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International Mathematics
TOURNAMENT OF TOWNS

Senior A-Level Paper Fall 2012.

1. Given an infinite sequence of numbers a1, a2, a3, . . . For each positive integer k there exists
a positive integer t = t(k) such that ak = ak+t = ak+2t = . . . Is this sequence necessarily
periodic? That is, does a positive integer T exist such that ak = ak+T for each positive
integer k?

Solution. The answer is no. For example, let mk be the highest degree of 2 that divides k,
ak = 0 if mk is even and ak = 1 if mk is odd, and t(k) = 2mk.

2. Chip and Dale play the following game. Chip starts by splitting 1001 nuts between three
piles, so Dale can see it. In response, Dale chooses some number N from 1 to 1001. Then
Chip moves nuts from the piles he prepared to a new (fourth) pile until there will be exactly
N nuts in any one or more piles. When Chip accomplishes his task, Dale gets an exact
amount of nuts that Chip moved. What is the maximal number of nuts that Dale can get
for sure, no matter how Chip acts? (Naturally, Dale wants to get as many nuts as possible,
while Chip wants to lose as little as possible).

Solution. Consider a line segment of length 1001 on which we mark points A,B and C
corresponding to the piles with a, b and c nuts in them. Let us also mark the points A+B,
A + B and B + C, corresponding to two combined piles, the point O, corresponding to an
empty pile, and the point A+B +C, corresponding to the pile of 1001 nuts. If Dale choses
a number n then Chip’s strategy is to look for the closest marked point to this number and
to move nuts from the corresponding pile (or combined piles) to the pile 0. It is clear that
if the points are marked uniformly (with the distance 143 between each pair of subsequent
points) then the maximal difference between n and the closest number is 71, therefore Chip
can loose at most 71 nuts.

On the other hand, since the maximal distance between the subsequent points is at least
143, Dale can always choose a number such that he can guarantee at least 71 nuts.

3. A car rides along a circular track in the clockwise direction. At noon Peter and Paul took
their positions at two different points of the track. Some moment later they simultaneously
ended their duties and compared their notes. The car passed each of them at least 30 times.
Peter noticed that each circle was passed by the car 1 second faster than the preceding
one while Paul’s observation was opposite: each circle was passed 1 second slower than the
preceding one.

Prove that their duty was at least an hour and a half long.
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Solution. Each observer has noticed at least 29 circles. For Peter, the car passed consecutive
circles in m+14, m+13, . . . , m−14 seconds, and for Paul in p−14, p−13, . . . , p+14 seconds.
The total time for passing 29 circles is equal to 29m and 29p respectively. First 15 Paul’s
circles cover 14 Peter’s circles, either from 1st to 14th (if the car passed Peter for the first
time before Paul), or from 2nd to 15th (otherwise). In any case

(p− 14) + (p− 13) + · · ·+ p > (m+ 13) + (m+ 12) + · · ·+m.

On the other hand, the last 15 Paul’s circles cover 14 Peter’s circles, either from 16th to
29th, or from 15th to 28th, hence

(m− 14) + (m− 13) + · · ·+m > (p+ 13) + (p+ 12) + · · ·+ p.

Summing up the inequalities and collecting terms, we get p+m > 392, hence 29p+ 29m >
29 · 392. Thus the total time for at least one observer is at least 29 · 196 = 5684. This is
greater than an hour and a half (5400 seconds).

4. In a triangle ABC two points, C1 and A1 are marked on the sides AB and BC respectively
(the points do not coincide with the vertices). Let K be the midpoint of A1C1 and I be the
incentre of the triangle ABC. Given that the quadrilateral A1BC1I is cyclic, prove that the
angle AKC is obtuse.

Solution. Let M be the midpoint of AC, and A2, B2 and C2 are touching points of the
inscribed circle with sides BC, AC and AB respectively. Since 6 A1IC1 = 180◦ − 6 B =
6 A2IC2, the right-angled triangles A1A2I and C1C2I are equal (by a cathetus and an acute
angle). One of them is inside, and the other one outside the rectangle BA2IC2. Hence
AC1 + CA1 = AC2 + CA2 = AB2 + CB2 = AC.

Construct parallelograms AC1KD and CA1KE. Then ADCE is also a parallelogram (possi-
bly degenerate) and M is its centre, that is, the midpoint of segment DE. As is well-known,
a median is less than the half-sum of the adjacent sides, hence KM < 1/2(KD + KE) =
1/2(AC1 +CA1) = 1/2AC. This means that point K is inside the circle with diameter AC,
hence angle AKC is obtuse.

5. Peter and Paul play the following game. First, Peter chooses some positive integer a with
the sum of its digits equal to 2012. Paul wants to determine this number; he knows only
that the sum of the digits of Peter’s number is 2012. On each of his moves Paul chooses a
positive integer x and Peter tells him the sum of the digits of |x− a|. What is the minimal
number of moves in which Paul can determine Peter’s number for sure?

Solution. The answer is 2012. Let S(n) be the sum of the digits of n.
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Algorithm. At the first step, Paul chooses 1. If a ends with k zeroes then S(a−1) = 2011+9k.
Thus Paul gets to know the position of the rightmost nonzero digit in a. Set a1 = a− 10k.
Paul knows that S(a1) = 2011. At the second step Paul chooses x such that a− x = a1 − 1
and gets to know the number m of zeroes at the end of a1. Set a2 = a1 − 10m and so on.
After the 2012th step Paul obtains S(a2012) = 0, thus having determined a.

Estimate. Suppose all digits in a are 0 and 1, that is, a = 10k2012 +10k2011 + · · ·+10k1 where
k2012 > k2011 > · · · > k1. It is possible that at the first step Paul chooses an integer x < 10k1.
Then S(a− x) = S(10k1 − x) + 2011 independently of values of k2012, . . . , ki+1. So Paul gets
no new information about k2012, . . . , ki+1. Similarly, it is possible that at the second step
Paul chooses an integer smaller than 10k2, and so on. Then after 2011 steps Paul does not
know k2012.

6. (a) A point A is marked inside a sphere. Three perpendicular lines drawn through A
intersect the sphere at six points. Prove that the centre of gravity of these six points does
not depend on the choice of such three lines.

(b) An icosahedron with the centre A is placed inside a sphere (its centre does not
necessarily coincide with the centre of the sphere). The rays going from A to the vertices
of the icosahedron mark 12 points on the sphere. Then the icosahedron is rotated about its
centre. New rays mark new 12 points on the sphere. Let O and N be the centres of mass of
old and new points respectively. Prove that O = N .

(An icosahedron is a regular polyhedron with 20 triangular faces; each vertex emits 5 edges).

Solution. Let C be the centre of the sphere, O the centre of mass in question. It is also
the centre of mass for the midpoints of chords in the sphere, cut by the drawn lines. (For
an icosahedron, by its central symmetry, pairs of opposite rays may be replaced by the lines
containing the main diagonals.)

a) The midpoints of the chords (say K, L, M) are projections of C to the lines drawn, hence
AC = AK +AL+ AM (a vector is the sum of its projections to three perpendicular axes).
Hence AO = 1

3
AC.

b) Let AO = a, AC = c. It suffices to show that a = αc where α is independent of c and of
the position of the icosahedron.

The midpoints of the chords are projections of C to the diagonals of the icosahedron. Let
ei be the unit vector directed along the ith diagonal, Ai be the corresponding projection.
Then AAi = |c| cosϕ · ei = (c, ei)ei where brackets denote the scalar product and ϕ is the
angle between c and ei, and 6a = (c, e1)e1 + · · ·+ (c, e6)e6. The last expression depends on
c linearly, hence it suffices to prove the equation

(c, e1)e1 + · · ·+ (c, e6)e6 = 6αc (∗)
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for any three non-complanar vectors, for instance for e1, e2, e3.

The results does not change if we replace some of ei by opposite ones. Hence proving (∗) for
c = e1 we may assume that e2, . . . , e6 are directed to the vertices closest to that one where
e1 is directed. Then by symmetry we have (e1, e2) = · · · = (e1, e6). But e2 + · · ·+ e6 = βe1
where β is a constant.

The equation (∗) for c = e2 and c = e3 is proved similarly.

Remark. As is clear from the above, 6α = 1 + 5 cos2 ψ where ψ is the angle between two
neighbouring diagonals of an icosahedron.

7. There are 1 000 000 soldiers in a line. The sergeant splits the line into 100 segments (the
length of different segments may be different) and permutes the segments (not changing the
order of soldiers in each segment) forming a new line. The sergeant repeats this procedure
several times (splits the new line in segments of the same lengths and permutes them in
exactly the same way as the first time). Every soldier originally from the first segment
recorded the number of performed procedures that took him to return to the first segment
for the first time. Prove that at most 100 of these numbers are different.

Solution. Let us mark 99 borders between segments by flags; during iterations, flags remain
on their spots. We call a pair of soldiers special if originally they were neighbours in the
first segment but returned to this segment after different number of iterations. Then clearly
these soldiers at some moment went to different segments. Let us consider the first moment
when it happened. Until this moment they were neighbours in the line, so they are still
neighbours but now there is a flag between them.

We claim that each special pair is served by its own dedicated flag (so no flag can serve two
special pairs). Assume that some flag F first separated two special pairs A and B; pair A
was separated after k iterations and pair B was separated after m > k iterations.

Note that our operations are invertible: positions of the soldiers on the previous step are
uniquely defined. So let us pull k iterations back from the moment when flag F separated
pair A the first time. Then soldiers from A return to their positions in the first segment.

Now pull k operations back from the moment m when the second pair got separated. Since
the pair B occupied the same places at momentm as pair A at the moment k, this pair B also
will return to the same place, which is in the first segment. However, time is 0 < m−k < m
which contradicts to our conjecture that m was the first moment when it happened.

Therefore, the number of special pairs does not exceed 99. This means that going from one
soldier to the next one along the first segment, the recorded numbers could change no more
than 99 times and therefore there are at most 100 recorded numbers.
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Remark . One can prove easily that each soldier from the first segment really returns to it.
However it is not necessary: if a soldier never returns to the first segment we can define the
return time equal to ∞ and this does not affect the above arguments.


