MAT257 Tutorial Worksheet 2

Adriano Pacifico - Sequentially seeing sequences

Problem 1. Let $\left\{x_{k}\right\}_{k \geq 0} \subset \mathbb{R}^{n}$ be a sequence with $x_{k} \rightarrow x$ and $x_{k} \rightarrow y$ as $k \rightarrow \infty$. Show $x=y$.
Problem 2. Let $K_{0} \supset K_{1} \supset K_{2} \supset \ldots$ be a decreasing sequence of compact sets in \mathbb{R}^{n}. Prove that $\bigcap_{n=0}^{\infty} K_{n} \neq \emptyset$.

Problem 3. Let $\left\{A_{k}\right\}$ denote a sequence of compact subsets of \mathbb{R}^{n}. Which of the following are compact?
(a) $\cup_{k=1}^{2019} A_{k}$
(c) $\cap_{k=1}^{2019} A_{k}$
(b) $\cup_{k=1}^{\infty} A_{k}$
(d) $\cap_{k=1}^{\infty} A_{k}$

Problem 4. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a sequence in \mathbb{R}^{n}. We say the sequence $\left\{b_{k}\right\}_{k \geq 0}$ is a rearrangement of $\left\{a_{k}\right\}$ if there exists a bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{k}=a_{\sigma(k)}$. Are limits of sequences affected by rearrangement? What if we only ask σ to be an injection? Surjection?

Problem 5. (Hard) Let $f: \mathbb{R} \cup\{\infty\} \rightarrow \mathbb{R} \cup\{\infty\}$ be defined by $f(x)=\frac{2 x+3}{3 x+5}$ (where it is understood $f(-5 / 3)=\infty$ and $f(\infty)=2 / 3)$. Let f^{n} denote the n-fold composition of f. Compute

$$
\lim _{n \rightarrow \infty} f^{n}(x)
$$

(Note your answer may depend on x).
Problem 6. (Hard) Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Compute $\prod_{n=1}^{\infty}\left(1+\frac{(-1)^{n}}{F_{n}^{2}}\right)$.

