
Worksheet 14

Adriano Pacifico – The air seems tensor today!

Reminder: Let V be a vector space over R. Recall for multilinear maps f : V k → R and g : V ` →
R, we define f ⊗ g : V k+` → R by f ⊗ g(v, w) = f(v)g(w) where v ∈ V k and w ∈ V `.

Problem 1 Let e1 = (1, 0), e2 = (0, 1) be standard basis on R2 and e∗1, e
∗
2 be the corresponding

dual basis for (R2)∗. Compute

(a) e∗1(17, 19)

(b) e∗1(x, y) + e∗2(a, y)

(c) e∗1 ⊗ e∗2
(
(x, y), (u, v)

)
(d) e∗2 ⊗ e∗1

(
(x, y), (u, v)

)

(e) e∗1 ⊗ e∗1
(
(x, y), (u, v)

)
(f) 1

2

(
e∗1⊗e∗2

(
(x, y), (u, v)

)
)+e∗2⊗e∗1

(
(x, y), (u, v)

))

(g) 1
2

(
e∗1⊗e∗2

(
(x, y), (u, v)

)
)−e∗2⊗e∗1

(
(x, y), (u, v)

))

Remarks

• Compare (c) and (d) above. This tells us tensor products are not symmetric (i.e. f⊗g 6= g⊗f)
in general.

• (f) describes the symmetrization, Sym e∗1⊗e∗2, of e∗1⊗e∗2. It is a “symmetric version” of e∗1⊗e∗2.
Since Sym e∗1 ⊗ e∗2 is symmetric but e∗1 ⊗ e∗2 is not, we cannot hope for the two expressions to
be equal, though we can as that the weaker condition

Sym e∗1 ⊗ e∗2(v, v) = e∗1 ⊗ e∗2(v, v)

hold for all v ∈ R2. This explains the somewhat curious 1
2 factor in the expression. It turns

out that this equality and symmetry uniquely determine Sym e∗1 ⊗ e∗2. A similar statement is
true in general.

• Similarly, part (g) describes the skew-symmetriztion, Alt e∗1 ⊗ e∗2. This is the more useful
construction for us. Differential forms and determinants are modeled on it.

Problem 2

(a) Express the standard inner product on R2, 〈(x, y), (u, v)〉 = xu + yv in terms of e∗1, e
∗
2 and

their tensor products.
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(b) Generalize part (a) to Rn

Problem 3

(a) Consider M =

[
a b
c d

]
and let v =

(
a
c

)
and w =

(
b
d

)
. Describe detM in terms of v, w and

e∗1, e
∗
2 and their tensor products.

(b) Generalize part (a) to R3

(c) How could you do this for Rn in general? As tensors, what kinds of properties do determinants
satisfy?

Problem 4 Let e∗1, e
∗
2, e

∗
3 be the basis on (R3)∗ dual to the standard basis on R3. Show e∗1⊗ e∗2⊗ e∗3

is not the sum of a symmetric tensor and an alternating tensor.

Problem 5 Let V be an n–dimensional vector space. Compute the dimension of the space of
symmetric k–tensors on V . Do the same for the space of alternating k–tensors.

Problem 6: (Harder) Let V be a finite dimensional vector space and ω a skew-symmettric
(alternating/anti-symmetric) 2–tensor on V with the property that if ω(v, w) = 0 for all w ∈ V ,
then v = 0. Show V has even dimension.
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