Worksheet 14

Adriano Pacifico - The air seems tensor today!

Reminder: Let V be a vector space over \mathbb{R}. Recall for multilinear maps $f: V^{k} \rightarrow \mathbb{R}$ and $g: V^{\ell} \rightarrow$ \mathbb{R}, we define $f \otimes g: V^{k+\ell} \rightarrow \mathbb{R}$ by $f \otimes g(v, w)=f(v) g(w)$ where $v \in V^{k}$ and $w \in V^{\ell}$.

Problem 1 Let $e_{1}=(1,0), e_{2}=(0,1)$ be standard basis on \mathbb{R}^{2} and e_{1}^{*}, e_{2}^{*} be the corresponding dual basis for $\left(\mathbb{R}^{2}\right)^{*}$. Compute
(a) $e_{1}^{*}(17,19)$
(e) $e_{1}^{*} \otimes e_{1}^{*}((x, y),(u, v))$
(b) $e_{1}^{*}(x, y)+e_{2}^{*}(a, y)$
(c) $e_{1}^{*} \otimes e_{2}^{*}((x, y),(u, v))$
(d) $e_{2}^{*} \otimes e_{1}^{*}((x, y),(u, v))$
(f) $\left.\frac{1}{2}\left(e_{1}^{*} \otimes e_{2}^{*}((x, y),(u, v))\right)+e_{2}^{*} \otimes e_{1}^{*}((x, y),(u, v))\right)$
(g) $\left.\frac{1}{2}\left(e_{1}^{*} \otimes e_{2}^{*}((x, y),(u, v))\right)-e_{2}^{*} \otimes e_{1}^{*}((x, y),(u, v))\right)$

Remarks

- Compare (c) and (d) above. This tells us tensor products are not symmetric (i.e. $f \otimes g \neq g \otimes f$) in general.
- (f) describes the symmetrization, $\operatorname{Sym} e_{1}^{*} \otimes e_{2}^{*}$, of $e_{1}^{*} \otimes e_{2}^{*}$. It is a "symmetric version" of $e_{1}^{*} \otimes e_{2}^{*}$. Since $\operatorname{Sym} e_{1}^{*} \otimes e_{2}^{*}$ is symmetric but $e_{1}^{*} \otimes e_{2}^{*}$ is not, we cannot hope for the two expressions to be equal, though we can as that the weaker condition

$$
\operatorname{Sym} e_{1}^{*} \otimes e_{2}^{*}(v, v)=e_{1}^{*} \otimes e_{2}^{*}(v, v)
$$

hold for all $v \in \mathbb{R}^{2}$. This explains the somewhat curious $\frac{1}{2}$ factor in the expression. It turns out that this equality and symmetry uniquely determine $\operatorname{Sym} e_{1}^{*} \otimes e_{2}^{*}$. A similar statement is true in general.

- Similarly, part (g) describes the skew-symmetriztion, Alt $e_{1}^{*} \otimes e_{2}^{*}$. This is the more useful construction for us. Differential forms and determinants are modeled on it.

Problem 2

(a) Express the standard inner product on $\mathbb{R}^{2},\langle(x, y),(u, v)\rangle=x u+y v$ in terms of e_{1}^{*}, e_{2}^{*} and their tensor products.
(b) Generalize part (a) to \mathbb{R}^{n}

Problem 3

(a) Consider $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and let $v=\binom{a}{c}$ and $w=\binom{b}{d}$. Describe $\operatorname{det} M$ in terms of v, w and e_{1}^{*}, e_{2}^{*} and their tensor products.
(b) Generalize part (a) to \mathbb{R}^{3}
(c) How could you do this for \mathbb{R}^{n} in general? As tensors, what kinds of properties do determinants satisfy?

Problem 4 Let $e_{1}^{*}, e_{2}^{*}, e_{3}^{*}$ be the basis on $\left(\mathbb{R}^{3}\right)^{*}$ dual to the standard basis on \mathbb{R}^{3}. Show $e_{1}^{*} \otimes e_{2}^{*} \otimes e_{3}^{*}$ is not the sum of a symmetric tensor and an alternating tensor.

Problem 5 Let V be an n-dimensional vector space. Compute the dimension of the space of symmetric k-tensors on V. Do the same for the space of alternating k-tensors.

Problem 6: (Harder) Let V be a finite dimensional vector space and ω a skew-symmettric (alternating/anti-symmetric) 2-tensor on V with the property that if $\omega(v, w)=0$ for all $w \in V$, then $v=0$. Show V has even dimension.

