International Mathematics
TOURNAMENT OF THE TOWNS

Junior O-Level Paper Spring 2012%.

1. A treasure is buried under a square of an 8 x 8 board, Under each other square is a message
which indicates the minimum number of steps needed to reach the square with the treasure.
Each step takes one from a square to another square sharing a common side. What is the
minmum number of squares we must dig up in order to bring up the treasure for sure?

2. The number 4 has an odd number of odd positive divisors, namely 1, and an even number
of even positive divisors, namely 2 and 4. Is there a number with an odd number of even
positive divisors and an even number of odd positive divisors?

3. In the parallelogram ABCD, the diagonal AC' touches the incircles of triangles ABC and
ADC at W and Y respectively, and the diagonal BD touches the incircles of triangles BAD
and BC'D at X and Z respectively. Prove that either W, X, Y and Z coincide, or W XY Z
is a rectangle.

4. Brackets are to be inserted into the expression 10 -9 +-8 -7 +6+5+4 + 3 + 2 so that the
resulting number is an integer.

(a) Determine the maximum value of this integer.

(b) Determine the minimum value of this integer.

5. RyNo, a little rhinoceros, has 17 scratch marks on its body. Some are horizontal and the rest
are vertical. Some are on the left side and the rest are on the right side. If RyNo rubs one
side of its body against a tree, two scratch marks, either both horizontal or both vertical, will
disappear from that side. However, at the same time, two new scratch marks, one horizontal
and one vertical, will appear on the other side. If there are less than two horizontal and less
than two vertical scratch marks on the side being rubbed, then nothing happens. If RyNo
continues to rub its body against trees, is it possible that at some point in time, the numbers
of horizontal and vertical scratch marks have interchanged on each side of its body?

Note: The problems are worth 3, 4, 4, 2+3 and 5 points respectively.
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1. Whichever square we dig up first, there is no guarantee that the treasure is there. If the
message we get says that the treasure is one square away, we cannot determine its location
uniquely. Thus we have to dig up at least three squares. Let the first two squares we dig up
be at the lower left corner and the lower right corner. We may as well suppose that we do not
find the treasure under either of them. The diagram below shows the possible coordinates of
the treasure based on the messages under these two squares. Since every square has a unique
pair of coordinates, the treasure can be brought up by digging up just one more square.
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2. Solution ny Ling Long:
All integers under discussion are taken to be positive. The divisors of an integer n can be
divided into pairs such that the product of the two numbers in each pair is n, except when n is
a square, with y/n having no partner. Suppose there exists an integer n with an even number
of odd divisors and an odd number of even divisors. Then it has an odd number of divisors
in total, and must be a square, say n = 2%. Let z = 2"y where y is odd. Then n = 2%y?2, and
the odd divisors of n are precisely the divisors of 2. This number cannot be even.

3. Suppose ABCD is a rhombus. Then both W and Y coincide with the midpoint of AC', and
both X and Z coincide with the midpoint of BD. Since AC' and BD bisect each other,
all four points coincide. Suppose ABCD is not a rhombus. Then none of the four points
coincides with the common midpoint of AC and BD. Hence they are distinct. By symmetry,
AW = CY and BX = DZ. Hence WY and X Z also bisect each other, so that W XY Z is a
parallelogram. Let the incircle of ABC touch AB at P and BC' at ). We may assume that
W is closer to A and Y is closer to C. Then

WY =CW -CY =CW - AW =CQ — AP =CB — AB.

Similarly, XZ = AD — AB = WY. Being a parallelogram with equal diagonals, W XY 7 is a
rectangle.



4. Bracketing simply separates the factors 10, 9, ..., 2 into the numerator and the denominator
of the overall expression.

(a) We have
10+ (((((((9+8)=T7)+6)+5)+4)+3) +2)
—10+2
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= 44800

Since 9 is the second number in the sequence, it must be in the denominator. Hence the
maximum value cannot be higher than 44800.

(b) Since 7 is the only number in the sequence divisible by 7, it must be in the numerator.
Hence the minimum value cannot be lower than 7. We have
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5. Let a, b, ¢ and d be the numbers of scratch marks which are horizontal and on the left side,
vertical and on the left side, horizontal and on the right side, and vertical and on the right
side. Suppose the initial values of a and b have been interchanged, and so are those of ¢ and
d, then a + b and ¢ + d are unchanged. Since each of these two sums changes by 2 after a
rubbing, the total number of rubbings must be even. If we allow negative values temporarily,
the order of the rubbings is immaterial, and we can assume that they occur alternately on the
left side and on the right side. After each pair of rubbings, the parity of each of a, b, ¢ and
d has changed. Suppose initially a + b is odd so that ¢ + d is even. After an odd number of
pairs of rubbings, the final values of a and b may have interchanged from their initial values,
the odd one becomes even and the even one becomes odd. However, this is not possible for
c and d, as they either change from both even to both odd, or from both odd to both even.
Similarly, after an even number of pairs of rubbings, the final values of ¢ and d may have
interchanged from their initial values, but this is not possible for @ and b. Thus the desired
scenario cannot occur.



