International Mathematics TOURNAMENT OF THE TOWNS

Junior O-Level Paper

Fall 2006¹

- 1. Two positive integers are written on the blackboard. Mary records in her notebook the square of the smaller number and replaces the larger number on the blackboard by the difference of the two numbers. With the new pair of numbers, she repeats the process, and continues until one of the numbers on the blackboard becomes zero. What will be the sum of the numbers in Mary's notebook at that point?
- 2. A Knight always tells the truth. A Knave always lies. A Normal may either lie or tell the truth. You are allowed to ask questions that can be answered with "yes" or "no", such as "Is this person a Normal?"
 - (a) There are three people in front of you. One is a Knight, another one is a Knave, and the third one is a Normal. They all know the identities of one another. How can you too learn the identity of each?
 - (b) There are four people in front of you. One is a Knight, another one is a Knave, and the other two are Normals. They all know the identities of one another. Prove that the Normals may agree in advance to answer your questions in such a way that you will not be able to learn the identity of any of the four people.
- 3. (a) Prove that from 2007 given positive integers, one of them can be chosen so the product of the remaining numbers is expressible in the form $a^2 b^2$ for some positive integers a and b.
 - (b) One of 2007 given positive integers is 2006. Prove that if there is a unique number among them such that the product of the remaining numbers is expressible in the form $a^2 b^2$ for some positive integers a and b, then this unique number is 2006.
- 4. Given triangle ABC, BC is extended beyond B to the point D such that BD = BA. The bisectors of the exterior angles at vertices B and C intersect at the point M. Prove that quadrilateral ADMC is cyclic.
- 5. A square is dissected into n congruent non-convex polygons whose sides are parallel to the sides of the square, and no two of these polygons are parallel translates of each other. What is the maximum value of n?

Note: The problems are worth 4, 1+3, 2+2, 4 and 4 points respectively. oreore

¹Courtesy of Professor Andy Liu.