MAT257 Tutorial Worksheet 16

Adriano Pacifico - Review

February 26, 2020

Problem 1.

(a) Find the length of one arch of the cycloid

$$
\begin{gathered}
x=a(t-\sin t) \\
y=a(1-\cos t)
\end{gathered}
$$

(b) Find the area bounded by the x-axis and the arch.

Problem 2. Find the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Problem 3. Show that there is no vector field \mathbf{F} on \mathbb{R}^{n} for which the arclength of any curve γ is given by

$$
\ell(\gamma)=\int_{\gamma} \mathbf{F} \cdot \mathbf{d x} .
$$

Problem 4. Compute the integral $\int_{S} z d x d y d z$, where
(a) S is the region bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $x^{2}+y^{2}=z^{2}$.
(b) S is the region above the $x y$-plane bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $x^{2}+y^{2}=z^{2}$.

Problem 5. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a curve with $\gamma(0)=a$ and $\gamma(1)=b$. Show that

$$
\ell(\gamma) \geq|b-a|,
$$

where $\ell(\gamma)$ denotes the arclength of the curve γ.
Problem 6. Let V be a finite dimensional vector space, and let $\omega_{1}, \ldots, \omega_{k}: V \rightarrow \mathbb{R}$ be functionals. Show that $\omega_{1}, \ldots, \omega_{k}$ are linearly dependent if and only if $\omega_{1} \wedge \ldots \wedge \omega_{k}=0$.

