
INTERNATIONALMATHEMATICS TOURNAMENTOF TOWNS
Senior A-Level Paper, Spring 2014.

1. Doono wrote several 1s, placed signs “+” or “×” between every two of
them, put several brackets and got 2014 in the result. His friend Dunno
replaced all “+” by “×” and all “×” by “+” and also got 2014. Can this be
true?

Solution. Yes, it could be true. For example, consider the following
expression consisting of 4027 1s:

1 + 1× 1 + 1× 1 + . . . + 1× 1︸ ︷︷ ︸
2013 terms

which obviously equals 2014. After Dunno changed signs it became

1× 1 + 1× 1 + . . . + 1× 1︸ ︷︷ ︸
2013 terms

+1

which also equals 2014.

2. Is it true that any convex polygon can be dissected by a straight line into
two polygons with equal perimeters and

(a) equal greatest sides?

(b) equal smallest sides?

(a) Answer: Yes

Solution. Consider a convex polygon polygon and point M on its boundary.
Consider its opposite point N = N(M). It means that MN dissects polygon
into two MA1 . . . AmN and NAm+1 . . . AnM with equal perimeters (it is
possible that M and N are among vertices of the original polygon). Here
MA1 . . . AmN is in the counterclockwise direction. Define f(M) as a greatest
side of MA1 . . . AmN . Observe that f(M) continuously depends on M . Then
g(M) = f(M)− f(N(M)) also continuously depends on M . However as M
changes from original point M0 to its opposite point N0, g(M) changes from
g(M0) to g(N0) = −g(M0). Therefore g(M) = 0 for some M .

Remark . h(M) as the smallest side of MA1 . . . AmN is not continuous and
these arguments do not work for Part (b).
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(b) Answer: No.

Consider triangle ABC. We call points M and N opposite if (as on the figure
(a)) MA + AN = p/2 where p = a + b + c is a perimeter of ABC.

Consider first an equilateral triangle with sides a = b = c. We claim that
the smallest cut between opposite points has the length 3a/4. Indeed, one
can prove easily that the shortest cut MN must be orthogonal to bisector of
angle CAB.

Therefore in an equilateral triangle MN ≥ 3a/4 and MC + NB = a/2,
AM = NB + a/2, AN = CM + a/2 and therefore for equilateral triangle
the answer is negative unless the cut passes through one of the vertices. The
same is true for all triangles sufficiently close to equilateral.

Consider M = C. But then in CAN and CNB the smallest sides are
AN = p/2−b = (a−b+c)/2 and NB = (a+b−c)/2 where a = BC, b = AC
and c = AB and AN 6= NB if b 6= c.

Therefore one cannot dissect any triangle which is close to equilateral but has
all sides different.

3. The King called two wizards. He ordered First Wizard to write down 100
positive real numbers (not necessarily distinct) on cards without revealing
them to Second Wizard. Second Wizard must correctly determine all these
numbers, otherwise both wizards will lose their heads. First Wizard is allowed
to provide Second Wizard with a list of distinct numbers, each of which is
either one of the numbers on the cards or a sum of some of these numbers. He
is not allowed to tell which numbers are on the cards and which numbers are
their sums. Finally the King tears as many hairs from each wizard’s beard
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as the number of numbers in the list given to Second Wizard. What is the
minimal number of hairs each wizard should lose to stay alive?

Answer. 101

Solution [Coincides with given by Ben Wei]. The first wizard writes
1, 2, 4, . . . , 299 and lists all these numbers and their sum 2100 − 1. Then the
second wizard understands that there is a card with a number not exceeding
1, there is another card with a number not exceeding 2, . . . , and there is
100th card with a number not exceeding 299. Then their sum does not exceed
2100 − 1 and the emuality is possible if and only if numbers are 1, 2, 4, . . . , 299.

4. In the plane are marked all points with integer coordinates (x, y), 0 ≤ y ≤
10. Consider a polynomial of degree 20 with integer coefficients. Find the
maximal possible number of marked points which can lie on its graph.

Solution (Michael Chow) (i) We need to consider integer solutions of the
system of inequalities:

0 ≤ P (x) ≤ 10. (∗)
Let us prove by contradiction that there are no more than 20 integer solutions
to (∗). Assume that x1 < x2 < . . . < x21 satisfy (∗); denote a = x1, b = x21;
then b− a ≥ 20.

Consider P (b)− P (a); since both a, b satisfy (∗) we conclude that |P (b)−
P (a)| ≤ 10. However since P (x) has integer coefficient, the number P (b)−P (a)
must be divisible by (b − a) (indeed, P (b) − P (a) = (b − a)R(a, b) where
R is a polynomial with integer coefficients). Since |P (b) − P (a)| ≤ 10 and
b − a ≥ 20 divisibility implies that P (b) − P (a) = 0. So P (a) = P (b) = c
with 0 ≤ c ≤ 10.

Then P (x) = (x− a)(b− x)Q(x) + c where Q(x) is a polynomial of degree
18. Observe that (x− a)(b− x) ≥ 19 for integer x = a + 1, . . . , b− 1. Then
P (x) cannot satisfy (∗) unless Q(x) = 0. Indeed, if Q(x) 6= 0 then either
P (x) ≤ −19 + c < 0 or P (x) ≥ 19 + c > 10.

Therefore Q(xk) = 0, k = 2, . . . , 20 but polynomial Q(x) of degree 18 cannot
have more than 18 roots. Contradiction.

(ii) On the other hand, for P (x) = (x− x1)(x− x2) · · · (x− x20) (∗) has 20
solutions x1, . . . , x20.

Solution 2. We need to consider integer solutions of the system of in-
equalities (∗). Let us prove by contradiction that there are no more than 20
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integer solutions to (∗). Assume that x1 < x2 < . . . < x21 satisfy (∗). By
Bézout’s theorem P (x21 − P (x1) is divisible by x21 − x1 ≥ 20 and therefore
P (x21 = P (x1) = r. Similarly P (x21) = P (xi) = r for all i = 2, . . . , 10
since x21 − xi ≥ 11. Also P (x1) = P (xk) = r for all k = 12, . . . , 21
since xk − x1 ≥ 11. Therefore all xj except x11 are roots of P (x) − r
and thus P (x) = a(x− x1) · · · (x− x10)(x− x12) · · · (x− x21) + r. But then
|P (x12)− r| ≥ (10!)2 which is a contradiction.

5. There is a scalenetriangle. Peter and Basil play the following game. On
each his turn Peter chooses a point in the plane. Basil responds by painting
it into red or blue. Peter wins if some triangle similar to the original one
has all vertices of the same colour. Find the minimal number of moves Peter
needs to win no matter how Basil would play (independently of the shape of
the given triangle)?

Answer. 5
Solution. Peter selects triangle ABC (an orig-
inal one). Basil paints A and B blue and C red.
Then Peter selects D and E on the same side of
AB as C so that triangles ABC, BDA and EAB
are similar (with vertices in the matching order).
Basil is forced to paint them red.
Now prove that triangle EDC and EAB are
similar. Observe that ∠DAE = ∠CBE. In-
deed, ∠DAE = ∠DAB − ∠EAD and ∠CBE =
∠ABE − ∠ABC and those angles are equal due
to similarity. Also DA : BC = AB : CA = EA :
BE.

A B

C
D

E

Thus triangles DAE and CBE are similar and in triangles EDC and EAB
angles E are equal and DE : CE = AE : BE and therefore they are similar.

Remark. This could be described using complex numbers terminology. Indeed,
let us introduce coordinate system on the complex plane C such that points C,
A and B correspond to complex numbers 0, z and z2 respectively (it is always
possible). Let us add points w(E) wz(D) with w = z2−z+1. Then triangles
CAB, ABD, BEA CED are similar. Indeed triangles CAB and CED could
be obtained from triangle ∆ with vertices (0, 1, z) by multiplication by z and
w respectively; triangle BEA could be obtained from ∆ by multiplication
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by (1− z) and shift by z2, and triangle ABD could be obtained from ∆ by
multiplication by z2 − z and shift by z.

6. In some country every town has a unique number. In a flight directory for
any two towns there is an indication whether or not they are connected by a
direct non-stop flight. It is known that for any two assigned numbers M and
N one can change the numeration of towns so that the town with number M
gets the number N but the directory remains correct.

Is it always true that for any two assigned numbers M and N one can change
the numeration of towns so that the towns with numbers M and N interchange
their numbers but the directory is still correct?

Answer: No
Solution. Observe that figure is symmetric with
respect to each diameter passing through the mid-
dle of the small chord. These symmetries allows
us to interchange neighbouring towns and then
several symmetries allows us to transfer any town
into any other town.

1

2
3

4

5

6

7

8
9

10

11

12

Assume that we can exchange towns 1 and 3. Then their only common
connected town 2 must remain on its place. Then its connected town 9 must
also remain on its place. But 3 and 9 have two common connected towns (8
and 2) while 1 and 9 have only one common connected town (2).

Remark. Another example: tetrahedron with cut vertices. Then there is a
graph with 12 vertices and 18 edges which has the same properties.

7. Consider a polynomial P (x) such that

P (0) = 1; (P (x))2 = 1 + x + x100Q(x), where Q(x) is also a polynomial.

Prove that in the polynomial (P (x) + 1)100 the coefficient at x99 is zero.

Solution. Observe that (P (x) + 1)100 + (1− P (x))100 contains only even
powers of P (x) and therefore is a polynomial of degree 50 of (P (x))2 i.e. of
(1 + x)50 modulo polynomial divisible by x100. However 1− P (x) is divisible
by x and therefore (1− P (x))100 is divisible by x100.

Remark. More generally (P (x) + 1)n is a polynomial of degree bn/2c modulo
polynomial divisible by xn and therefore coefficients at xm, m = bn/2c +
1, . . . , n− 1 are zeros.
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