International Mathematics
TOURNAMENT OF THE TOWNS

Senior A-Level Paper Spring 2012%.

1.

In a team of guards, each is assigned a different positive integer. For any two guards, the
ratio of the two numbers assigned to them is at least 3:1. A guard assigned the number n is
on duty for n days in a row, off duty for n days in a row, back on duty for n days in a row,
and so on. The guards need not start their duties on the same day. Is it possible that on any
day, at least one in such a team of guards is on duty?

One hundred points are marked inside a circle, with no three in a line. Prove that it is possible
to connect the points in pairs such that all fifty lines intersect one another inside the circle.

Let n be a positive integer. Prove that there exist integers ai, as, ..., a, such that for any
integer z, the number (--- (((2® + a1)* + a2)® + -+ *)* + a,_1)* + a,, is divisible by 2n — 1.

Alex marked one point on each of the six interior faces of a hollow unit cube. Then he
connected by strings any two marked points on adjacent faces. Prove that the total length of
these strings is at least 6+/2.

Let ¢ be a tangent to the incircle of triangle ABC. Let ¢,, ¢, and /. be the respective images
of ¢ under reflection across the exterior bisector of /A, /B and /C. Prove that the triangle
formed by these lines is congruent to ABC'.

We attempt to cover the plane with an infinite sequence of rectangles, overlapping allowed.

(a) Is the task always possible if the area of the nth rectangle is n? for each n?
(b) Is the task always possible if each rectangle is a square, and for any number N, there
exist squares with total area greater than N7

Konstantin has a pile of 100 pebbles. In each move, he chooses a pile and splits it into two
smaller ones until he gets 100 piles each with a single pebble.
(a) Prove that at some point, there are 30 piles containing a total of exactly 60 pebbles.
(b) Prove that at some point, there are 20 piles containing a total of exactly 60 pebbles.

(¢) Prove that Konstantin may proceed in such a way that at no point, there are 19 piles
containing a total of exactly 60 pebbles.

Note: The problems are worth 4, 5, 6, 6, 8, 346 and 6+3+3 points respectively.
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1. Let the guards be G, Ga, ..., G and let ny > ny > --- > n;, > 1 be the numbers assigned
to them. In fact, n; > 3n;.1 for 1 < i < k. There is an interval of 3ny days during which G,
is not on duty. Within this interval, there is a subinterval of ny, > 3n3 days during which G,
is not on duty either. Repeating this argument until we reach Gy, we will have an interval of
ny days in which none of the guards are on duty.

2. Among all the ways of connecting the one hundred points in pairs, consider the one for which
the total length of the fifty segments is maximum, We claim that this connection has the
desired property. Suppose to the contrary that two lines, AB and C'D, intersect outside the
circle. Then these four points form a convex quadrilateral, and we may assume that it is
ABCD. Let AC intersect BD at E. Then AC+ BD = AE+BE+CE+ DE > AB+CD.
Replacing AB and C'D by AC and BD increases the total length of the fifty segments. This
contradiction justifies our claim.

3. Note that 12 = (2n — 2)?, 22 = (2n —3)%, ..., (n —1)> = n? (mod 2n — 1). We claim that
for any ¢ and j, 1 <i < j <n —1, we can find k such that (i + k)? = (j + k)? (mod 2n — 1).
Suppose j — i = 2m — 1 for some m. Choose k so that j+k=n+m—1andi+k=n—m.
Suppose j — i is even. Then (2n — 1) + i — j is odd and we can make a similar choice for
k. This justifies the claim. Now 22 takes on n different values modulo 2n — 1. By a suitable
choice of a;, we can make (22 + a1)? take on at most n — 1 different values modulo 2n — 1.
By a suitable choice of as, we can make ((2? + a;1)? + a2)? take on at most n — 2 different
values modulo 2n — 1. Continuing in this manner, we can eventually choose a,_; so that
(- (((#*+ a1)*+ a2)*+ -+ ) + a,_1)? takes on only one value. By a suitable choice of a,,, we
can make the final expression divisible by 2n — 1.

4. Let the points Alex marked be F' on the front, B at the back, R to the right, L to the left,
U on the up face and D on the down face. The twelve strings formed three closed loops
FRBL, FUBD and RULD. We claim that the total length of each loop is at least 2v/2.
Let FRBL be projected onto the down face. Then each point lies on one side of a unit
square, as shown in the diagram below on the left. We now fold the loop out as shown in the
diagram below on the right. Since FXY F’ is a parallelogram, the total length of the strings
FR, RB. BL and LF' is at least XY. This is twice the diagonal of a unit square, which is
2V/2.

F’ Y




D.

6.

Instead of reflecting ¢ across the exterior bisectors of the angles of triangle ABC', we reflect it
across the interior bisectors of these angles. Let ¢ intersect the lines AI, BI and CI at L, M
and N respectively, where [ is the incentre of ABC'. Let ¢ intersect BC at Q and CA at Y.
Let ¢, intersect ¢, at F, ¢, at £ and AB at X. Let /, intersect /. at D and AB at P. Let
(. intersect BC' at Z and C'A at R. Note that R may or may not lie on BM. By symmetry
about BM, /BQM = /BPM. By symmetry about CN, /CQN = /CRN. It follows that

LARD = /CRN = /CQN = 180° — /BQM = 180° — /BPM = /APD.

Hence ADRP is cyclic, so that /FDE = /CAB. By symmetry about AL, /AXL = /AY L.
By symmetry about CN, /CYN = /CZN. It follows that

(BZE = /CZN = (CYN =180° — LAY L = 180° — L/AXL = /BXFE.

Hence BEZ X is cyclic, so that /DEF = /ABC. 1t follows that triangles ABC and DEF are
similar. Now the triangle obtained by reflecting ¢ across the interior bisectors of the angles of
triangle ABC' is clearly similar to DEF, and hence to ABC'. Since these two triangles have
the same incircle, they are in fact congruent.
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(a) Solution by Daniel Spivak:
Let the dimensions of the n-th rectangle be n?2" x 2% We claim that this sequence of
rectangles cannot even cover a disk with radius 1. The intersection of the n-th rectangle
with the disk is contained in a 2 x 2% rectangle and has area less than 2n1_1. The total
area of these intersections is less than 1 + % + i +-- <2<

(b) Solution by Hsin-Po Wang;:
Suppose there exists a positive number a such that the side length of infinitely many
of the squares in the sequence is at least a. Then we divide the plane into a sequence
of a X a squares in an outward spiral, and these squares can be covered one at a time.
Henceforth, we assume that for for positive real number a, the number of squares in the
sequence with side length at least a is finite. This induces a well-ordering on the squares
of the sequence in non-ascending order of side lengths a; > ay > a3 > ---. We may
assume that a; < 1.




We divide the plane into a sequence of unit squares in an outward spiral, and try to cover
these squares one at a time. Place the a; X a; square at the bottom left corner of the
first unit square. Place the as X as square on the bottom edge of this unit square to the
right of the a; X a; square. In this manner, we can cover the bottom edge of the unit
square because a; + as + -+ + ag, > ai + a3 + -+ af, > 1 for some ky. Let by = ay,.
Then we have covered the bottom strip of the unit square of height b;. We now focus on
the 1 x (1 —b;) rectangle, and apply the same process to cover the bottom strip of height
b, with squares of side lengths ax, 41, ax,4+2, ..., ag, = be.Continuing in this manner,
we cover strips of height b3, by, .... We claim that by + by + --- + b, > 1 for some h.
Suppose this is not so. Then for all A,

1 > (by+by+-+by)?

> bi(ap 41+ g2+ -0+ ary)
+b2(aky 41 + Ahyyo + - arg) + -0
Fbn(ar,+1 + gpg2 + -+ ag,,,)

2 2 2
2 Oy 41 + Ay 42 +--t gy oy -

This is a contradiction since the last expression is not bounded above.

Solution by Daniel Spivak:

At some point in time, we must have exactly 70 piles. At least 40 of them contain exactly
1 pebble each, as otherwise the total number of pebbles is at least 39 + 2 x 31 = 101.
Removing these 40 piles leave behind exactly 30 piles containing exactly 60 pebbles
among them.

Solution by Peter Xie:

We call k piles containing a total of exactly 2k + 20 pebbles a good collection. We claim
that if £ > 23, a good collection contains either 1 pile with exactly 2 pebbles or 2 piles
each with exactly 1 pebble. Otherwise, the total number of pebbles in the collection is
at least 1 = 3(k — 1) = 3k — 2, which is strictly greater than 2k + 20 when k£ > 23. Now
any partition of the original pile into 40 piles results in a good collection with & = 40.
From this, we can obtain a good collection with & = 39 by either removing 1 pile with
exactly 2 pebbles or removing 2 piles each with exactly 1 pebble and then subdividing
any other pile with at least 2 pebbles. In the same way, we can obtain good collections
down to k = 22, with a total of exactly 64 pebbles. We claim that there exist 2 or more
piles containing a total of exactly 4 pebbles. Suppose this is not the case. If there are
no piles with exactly 1 pebble, then the total number of pebbles in the collection is at
least 2 + 3 x 21 > 64. If there are piles with exactly 1 pebble, then the total is at least
3+ 4 x 19 > 64. Thus the claim is justified. We now remove these 4 pebbles, obtaining
60 pebbles in at most 20 piles. Eventual subdivision of these piles will bring the number
of piles to 20 while keeping the total number of pebbles at 60.

Solution by Peter Xie:

Separate out piles of 3 until we have 32 piles of 3 and are left with 1 pile of 4. Throughout
this process, exactly one pile contains a number of pebbles not divisible by 3. If we include
this pile, the total cannot be 60. If we exclude this pile, the total of 19 piles of 3 is only
57. We now separate the pile of 4 into 2 piles of 2. Now every pile contains at most
3 pebbles, so that 19 piles can contain at most 57 pebbles. Further separation will not
change this situation.



