MAT257 Tutorial Worksheet 1

Adriano Pacifico – The Pink Wednesday Tutorial

Problem 1. Determine the limit as k goes to ∞ (if it exists) of the following sequences:

- (a) $(\cos(\pi k/2), \sin(\pi k/2))$ (b) $(k!/k^k, (-1)^k)$ (c) $(\cos(Ck), \sin(Ck))$
- (c) $\left(\frac{\cos(\pi k)}{k}, \frac{\sin(\pi k)}{k}\right)$

Problem 2. Compute the following limits

(a) $\lim_{(x,y)\to(0,0)} 2019x^3 - xy^{2019}$ (b) $\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2(y)}{x^2 + 2y^2}$ (d) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}}$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y}{\sqrt{x^2+y^2}}$$

Problem 3. Show the set $\{(w, x, y, z) \in \mathbb{R}^4 : e^x y + 72wz + \cos(y\sin(wz)) \ge 2019\}$ is closed.

Problem 4. Find a sequence $\{x_n\} \subset \mathbb{R}^2$ with the property that for any $x \in \mathbb{R}^2$, there exists a subsequence $\{x_{n_k}\}$ with $x_{n_k} \to x$ as $k \to \infty$.

Problem 5. (Hard) Let \mathcal{T} denote the collection of open subsets of \mathbb{R} . Show that \mathcal{T} and \mathbb{R} have the same cardinality.

Problem 6. (Hard) Let $\mu : \mathcal{P}([0,1]) \to \{0,1\}$ be a function with the following properties:

- (i) $\mu(\emptyset) = 0$
- (ii) $\mu([0,1]) = 1$

(iii) If $\{A_n\}_{n\geq 0}$ is a sequence of (pairwise) disjoint subsets of [0,1], then $\mu\left(\bigsqcup_{n=0}^{\infty}A_n\right) = \sum_{n=0}^{\infty}\mu(A_n)$.

Show there exists $x_0 \in [0, 1]$ such that

$$\mu(A) = \begin{cases} 1 \text{ if } x_0 \in A \\ 0 \text{ if } x_0 \notin A \end{cases}$$