International Mathematics

TOURNAMENT OF THE TOWNS
Senior A-Level Paper! Fall 2004.

1. The functions f and g are such that g(f(z)) = x and f(g(y)) = y for any real numbers = and
y. If for all real numbers x, f(x) = kx + h(z) for some constant k& and some periodic function
h(z), prove that g(x) can similarly be expressed as a sum of a linear function and a periodic
function. A function A is said to be periodic if for any real number x, h(x + p) = h(z) for
some fixed real number p.

2. Two players alternately remove pebbles from a pile. In each move, the first player must
remove either 1 or 10 pebbles, while the second player must remove either m or n pebbles.
Whoever cannot make a move loses. If the first player can guarantee a win regardless of the
initial number of pebbles in the pile, determine m and n.

3. On a blackboard are written four numbers. They are the values, in some order, of z + y,
xr —y, xry and 5 where = and y are positive numbers. Prove that x and y are uniquely
determined.

4. A circle with centre [ is inside another circle with centre O. AB is a variable chord of the
larger circle which is tangent to the smaller circle. Determine the locus of the circumcentre
of triangle IAB.

5. We have many copies of each of two rectangles. If a rectangle similar to the first can be made
by putting together copies of the second, prove that a rectangle similar to the second can be
made by putting together copies of the first, with no overlapping in both instances.

6. Let n > 5 be a fixed odd prime number. A triangle is said to be admissible if the measure
of each of its angles is of the form “*180° for some positive integer m. Initially, there is one
admissible triangle on the table. In each move, one may pick up a triangle from the table and
cut it into two admissible ones, neither of which is similar to any other triangle on the table.
The two new triangles are put back on the table. After a while, no more moves can be made.
Prove that at that point, every admissible triangle is similar to some triangle on the table.

7. From a point O are four rays OA, OC, OB and OD in that order, such that /ZAOB = /COD.
A circle tangent to OA and OB intersects a circle tangent to OC' and OD at E and F. Prove
that ZAOFE = /DOF.

Note: The problems are worth 5, 5, 5, 6, 7, 8 and 8 points respectively.
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Solution to Senior A-Level Fall 2004
1. Let y = f(x) = kx + h(x). Then y + kp = k(z + p) + h(z + p) = f(x + p). It follows that
gy +kp) =2 +p=g(y) +p. Let {(y) = g(y) — ¥ Then
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Uy + kp) = g(y + kp) — =g(y) +p—>—p="Ly).

Y
k
Hence ((y) is a periodic function, and g(y) = % + ((y).

2. Let the first player be Alexei, the second player be Boris, and the total number of pebbles
be t. We may assume that m < n. Suppose m < 8. If t = m + 1, then Alexei can take
only 1 pebble and Boris wins by taking the rest. Suppose n = m + 9. If t = m + 10, then
whether Alexei takes 1 or 10 pebbles, Boris can still take the rest and wins. Suppose m > 9
and n # m+9. If t < m, then Alexei wins by taking 1 pebble, leaving Boris with no response.
Suppose t > m. Alexei has two moves, one of which does not leave behind m pebbles and
one of which does not leave behind n pebbles. Suppose taking 1 pebble leaves behind n and
taking 10 pebbles leaves behind m. This would mean n = m+9, which is not the case. Hence
Alexei has a move which leaves behind neither m nor n pebbles, so that the game continues.
Since the game cannot continue forever, Boris must eventually lose.

3. Note that (z+y)+ (z —y) = 2z while (zy)(}) = 22, and that only x — y can be non-positive.
We consider three cases.
Case 1. All four numbers are positive.
Let a, b, c and d denote x +y, * —y, xy and 5 in some order. Choose a pair of them and
check if the square of their sum is four times the product of the other two numbers. The pair
can be chosen in six ways. There are three subcases.
Subcase 1a. This is satisfied by two disjoint pairs.
We may assume that we have (a + b)? = 4cd and (¢ + d)? = 4ab. Adding these two equations
yields (a — b)? + (¢ — d)* = 0 so that a = b and ¢ = d. Substituting back into (a + b)? = 4cd,
we have a = £c. Since all four numbers are positive, we must have a = b = c = d. This is a
contradiction since x +y # © — y.
Subcase 1b. This is satisfied by two intersecting pairs.
We may assume that we have (a + b)? = 4cd and (a + ¢)? = 4bd with b # c¢. Then we have
b(a+ b)? = dbed = c(a + ¢)?, or equivalently (b — ¢)(a® + 2a(b+ c) + (b* + bc + ¢*)) = 0. This
is a contradiction since b — ¢ # 0 while a® + 2a(b + ¢)(b* + be + ¢*) > 0.
Subcase 1c. This is satisfied by only one pair.
We may assume that (a + b)? = 4cd. Then we know that the larger one of a and b is z + y
and the smaller one x — y. We can determine = and y uniquely.
Case 2. One of the numbers is 0. We know that x = y so that % = 1 must also be among
the four numbers. The other two are x +y = 2z and xy = 2. Since their product is 223, we
can determine x = y uniquely.
Case 3. One of the numbers is negative.
We know that x < y and S <L Check how many numbers in S = {z + y, 2y, 5} lie strictly
between 0 and 1. There are three subcases.



Subcase 3a. There is exactly one such number.

We know that this number is £, and we can determine x and y uniquely from z — y and 5
Subcase 3b. There are exactly two such numbers.

We cannot have x+y < 1. Otherwise, we must have x < 1 and y < 1 so that zy < 1, but then
all three numbers in S lie strictly between 0 and 1. Hence x + y > 1 is the largest number in
S, and we can determine x and y uniquely from z —y and z + y.

Subcase 3c. There are exactly three such numbers.

From x+y < 1, we have z < 1 and y < 1 so that xy < z +y and zy < 5 Hence the smallest
number in S is xy, and we can determine x and y uniquely from z — y and zy.

4. The circumcentre P of triangle IAB lies on the line through O perpendicular to AB. Let
this line cut AB at D, and let C' be the point on this line such that C'I is perpendicular
to it. Let d denote the distance OI, r the radius of the circle with centre I, and R the
radius of the circle with centre O. Then PA? = PD? + AD? = PD? + R?* — OD? and
PI? = CI? + PC? = d&*> — (r — OD)? + (PD + r)®. These two expressions are equal to
each other since PA = PI. Simplification yields R? — d*> = 2r(OD + PD) = 2rPO. Hence
PO = # is a fixed distance, so that the locus of P is a circle with this radius and centre

0.

5. Suppose we have an a; X ay rectangle A and a b; x by rectangle B. Any rectangle PQ RS that
can be constructed from copies of A has dimensions (uja; + ugas) X (via; + veay) for some
non-negative integers uy, uo, vy and vy. If PQRS is similar to B, then

bi  uia; + uzap
by V101 + V20o

We first consider the case where o 1s rational, so that it is equal to - for some positive
integers m; and my. Then Z—l = mmtuyme — N for some positive integers n; and ng, so that
O . . 2 V1M1 +U2m2 n2 .

it is also rational. Using nins copies of B, we can construct a square of side s = nyby + n1bs.

Using mims copies of this square, we can construct an sm; X smsy rectangle which is similar

to A.



We now consider the case where 2! is irrational. We claim that in constructing the rectangle
PQRS with copies of A, all the copies must be in the same orientation. Let PTUV be
the largest subrectangle of PQRS that can be constructed with copies of A all in the same
orientation. Suppose U is in the interior of PQRS, as illustrated in the diagram below.

P T Q
V U
S R

If the line TU can be extended without cutting in interior of a copy of A, then the space
immediately below UV must be filled with copies of A in the same orientation as those above,
as otherwise it contradicts the irrationality of or. However, now it contradicts the maximality
of PTUV. Hence TU cannot be so extended, but this implies that VU can, and we have a
contradiction as well. It follows that U must lie on QR or RS. We may assume by symmetry
that it lies on QR, so that T coincides with ). However, the space immediately below UV
must be filled with copies of A in the same orientation as those above. This contradicts the
maximality of PTUV unless U coincides with R and V' with S. Thus our claim is justified.
Suppose this construction uses kiks copies of A in k; rows and ks columns for some positive
integers ky and k3. Then % = b g5 that % = Z—; Hence we can construct a rectangle

b
similar to A using kjko copies of B in ky rows and k; columns.

. Let the measures of the angles of a resolvable triangle be 2, % and = times 180°, where a, b
and ¢ are positive integers such that a + b+ ¢ = n. We label such a triangle (a, b, c). For
n = 3, there is only one resolvable triangle, namely (1,1,1), and the result is trivially true.
For n = 5, we have (3,1,1) and (2,2,1). Each can be cut into two triangles which are similar
to itself and to the other. Thus the result is also true. Henceforth, we assume that n > 7.

We generalize the case n = 5 as follows. We claim that whenever a resolvable triangle T'
can be cut into two resolvable ones, one similar to itself and another similar to a different
resolvable triangle S, then S can also be cut into two such triangles.

A

E

B D C

Let ABC be a resolvable triangle which is cut into two resolvable ones DBA and DCA, with
DBA similar to ABC. Then /BAD = /BCA. Now cut DCA along DFE parallel to BA.
Clearly, EDC is similar to ABC'. Since /EDA = /BAD = /BCA, EDA is also similar to
DCA. This justifies the claim.

Two such triangles are said to be compatible with each other, and the dissection dividing
either into triangles similar to both is called their common dissection.



For a fixed n, construct a graph as follows. Each vertex represents a similarity type of
resolvable triangles. Two vertices are joined by an edge if and only if the triangles they
represent are compatible with each other. Colour red the vertex representing the resolvable
triangle given initially, and any other vertices as the triangles they represent appear on the
table. We shall only use a common dissection to cut a resolvable triangle into a compatible
pair. It follows that once coloured red, a vertex remains red.

Suppose not all vertices are red. If the graph is connected, then there is a pair of adjacent
vertices exactly one of which is red. We can make the other vertex red by performing a
common dissection. Hence the desired result follows if we can prove that the graph is indeed
connected.

The degree of each vertex representing a non-isosceles resolvable triangle is 3. This is because
there are common dissections with three other triangles. If the triangle is (a,b,c) where
a < b < ¢, then it has a common dissection with each of (¢ — b,b,b+ a), (b —a,a,c+ a) and
(c—a,a,b+a).

b cC—a b
c— c+a

@ cl/bta b a bd+a\c b a b—a

The degree of each vertex representing an isosceles resolable triangle is 1. If it is of the form
(a,b,b) where a < b, we can only the second or the third common dissection to generate
(b —a,a,b+ a). If it is of the form (a,c,c) where a < ¢, we can use either the first or the
second common dissection to generate (a,2a,c — a). Moreover, the newly generated triangle
can only be isosceles if n = 5. Since we are now concerned only with the cases n > 7, we can
safely removal such vertices without affecting the connectivity of the graph. Of course, some
of the other vertices will have their degrees reduced from 3 to 2.

Let (a,b,c) be a resolvable triangle with a < b < ¢. Put the vertex representing it in level a.
The vertices on level 1 form a chain (1,2,n — 3) — (1,3,n — 4) — -+ — (1,252, »H) by the
third common dissection. We claim that each vertex in level a > 1 is either joined to some
vertex at a lower level, either directly or via a chain in level a. Then we can conclude that

the graph is connected.

If a+b > c> b, we use the first common dissection to obtain (b+ a,b,c —b). Since ¢ — b < a,
the vertex representing this triangle is in a lower level. If 2a > b > a, we use the third common
dissection to obtain (b — a,a,c+ a). Since b — a < a, the vertex representing this triangle is
in a lower level.

Suppose ¢ > a+b > 3a. We may use the second common dissection to obtain (a, b+ a,c—a).
For some positive integer k, we will have a + (b + ka) > ¢ — ka. Alternatively, we may use
the third common division to obtain (a,b— a,c+ a). For some positive integer ¢, we will have
2a > b—/{a. In both cases, we are moving within the same level towards a vertex which allows
for descent into a lower level.

We will have a problem in the first approach if b+ ka = ¢ — ka, and in the second approach if
2a = b — la. Either may occur, but if they occur simultaneously, we have b = (¢ 4+ 1)a while
¢ = (2k + ¢ + 1)a. Since n is prime, this is only possible if a = 1. However, we have already
proved that level 1 is connected.



7. Let the circles inscribed in ZAOB and /COD have centres P and (), and tangent to OA
and OD at K and L, respectively. Then we have /POK = $/AOB = 3/COD = /QOL
and /PKO = 90° = /QLO. Hence triangles POK and QOL are similar. It follows that

g—g = Z—IL( = g—g = %, so that the circumcircle of triangle OFEF' is the locus of all points

M satisfying S—% = Z—IL(. Now PQ) will intersect this circle at the midpoint I of the arc

EF. Hence /IOF = /IOF. Moreover, since % = g—g, we have /POI = /QOI. Hence
L[AOFE = {AOP + (POI — /IOE = /DOQ + /QOI — /IOF = /DOF.




