Worksheet 12

Adriano Pacifico - A change of perspective

Theorem (Change of Variables). Let $A \subset \mathbb{R}^{n}$ and suppose we have an integrable function $f: A \rightarrow \mathbb{R}$. Suppose we have change of variables from some domain B to A, using coordinates x on A, u on B and the notation $x(u)$ to denote the change of variable. Then

$$
\int_{A} f(x) d x=\int_{B} f(x(u))\left|\operatorname{det} \frac{\partial x}{\partial u}\right| d u
$$

Problem 1 Compute

(i) $\int_{S} \frac{(x+y)^{4}}{(x-y)^{5}} d x d y$ on $S=\{-1 \leq x+y \leq 1,1 \leq x-y \leq 3\}$.
(ii) $\int_{D} x d x d y$ where $D=\left\{0 \leq x, 1 \leq x y \leq 2,1 \leq \frac{y}{x} \leq 2\right\}$.
(iii) the area of the region R in th $1^{s t}$ quadrant bounded by $y=x^{2}, y=\frac{x^{2}}{5}, x y=2$ and $x y=4$.

Problem 2 Show $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ as follows:
(i) Show $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$. (Hint: This problem is the reason for the tear drops on my guitar.)
(ii) Let Δ denote the simplex $\left\{(u, v) \in \mathbb{R}^{2}: u, v>0, u+v<\frac{\pi}{2}\right\}$. Show $T: \Delta \rightarrow[0,1] \times[0,1]$ defined by $T(u, v)=\left(\frac{\sin u}{\cos v}, \frac{\sin v}{\cos u}\right)$ defines a change of variables.
(iii) Show $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}=\frac{\pi^{2}}{8}$. Conclude $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Problem 3 Compute $\int_{B} \frac{x^{4}+2 y^{4}}{x^{4}+4 y^{4}+z^{4}} d x d y d z$ where $B=\left\{(x, y, z) \in \mathbb{R}^{3} \quad: x^{2}+y^{2}+z^{2} \leq 1\right\}$ denotes the unit ball.

