
Seniors
(Grades 11 and up)

International Mathematics
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A-Level Paper Spring 2003.

1 Solution 1. The longest edge of the pyramid is a chord of the cir-
cumscribed sphere and thus it does not exceed diameter of the sphere:
a ≤ 2R. Projection of insphere onto the shortest altitude of the pyra-
mid is strictly contained in the projection of the pyramid onto this
altitude. So, 2r < h. Multiplying inequalities we get 2r · a < h · 2R,

which is equivalent to
a

h
<

R

r
.

Solution 2. Let us calculate the volume of the pyramid in two ways:
V = 1

3
HjSj and V = 1

3
r(S1 + S2 + S3 + S4), where Sj is the area of

j-th face, and Hj is a corresponding altitude. Thus Hj = 3V/Sj and
h = 3V/Smax, where Smax = maxj Sj is the area of the face with the
largest area.

Therefore, r = 3V/(S1 +S2 +S3 +S4). Note that (S1 +S2 +S3 +S4) >
2Smax. Really, if we project the pyramid onto one of its faces (treated
as a base) then a projections of the lateral faces will cover the base.
Since area of projection is less than the area of the face itself (because
none of lateral faces is parallel to the base) we get our inequality.

Then
R

r
=

R(S1 + S2 + S3 + S4)

3V
>

2RSmax

3V
=

2R

h
≥ a

h
.

2 Answer: deg P = 1.

Solution. We consider a more general problem when ai are integers
(not necessarily positive).

(i ) deg P = 0 then P = c = const and all ai = P (ai+1) are equal
which contradicts conditions.

(ii ) deg P = 1 is possible: for example, ai = i, P (x) = x− 1.
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(iii) m = deg P ≥ 2. Let us prove that such sequence {ai} does not
exists.

Lemma. If m ≥ 2 then there exists a constant C such that
∀x : |x| ≥ C |P (x)| > |x|.
Proof. Let P (x) = bmxm + bm−1x

m−1 + · · · + b0 with bm 6= 0.
Then for |x| ≥ 1

|P (x)| ≥|bm| · |x|m −
(
|bm−1|+ |bm−2 + · · ·+ |b0|

))
|x|m−1 ≥

|x|m−1

(
|bm| · |x| −

(
|bm−1|+ |bm−2 + · · ·+ |b0|

))
which is larger than |x|m−1 as |x| ≥

(
|bm−1|+ |bm−2 + · · ·+ |b0|+

1
)
/|bm| and in turn |x|m−1 ≥ |x|. �

Since ai are distinct integers, for any C there exists M such that
∀i ≥ M |ai| ≥ C. Then according to Lemma, for i ≥ M |ai| =
|P (ai+1)| ≥ |ai+1| and therefore |ai| are bounded. Contradiction.

3 First let us notice that no vertex can be covered by an interior of a
triangle. So, it should be covered by edges. Note that if an interior of
edge covers a vertex, the sum of adjacent angles covered by triangle is
exactly 180◦. At the same time the sum of angles adjacent to vertex of
cube is 270◦. Therefore, at least 90◦ at each vertex should be covered
by angles of triangles. So angles of triangles cover at least 8 · 90◦ and
there should be at least 8 · 90◦/180◦ = 4 of triangles.

Consider T-shaped envelope of a cube, consisting of two rectangles.
Each of them can be covered by 2 triangles. So, it is possible to cover
a cube by 4 triangles.

4
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Let O be a center of the circle. Since 4ABC is a right triangle, O is
a midpoint of hypotenuse AB. Then ∠NOK is a right angle. Really,
midline NO of 4ABC is parallel to BC and OK ⊥ BC (arcs CK and
KB are equal).

Note that right triangles 4ECO and 4EAO are congruent (by side
and hypotenuse). So EO is a bisector of ∠AEC.

Further, 4AEEC is isosceles (AE = EC as tangents to the circle).
Then median EN is also a bisector. Therefore, EN and EO are both
bisectors of the same ∠AEC; so E, N, O are colinear.

Furthermore, A, E, C and O belong to the same circumference (∠ECO =
∠EAO = 90◦). By power of the point we have

AN ×NC = EN ×NO,

AN ×NC = MN ×NK

which imply that
MN ×NK = EN ×NO,

meaning that M, K, E and O belong to the same circumference (by
power of the point).
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Then ∠EMK = ∠EOK (subtended by the same arc). However,
∠EOK = 90◦; therefore ∠EMK = 90◦.

5 Answer: Mary has a winning strategy.

Consider John’s number modulo 6.

Mary calls 2. If John continues to play, then his number was odd:
J ≡ 1, 3, 5 mod 6. His new number J1 = J − 2 ≡ 1, 3, 5 mod 6 is also
odd.

Mary calls 3. So, if J1 ≡ 3 mod 6, Mary wins on her second move.
So, after two moves John’s number is J2 = J1 − 3 ≡ 2, 4 mod 6 or
J2 ≡ 2, 4, 8, 10 mod 12.

Mary calls 4. John continues to play, if J2 ≡ 2, 10 mod 12 or J3 =
J2 − 4 ≡ 10, 6 mod 12.

Mary calls 6. If J3 ≡ 6 mod 12 then J4 ≡ 0 mod 12, meaning that
Mary wins. So, J4 ≡ 4 mod 12.

Mary calls 16. J5 ≡ 0 mod 12 and Mary wins. Note, that John’s last
number is not negative, for the most he subtracted is 2+3+4+6+16 =
31.

There are other sequences of numbers of Mary’s moves.

6 Answer: 212.

Let A be a 4× 4-table consisting of “+” and “−”.

Since it is allowed to change a sign in any cell (altogether with signs
of all adjacent cells), we have 16 elementary transformations Tij (i, j =
1, . . . , 4); all other transformations are compositions of elementary ones.

Note, that elementary transformations commute: if from table A we
get table V applying some sequence of elementary transformations,
then applying to A the same sequence, but in different order, we get V
again. Also note, that changing sign in a cell (and in its neighboring
cells) of table A twice we will get A again; therefore every elementary
transformation needs to be applied no more than once.

Let T be a 4 × 4-matrix of transformation consisting of “0” and “1”.
The number 0(1) in cell (i, j) shows that elementary transformation Tij

is applied 0(1) times.
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It is clear, that if table A and matrix T are given, then the resulting
table V is uniquely defined. Note, that if we apply two transformations
with matrices T and S, then resulting transformation corresponds to
matrix T + S (corresponding elements are added modulo 2).

(i) First, let us get an upper estimate. One can check that the following
matrices do not change a table:

0110
1001
1001
0110

 ,


1111
0110
0110
1111

 ,


1001
1111
1111
1001

 ,


0000
0000
0000
0000

 , H =


0001
0011
0101
1110

 , G =


0010
0111
1000
1011

 ;

from matrix H we can get 3 more matrices with the same property by
90◦ rotations; from matrix G we can get 7 more matrices with the same
property by rotations and a mirror reflection. Altogether, we have at
least 16 (24) matrices Pα (α = 1, . . . , 16), which preserve tables.

Now let us divide all transformation matrices into equivalence classes
in the following way: T ∼ S if applied to table A both produce the
same result. Note that for any matrix of transformation S and any
α = 1, . . . , 16 we have S ∼ S + Pα. So each equivalence class contains
at least 24 elements and since there are 216 matrices of transformations,
there are at most 216/24 = 212 different equivalence classes. This means
that table A can generate no more than 212 different tables.

(ii) Let us get a lower estimate. Let us color our table as a chess board
with white top-left corner.

1. Note that any table could be transformed into a table with “−” in
all black cells (if some black cell contains “+” we can change it to “−”
without affecting all other black cells).

2. Now we show how with some special transformations we can make
“−” in 4 white cells of the lower half of our table without affecting
black cells. Let us consider the following matrices of transformations:

S1 =


0100
1110
0100
0000

 , S2 =


1100
1000
0000
0000

 , S3 =


0100
1110
0101
0011

 , S3 =


1100
1010
0111
0010

 .
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One can check that applying transformations with matrices S1, S2, S3,
S4 we change signs only in cells, marked by 1 (all of them are white):

I1 =


0000
0101
0000
0100

 , I2 =


1010
0000
1000
0000

 , I3 =


0000
0100
0000
0001

 , I3 =


1000
0000
0010
0000

 .

Note that each of matrices Ij has exactly one “1” in the lower half-table.
Therefore, if table A has “+” in some white cells of lower half-table,
we can change them into “−” applying corresponding transformations
Si without affecting black cells.

Now, we have “−” in all cells except 4 white cells in the upper half-
table. Thus we can transform A into one of 16 tables of this type; call
them canonical tables.

Inversely, if one can reduce table A to canonical table V , one can restore
A from V by the same transformation. We already proved in (i) that
each table can be transformed into no more than 212 tables; since there
is 216 tables and only 24 canonical tables, each canonical table can be
transformed into exactly 212 tables.

Therefore, every table can be transformed into exactly 212 tables.

7 Answer: No.

Solution. Let us introduce degree of vertex P , the number of seg-
ments issued from P .

Let us assume that degrees of all vertices are even.

Lemma. Let degrees of all vertices be even. Then one could paint all
the triangles into two colors so that every two triangles with a common
side would have different colors.

Proof. Let us consequently paint adjacent triangles into opposite
colors, every time connecting the centers of consequent triangles by a
curve passing through their common side.

Assume that on some step we painted a triangle and found that an
adjacent triangle had been already painted into the same color. Con-
necting centers of conflicting triangles we get a closed path, intersecting
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an odd number of segments; each of them is intersected only once. This
path bounds some region D.

Consider directed segments issued from vertices belonging to D. Their
total number i equals the sum of degrees of vertices belonging to D
and is even by assumption. On the other hand, the number of directed
segments with both ends in D is also even because each such directed
segment is paired with the opposite one. Therefore the total number
of (directed) segments intersecting our path must be also even.

This contradiction proves lemma. �

Let us paint triangles according to Lemma. Due to the assumption that
vertices of the square have even degrees as well, all the “boundary”
triangles are painted in the same color, say, white.

Let W and B be the numbers of white and black triangles respectively.
We assume that every inner segment has two sides; one is colored in
black and the other in white colors. Then the total number of white
sides is 3W while the total number of black sides is 3B. Note that
xactly 4 white sides do not have black counterparts; they are sides of
the square. So, 3(W −B) = 4 which is impossible. Contradiction.
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