MAT257 Tutorial Worksheet 13

Adriano Pacifico – Change of Variables practice

January 29, 2020

Problem 1. Compute the following integrals:

- (a) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} \cos(x^2 + y^2) dy dx.$
- (b) $\int \int \int_E 16z dV$ where E is the upper half of the sphere $x^2 + y^2 + z^2 = 1$.
- (c) $\int \int \int_E 4xy dV$ where E is the region bounded by $z = 2x^2 + 2y^2 7$ and z = 1.
- (d) $\int \int \int_E e^{-x^2 z^2} dV$ where *E* is the region between the two cylinders $x^2 + z^2 = 4$ and $x^2 + z^2 = 9$ with $1 \le y \le 5$ and $z \le 0$.
- (e) $\int \int \int_E zx dV$ where E is above $x^2 + y^2 + z^2 = 4$, inside the cone (pointing upward) that makes an angle of $\pi/3$ with the negative z-axis and has $x \leq 0$.

(f)
$$\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) dz dx dy.$$

Problem 2. Compute $\int_0^\infty \int_0^{x_1} \int_0^{x_1+x_2} e^{-(x_1+x_2+x_3)} dx_3 dx_2 dx_1.$

Problem 3. Compute $\int_0^\infty \frac{\log x}{1+x^2} dx$.

Problem 4. Compute the integral

$$\int \int_D \frac{dxdy}{(x^2 + y^2)^2},$$

where D is the domain bounded by the circles

$$\begin{aligned} x^2 + y^2 - 2x &= 0, \qquad x^2 + y^2 - 4x = 0, \\ x^2 + y^2 - 2y &= 0, \qquad x^2 + y^2 - 6y = 0. \end{aligned}$$