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TOURNAMENT OF THE TOWNS

Solutions to Junior A-Level Paper Fall 2009

1. Pour from each jar exactly one tenth of what it initially contains into
each of the other nine jars. At the end of these ten operations, each jar
will contain one tenth of what is inside each jar initially. Since the total
amount of milk remains unchanged, each jar will contain one tenth of
the total amount of milk.

2. Assign spatial coordinates to the unit cubes, each dimension ranging
from 1 to 10. If all cubes are in the same colour orientation, there is
nothing to prove. Hence we may assume that (i, j, k) and (i + 1, j, k)
do not. Since they share a left-right face, let the common colour be
red. We may assign blue to the front-back faces of (i, j, k). Then its
top-bottom faces are white, the front-back faces of (i+1, j, k) are white
and the top-bottom faces of (i + 1, j, k) is blue.

Now (i, j + 1, k) share a white face with (i, j, k) while (i + 1, j + 1, k)
share a blue face with (i+ 1, j, k). Since (i, j + 1, k) and (i+ 1, j + 1, k)
share a left-right face, the only available colour is red. It follows that
the 1×2×10 block with (i, 1, k) and (i+1, 1, k) at one end and (i, 10, k)
and (i + 1, 10, k) at the other end has 1× 10 faces left and right which
are all red.

Similarly, if we carry out the expansion vertically, we obtain a 2×10×10
black with 10× 10 faces left and right which are all red. Finally, if we
carry out the expansion sideways, we will have the left and right faces
of the large cube all red.

3. Suppose a = b. Then a+a2 = a(a+1) is a power of 2, so that each of a
and a+ 1 is a power of 2. This is only possible if a = 1. Suppose a 6= b.
By symmetry, we may assume that a > b, so that a2 + b > a+ b2. Since
their product is a power of 2, each is a power of 2.

Let a2 + b = 2r and a + b2 = 2s with r > s. Then 2s(2r−s − 1) =
2r − 2s = a2 + b− a− b2 = (a− b)(a + b− 1).

Now a−b and a+b−1 have opposite parity. Hence one of them is equal
to 2s and the other to 2r−s − 1. If a − b = 2s = a + b2, then -b = b2.
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If a + b − 1 = 2s = a + b2, then b − 1 = b2. Both are contradictions.
Hence there is a unique solution a = b = 1.

4. Extend AB to P ′ so that BP ′ = BP = CQ. Then BP ′CQ is a
parallelogram so that P ′Q and BC bisect each other at a point K.

Let AK intersect BD at G′ and let QG′ intersect AB at R′. Since K
is the midpoint of BC, its distance from BD is half the distance of C
from BD, which is equal to the distance of A from BD. It follows that
AG′ = 2KG′.

Since K is the midpoint of P ′Q, G′ is the centroid of triangle AP ′Q.
Hence QG′ = 2R′G′ and R′ is the midpoint of AP ′. Let R be the
midpoint of AP and let QR intersect BD at G. Then RR′ is parallel
to PP ′, which is in turn parallel to BD. Hence QG = 2RG so that G
is the centroid of triangle APQ.

5. (a) Suppose n+1 = k2 for some positive integer k. We take the lightest
k objects with total weight 1 + 2 + · · · + k = k(k + 1)/2 grams. The
average weight of the remaining objects is ((k + 1) + (k2 − 1))/2 =
k(k + 1)/2 grams also.

(b) The total weight of the n objects is 1+2+· · ·+n = n(n+1)/2 grams.
Let T grams be the total weight of the k chosen objects. This is also
the average weight of the remaining n−k objects. Hence n(n+ 1)/2 =
T (n− k + 1).



Now 2T (n− k + 1) = n(n+ 1) > n2 + n− k2 + k = (n+ k)(n− k + 1),
so that 2T > n + k. If we choose the lightest k objects, then T attains
its maximum value ((k + 1) + n)/2, so that 2T ≤ n + k + 1. It follows
that we must have 2T = n + k + 1, and we must take the lightest k
objects. Then (n + k + 1)/2 = T = 1 + 2 + · · · + k = k(k + 1)/2 , so
that n + 1 = k2.

6. Partition the infinite chessboard into n × n subboards by horizontal
and vertical lines n units apart. Within each subboard, assign the
coordinates (i, j) to the square at the i-th row and the j-th column,
where 1 ≤ i, j ≤ n. Whenever an n × n cardboard is placed on the
infinite chessboard, it covers n2 squares all with different coordinates.
The total number of times squares with coordinates (1, 1) is covered is
2009. Since 2009 is odd, at least one of the squares with coordinates
(1, 1) is covered by an odd number of cardboards. The same goes for
the other n2− 1 coordinates. Hence the total number of squares which
are covered an odd number of times is at least n2.

7. We construct a graph, with the vertices representing the islands and
the edges representing connecting routes. The graph may have one or
more connected components. Since the total number of vertices is odd,
there must be a connected component with an odd number of vertices.

Anna chooses from this component the largest set of independent edges,
that is, edges no two of which have a common endpoint. She will colour
these edges red. Since the number of vertices is odd, there is at least
one vertex which is not incident with a red vertex. Anna will start the
tour there.

Suppose Ben has a move. It must take the tour to a vertex incident
with a red edge. Otherwise, Anna could have colour one more edge
red. Anna simply continues the tour by following that red edge. If Ben
continues to go to vertices incident with red edges, Anna will always
have a ready response. Suppose somehow Ben manages to get to a
vertex not incident with a red edge. Consider the tour so far. Both
the starting and the finishing vertices are not incident with red edges.
In between, the edges are alternately red and uncoloured. If Anna
interchanges the red and uncoloured edges on this tour, she could have
obtained a larger independent set of edges.



This contradiction shows that Ben could never get to a vertex not
incident with red edges, so that Anna always wins if she follows the
above strategy. (Solution of Central Jury)


