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International Mathematics
TOURNAMENT OF THE TOWNS

Senior A-Level Paper Spring 2006.

1. Assume a convex polygon with 100 vertices is given. Prove that one can chose 50 points inside
the polygon in such a way that every vertex lies on a line passing through two of the chosen
points. (B.R.Frenkin)

Solution. Enumerate vertices of the polygon in a clockwise order: 1, . . . , 100. Consider
polygon consisting of 10 vertices: 1, 2, 21, 22, 41, 42, 61, 62, 81, 82. Its vertices lay on the 5
straight lines 1-22, 21-42, 41-62, 61-82, 81-2, which are given by 5 points of intersections (the
first straight line with the second one, the second one with the third one . . . the fifth one with
the second one, it is evident, that all these points are different ). Repeat this for the decagons
with numbers of vertices that can be obtained from the numbers of considered decagon by
adding 2, 4, . . . , 18. This problem has lots of different solutions.

2. Do there exist positive integers n and k such that the decimal representation of 2n contains
the decimal representation of 5k as its leftmost part, while the decimal representation of 5n

contains the decimal representation of 2k as its leftmost part? (G.A.Galperin)

Answer: No, they doesnt exist.

Solution If for some positive integer n the number 2n starts by 5k and the number 5n by
2k then this means that 5k × 10s < 2n < (5k + 1) × 10s and 2k × 10l < 5n < (2k + 1) × 10l,
thus 10k+l+s < 10n < 10k+l+s+1, which is impossible. (Last inequality 10n < 10k+l+s+1 is true,
because 5k + 1 < 2× 5k and 2k + 1 < 5× 2k).

3. Consider the polynomial P (x) = x4 + x3 − 3x2 + x + 2. Prove that for every positive integer
k, the polynomial P (x)k has at least one negative coefficient. (M.I.Malkin)

Solution 1. Observe that for any polynomial P (x) its value in the point x = 1 is equal to
the sum of all coefficients. Consequently, the sum of the coefficients of the polynomial P (x)n

is equal to P (1)n = (1+1−3+1+2)n = 2n. But the free term of P (x)n is equal to P (0)n = 2n,
while the coefficient at x4n is equal to 1, and their sum is already 2n + 1. Hence one of the
remaining coefficients of P (x)n is negative.

Solution 2. The coefficient at x3 for the polynomial P (x)n can be obtained by adding n
items 2n−1x3 and n(n− 1) items −3x2 × x× 2n−2, consequently this coefficient is equal

n · 2n−1 − 3n(n− 1)2n−2 = 2n−2(−3n2 + 5n) = n · 2n−2(−3n + 5),

which is negative number for an arbitrary integer n ≥ 2.

Solution 3. Observe that P (0)n = P (1)n = 2n. But any polynomial F with positive
coefficients is strongly monotonic when x > 0 (i.e. x > y > 0 =⇒ F (x) > F (y) > 0). This
means that polynomial P (x)n has at least one negative coefficient.

4. Consider a triangle ABC, take the angle bisector AA′, and assume given a point X on the
interval AA′. Assume that the line BX intersects the line AC in a point denoted B′, while
the line CX intersects the line AB in a point denoted C ′. Assume also that the intervals A′B′

and CC ′ meet in a point denoted P , and the intervals A′C ′ and BB′ meet in a point denoted
Q. Prove that the angles PAC and QAB are equal. (M.A. Volchkevich)
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Solution. Denote by hM(l) the distance from the point M to the straight line l. We will
use the following simple

Lemma 1. if three rays OL, OM and ON , are given then for all points K on the ray OM
the ration hK(OL)/hK(ON) is the same.

For the solution of the given problem it is enough to prove that

hP (AC)/hP (AA′) = hQ(AB)/hQ(AA′)

(this equality together with equality of angles A′AC and A′BC means that angles PAC
and QAB are equal). Using lemma we obtain hP (BC)/hP (AC) = hX(BC)/hX(AC) and
hQ(BC)/hQ(AB) = hX(BC)/hX(AB), consequently (since hX(AC) = hX(AB), because
X lays on the bisector AA′) hP (BC)/hP (AC) = hQ(BC)/hQ(AB). So it is enough to
prove that hP (BC)/hP (AA′) = hQ(BC)/hQ(AA′). By lemma 1 the latter is equivalent to
hB′(BC)/hB′(AA′) = hC′(BC)/hC′(AA′).

Denote ∠BAC = 2α. Observe that hB′(AB)/hB′(AA′) = sin 2α/ sin α = hC′(AC)/hC ′(AA′).
Now it is enough to prove that hB′(BC)/hB′(AB) = hC′(BC)/hC′(AC). Applying lemma
again this transforms into hX(BC)/hX(AB) = hX(BC)/hX(AC), which is evident (since
hX(AC) = hX(AB)). The proof is finished.

5. Prove that there exist infinitely many pairs of integers with the following property: in the
decimal representation of each integer, each digit is greater or equal to 7, and the product of
the two integers in the pair is also an integer whose decimal representation has no digits less
than 7. (S.I.Tokarev)

Solution 1. All the pairs (9 . . . 98877, 8 . . . 87) where in the first and second numbers
amounts of the digits are equal are right for this problem. Their product (it can be shown
using multiplication “in column”) is equal to 8 . . . 878887 . . . 79899 (there are n− 3 eights at
the beginning, then 7888, and then n− 3 sevens).

Solution 2. Consider numbers 877. . . 7 (k-1 sevens) and 899. . . 9987 (k-3 nines), their prod-
uct is equal to the 7899. . . 998788. . . 8899 (k − 4 nines and k − 2 eights).

6. Twelve grasshoppers sit on a circle in 12 pairwise distinct points. These points split the circle
into 12 arcs. When a signal is given, the grasshoppers jump simultaneously; each one jumps
clockwise, from the endpoint of his arc to its midpoint. Thus 12 news are formed; then the
signal is repeated, and so on. Is it possible that at least one grasshopper returns to his original
position after he does

(a) 12 jumps?

(b) 13 jumps?

(A.K.Tolpygo)

Answer: (a),( b) No, it is not.

(a) Solution 1. Let us call 12 simultaneous jumps of grasshoppers “turn”. Assume that one
of the grasshoppers (call him first) returned to the starting point (denote it by A) after 12
turns. Observe that order of the grasshoppers on the circle doesnt change. Thus the remaining
11 grasshoppers have jump over the point A (at least once) before the first grasshopper returns
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there. But in one turn not more than one grasshopper jumps over the point A, while in the
first turn no grasshoppers jump over the point A! Consequently in 12 turns no more than 11
grasshoppers can jump over the point A, and the first one is not able to come back.

(a) Solution 2. Observe that our situation is equivalent to the following one: we arrange the
infinite amount of grasshoppers along the ray OM at the beginning placing 12 grasshoppers,
just unrolling the circle into a segment by cutting it at the starting point of the grasshopper
#1 (assume that clockwise bypass of the circle coincides with positive direction of the axis
Ox). Then we think that the first grasshopper starts only at the left end of the segment
(point 0). And attach to the right end the same segment with grasshoppers at the same
points and so on (we obtained the ray with marked points A1, A2, . . . ). In this new model
grasshoppers jump in positive direction into the midpoint of the segment, connecting this and
next grasshopper. Now we want to prove that after 12 jumps the first grasshopper is to the
left from the point A13.

Let us prove using induction that after n jumps the i-th grasshopper is at the centre of mass
of the system (

(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)
)

(the first factor is the position of object, second is its mass, C(k, n) = n!/(k! · (n− k)!)).

It is obvious that after first jump this proposition is true. Assume that after n jumps the i-th
grasshopper is at the centre of mass of the system(

(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)
)

and the (i + 1)-th at the centre of mass of(
(Ai+1, C(0, n)g), (Ai+2, C(1, n)g), . . . , (Ai+n+1, C(n, n)g)

)
.

Then the midpoint of the segment connecting them has the same coordinates as the centre of
mass of the system(

C. of M.
(
(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)

)
,

C. of M.
(
(Ai+1, C(0, n)g), (Ai+2, C(1, n)g), . . . , (Ai+n+1, C(n, n)g)

))
which is the same the centre of mass of(

(Ai, C(0, n)g), (Ai+1, (C(1, n) + C(0, n))g), . . . ,

(Ai+n, (C(n, n) + C(n− 1, n))g)), (Ai+n+1, C(n, n)g)
)
,

and this is the centre of mass of the system (Ai, C(0, n+1)g), . . . (Ai +n+1, C(n+1, n+1)g).
Proposition is proved.

The proved proposition means that after 12 jumps the first grasshopper is in the centre of mass
of the system ((A1, C(0, 12)g), . . . , (A13, C(12, 12)g). It is obvious that this point is inside the
segment [A1, A13].

(b). In this case after 13 jumps the first grasshopper is in the centre if mass of the system
((A1, C(0, 13)g), . . . , (A14, C(13, 13)g). But the same point can be represented as the centre
of mass of two points with some masses in them: the first one is

C. of M. ((A2, C(1, 13)g), . . . , (A13, C(12, 13)g),
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and the second one is

C. of M. ((A1, C(0, 13)g), (A14, C(13, 13)g).

It is evident that the first point is inside the segment [A1, A13]. Also C(0, 13) = C(13, 13) and
A1A2 = A13A14, hence the second point is inside the segment [A1, A13] too. Consequently and
the centre of mass of these two points with arbitrary masses is inside the segment [A1, A13].

7. An ant crawls along a fixed closed trajectory along the edges of a dodecahedron, never turning
back. The trajectory contains each edge of the dodecahedron exactly twice. Prove that the
ant passes at least one edge in the same direction both times. (Reminder: a dodecahedron is
a polyhedron with 20 vertices, 30 edges and 12 equal pentagonal faces; 3 faces meet at each
vertex.) (A.V. Shapovalov)

Solution. Assume the trajectory passing through each edge in both directions exist. Con-
sider a vertex A and three its neighbors B, C, D. Assume that at some moment of time the
ant comes to the point A from the point B then after it he crawls to the point C or D. If
he chose C, then at some other moment he comes from C to A and turns to D (otherwise
there is D → A → D in the trajectory, which is impossible). Similarly, when the ant comes
from D to A he turns to B. Summing up, we proved that there are 2 kinds of crossroads
(B → A → C, C → A → D, D → A → B) and (if at the beginning the ant choose not C
but D) (B → A → D, D → A → C, C → A → B). This two kinds of crossroads can be
described using the simple rule: in the first case ant always turns left at the crossroad, and in
the second one he always turns right. Now mark out for each crossroad its type. Observe that
if the ant starts his movement from some vertex going along some edge, then all its trajectory
can be reconstructed using only these marks. So each collection of the marks on the vertices
corresponds to some collection of closed and non-intersecting (by an edge, passing in the same
direction) trajectories (although, we do not clam that this collection of trajectories is unique,
we do not need this).

We assume that at the beginning there is one such closed trajectory passing through each
edges two times. Now by turns change the marks on the vertices with the rule “turn to the
left” to the marks “turn to the right”. It is possible that after the very first operation our big
trajectory splat into multiple. But it is evident that some closed trajectories that we obtain
are unambiguously defined. Let us study how the amount of the trajectories can change when
we change the marks. We want to prove that it remains odd. Suppose we have a crossroad
(B → A → C, C → A → D, D → A → B). Consider different cases of the trajectories
passing through A configurations:

(a) We have 3 different closed trajectories (B → A → C → · · · → B), (C → A → D →
· · · → C), and (D → A → B → · · · → D), then after the mark is changed we obtain
(C → A → B → · · · → D → A → C → · · · → B → A → D → · · · → C), so in this case
total amount decreased by two and remained odd.

(b) We have 2 closed trajectories (B → A → C → . . . B) and (C → A → D → · · · → D →
A → B → · · · → C), after the mark change we obtain (C → A → B → · · · → C) and
(B → A → D → · · · → D → A → C → · · · → B), total amount does not change.

(c) We have one closed trajectory (B → A → C → · · · → C → A → D → · · · → D → A →
B → · · · → B) then after change we obtain (B → A → D → · · · → D → A → C →
· · · → C → A → B → · · · → B). Total amount does not change again.
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Three more cases can be obtained by reversing the considered ones. And all other cases
are just the same after the replacement of the notation. We proved that total amount of
trajectories remains odd. But when all crossroads have marks “turn to the left” on them, the
only way to divide the dodecahedron into closed trajectories is to go round each facet along
its boundary ( i.e. each trajectory consists of 5 edges and goes round one facet). It is evident
that in this case we have 12 trajectories. We obtained the contradiction with oddity of their
amount.


