets U, V around p and f(p on which f is a bijection and its inverse is C1.

Problem 8. (A symplifying assumeption). Show we can assume WLOG that f(p) = 0 = p
and that Df(0) = I.

Problem 9. We want to build and inverse to f . The key is to consider

ϕy0(x) = x+
(
y0 − f(x)

)
.

Notice that a fixed point of varphiy0 is equivalent to y + 0 = f(x). In particular, if we can show
each ϕy0 has a unique fixed point as y0 varies in some open set, then we have successfully defined
an inverse to f . Show, using the contraction mapping principle, that this is the case. Specifically,
show problem 7 and continuous differentiability imply there is some r > 0 such that ϕy0 constracts
Br (the ball of radius r centered at 0) by a factor of 10. Use this to show f maps Br onto Br/2.
Find open sets U, V as in the statement of the theorem on which f is invertible.

The next part is to show g = f |−1U is C1.

Problem 10. Show
|y|
2
≤ |g(y)| ≤ 2|y|. Using this and the fact y = g(f(y)) show that g(y) =

y + h(y) where h is some function satisfying lim
y→∞

h(y)

|y|
= 0. Use this to conclude Dg(0) = I.

Problem 11. Show U = {x | detDf(x) 6= 0} is open. Use this and the fact that our starting
point (which we did take to be 0) was arbitrary to conclude g is differentiable for y ∈ V . Use chain
rule to show g is C1.
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