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Problem 1. Is it possible to paint six faces of a cube into three colours so that each
colour is present, but from any position one can see at most two colours?

Answer. Yes, it is possible.

Solution. Colour two opposite faces of the cube in red and blue, while the other faces
in green. From any position one can not see red and blue faces at the same time.

Problem 2. Points K and L are marked on side AB of triangle ABC so that KL =
BC and AK = LB. Given that O is the midpoint of side AC, prove that ∠KOL =
90◦.

Solution 1. Let M be a midpoint of AB. Then MO = 1/2BC = 1/2KL = KM =
ML. Therefore, points K, M , and O belong to a circle with radius KM and centre
at M . Since KL is a diameter of this circle, ∠KOL = 90◦.

A C

B

O

K

L

M

Solution 2. Let us draw LD ‖ BC and CD ‖ AB. Quadrilateral AKCD is a parallel-
ogram ( CD = LB = AK and CD ‖ AK). Then O, the midpoint of AC is the point
of intersection of its diagonals and therefore KO = OD. Since the triangle KLD is
isosceles (LK = BC = LD, its median LO is also an altitude. Hence ∠KOL = 90◦.
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Problem 3. Pete summed up 10 consecutive powers of 2, starting from some power,
while Basil summed up several consecutive positive integers starting from 1. Can
they get the same result?

Answer. Yes, they can.

Solution. Indeed, let 2k+1 + . . . 2k+10 = 1 + 2 + · · · + n. Simplifying we see that
2k+2(210 − 1) = n(n+ 1) holds for n = 210 − 1 and k = 8.

Problem 4. A figure, given on the grid, consists of a 15-step staircase and horizontal
and vertical bases (see the figure). What is the least number of squares one can split
this figure into? (Splitting is allowed only along the grid).

Solution. Note that each step’s corner belongs to some square and no two corners
belong to the same square. Therefore the number of squares is no less than 15.
Example that splitting the figure into 15 squares can be achieved:

Problem 5. Among 2n + 1 positive integers there is exactly one 0, while each of
the numbers 1, 2, ..., n is presented exactly twice. For which n can one line up these
numbers so that for any m = 1, . . . , n there are exactly m numbers between two m’s?

Answer. For any n.

Solution. Observe that two sets of odd numbers, each set from from 1 to 2k + 1 can
be arranged according to the requirement with one empty space in the middle:

2k + 1, 2k − 1, . . . , 3, 1, , 1, 3, . . . , 2k − 1, 2k + 1

while two sets of even from from 1 to 2k can be arranged according to the requirement
with two empty spaces in the middle:

2k, 2k − 2, . . . , 2, 1, , 1, 2, . . . , 2k − 2, 2k



(a) n = 2k + 1. Consider the follow arrangement:

2k+1, 2k−1, . . . , 3, 1, 2k , 1, 3, . . . , 2k−1, 2k+1, 2k−2, 2k−4 . . . 2, 2k, 0 , 2, . . . , 2k−2

Inserting two copies of 2k as shown, we see that for any m 6= 2k requirement holds
and we can check that it holds for m = 2k as well.

Indeed,
1, 3, . . . , 2k − 1, 2k + 1, 2k − 2, 2k − 4 . . . 2,

includes k + 1 of odd numbers and k − 1 of even numbers, 2k numbers in total.

(b) n = 2k. In a similar way one can check that the following arrangement works:

2k − 1, 2k − 3, . . . , 3, 1, 2k , 1, 3, . . . , 2k − 1, 2k − 2, 2k − 4 . . . 2, 0, 2k , 2, . . . , 2k − 2

.


