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Problem 1. Let p be a prime number. Determine the number of positive integers n
such that pn is a multiple of p+ n.

Solution. Let k be a positive integer such that pn = k(n+p). Then pn = kn+kp and
n−k = kn/p. Note that k < n and k < p (n−k must be positive while kn/p can not
exceed n). It follows that n = mp, where m is a positive integer. Thus, pm−k = km
so that p = k(m + 1)/m and therefore k = lm, where l is a positive integer. Then
p = l(m+ 1) which implies that l = 1 (p is prime). Hence m = p−1 and n = p(p−1)
is the only one possible value.

Problem 2. Suppose that ABC and ABD are right-angled triangles with common
hypotenuse AB (D and C are on the same side of line AB). If AC = BC and DK
is a bisector of angle ADB, prove that the circumcenter of triangle ACK belongs to
line AD.
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Solution. Observe that triangles ABC and ADB share the same circumcircle with
diameter AB. Denote by M a point symmetrical to C about the centre. Observe
that K belongs to MD. (Indeed AM = BM implies that ∠ADM = ∠MDB).

Let ∠CAD = α. Then ∠CMD = ∠CAD = α. Since triangle CMK is isosceles its
altitude OK is also a bisector and therefore ∠AKC = 90◦ − α. Let I be a point
on AD equidistant from A and C. Since ∠ACI = ∠CAI = α, ∠AIC = 180◦ − 2α.
Consider a circle with centre I and radius AI = CI. Since ∠AKC = 1/2∠AIC, K
belongs to this circle. Hence I is a centre of circumcircle of triangle ACK.

Problem 3. Three players play the game “rock-paper-scissors”. In every round, each
player simultaneously shows one of these shapes. Rock beats scissors, scissors beat
paper, while paper beats rock. If in a round exactly two distinct shapes are shown
(and thus one of them is shown twice) then 1 point is added to the score of the



player(s) who showed the winning shape, otherwise no point is added. After several
rounds it occurred that each shape had been shown the same number of times. Prove
that the total sum of points at this moment was a multiple of 3.

Solution. Outcome in a round is a triple of shapes and depending on the number of
distinct shapes can be one of three kinds: (x, x, x), (x, y, z), and (x, x, y), where x, y
and z stand for shapes.

Note that outcomes (x, x, x), (x, y, z) worth no points so if by the final moment of
the game no other outcomes appear, then the total number of points P = 0. Assume
there is an outcome (x, x, y). Then there is at least one more outcome from this
category (when exactly two shapes are the same). We will show the way of replacing
two outcomes of this sort by two new triples, one of which worths no point while
preserving the number of points by modulo 3 ( In other words P modulo 3 is invariant
under operation of rearrangement).

Assume that x < y. Then y < z and z < x so that we have P (x, x, x) = 0, P (y, y, y) =
0, P (z, z, z) = 0, P (x, x, y) = 1, P (x, y, y) = 2, P (x, z, z) = 1, P (x, x, z) = 2,
P (y, y, z) = z, P (y, z, z) = 2.

Below the list all possible cases for the second triple.

Case (x, x, y). (x, x, y) + (x, x, y)→ (x, x, x) + (x, y, y). ∆P ≡ 0 mod 3.

(∆P is the difference between the numbers of the total points before and
after rearrangement).

Case (x, y, y). (x, x, y) + (x, y, y)→ (x, x, x) + (x, y, y). ∆P ≡ 0 mod 3.

Case (x, x, z). (x, x, y) + (x, x, z)→ (x, x, x) + (x, y, z). ∆P ≡ 0 mod 3.

Case (x, z, z). (x, x, y) + (x, z, z)→ (x, x, x) + (y, z, z). ∆P ≡ 0 mod 3.

Case (y, y, z). (x, x, y) + (y, y, z)→ (y, y, y) + (x, x, z). ∆P ≡ 0 mod 3.

Case (y, z, z). (x, x, y) + (y, z, z)→ (x, y, z) + (x, y, z). ∆P ≡ 0 mod 3.

Since the number of triples of the third category keeps decreasing eventually we come
to a situation when no such elements left. Since P is invariant and we started with
P ≡ mod 3, then at the final moment P ≡ 0 mod 3.

Solution 2. (Hessami Elnaz). Let r, s, p represent rock, scissors and paper respec-
tively. We can exclude from consideration outcomes (r, p, s) since they contribute
evenly in a total of each shape and worth no points. Assume that combinations
(r, r, p), (r, r, s),(r, r, s), (s, s, r), (s, s, p), (p, p, r), (p, p, s), (r, r, r), (p, p, p), (s, s, s)
appeared b, c, d, e, f, g, u, v, w times respectively. Then the total number of points
P = b+ d+ g + 2c+ 2e+ 2f .



According to the condition in the end of the game all shapes appeared in equal
numbers. Thus we have:

2b+ 2c+ d+ f + 3u = n,

b+ e+ 2f + 2g + 3v = n,

c+ 2d+ 2e+ g + 3w = n

Adding the first and the second doubled equation we have

4b+ 2c+ 2e+ 5f + d+ 4g + 3u+ 6v = 3n =⇒
b+ d+ g + 2c+ 2e+ 2f ≡ 0 mod 3.

Hence, P ≡ 0 mod 3.

Problem 4. In a country there are 100 cities. Every two cities are connected by a
direct flight (in both directions). Each flight costs a positive (not necessarily integer)
number of doubloons. The flights in both directions between two given cities are of
the same cost. The average cost of a flight is 1 doubloon. A traveller plans to visit
any m cities for m flights, starting and ending at his native city (which must be one
of these m cities). Can the traveller always fulfil his plans given that he can spend at
most m doubloons if

(a) m = 99;

(b) m = 100?

Solution. Let A1, A2, . . . A100 denote cities and let A1 be a home town of the traveller.

(a) m = 99. The traveller can not fulfil his plans for sure. Example.

Let the cost of each flight connecting A1 with every other city be p = $43 while the
cost of each of the remaining flights (connecting Ai and Aj, i 6= 1, j 6= 1) be q = $1/7.
Then the average of one flight is 2(99p+ 99× 98q)/100× 99 = 1 while the cost of any
route including m cities which starts and ends at A1 is (2p+ 97q)/99 > 99.

(b) m = 100. (Steven Chow) In this case a route is a loop consisting of 100 cities.
The routes differ only by the order of cities. No route passes through the same city
twice. The traveller’s home city is no special so he can start his route at any city.

Consider the total number of doubloons that the traveller must spent for every pos-
sible route. An average cost of one route is the sum of these costs divided by the
number of possible routes.

Since every flight comes the same number of times in the total number of possible
routes (it follows from symmetry of the situation), and since the average cost of one
flight is 1 doubloon, the average cost of one route is 100 doubloons.

Then there is a route with the cost not exceeding 100 doubloons. Hence the traveller
can always fulfil his plans.



Problem 5. An infinite increasing arithmetical progression is given. A new sequence
is constructed in the following way: its first term is the sum of several first terms of
the original sequence, its second term is the sum of several next terms of the original
sequence and so on. Is it possible that the new sequence is a geometrical progression?

Solution. Example.

Arithmetical sequence: 1 + 2 + 3 + · · ·+ n+ . . . .

Geometrical sequence: 1 + 9 + 92 + · · ·+ 9k + . . . .

Let us show that for any k = 0, 1, . . . , there exists such n that

1 + 2 + 3 + · · ·+ n = 1 + 9 + 92 + · · ·+ 9k.

which is equivalent to (9k+1 − 1)/8 = n(n+ 1)/2. Solving this equation we find that
n = (3k+1 − 1)/2.


