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1 Answer: Yes.

Example. Consider quadratic equation x2 + 5x + 6 = 0. It could be transformed into one of
the following four equations:

(a) x2 + 5x + 6 = 0 (roots −2,−3;

(b) x2 + 5x− 6 = 0 (roots −6, 1);

(c) x2 − 5x + 6 = 0 (roots 2, 3);

(d) x2 − 5x− 6 = 0 (roots 6,−1).

2 The longest side of the triangle is a chord of a circumscribed circle and thus it does not exceeds
its diameter: a ≤ 2R. Projection of incircle onto the shortest altitude is contained strictly
inside of the projection of the triangle onto this altitude. So 2r < h. Since all the numbers
are positive we can multiply these inequalities: 2r · a < h · 2R which implies a/h < R/r.

3

(a) Answer: Yes. Let us assign to i-th team a number ai = 0, if prior to the game it already
played even numbers of games and ai = 1 otherwise. Note, that ai changes after each
game in which i-th team participated.

Assume, that all games were “even”, meaning that prior to the game both teams had
the same parity.

Consider the sum A = a1 + a2 + · · · + a15 of the parities of all teams. After each game
played by two teams with the same parity A changes by ±2 ≡ 2 mod 4.

Initially we had a1 = a2 = · · · = a15 = 0, therefore A = 0. In the end we have
a1 = a2 = · · · = a15 = 0 (each team played an even number of games (14)) and again
A = 0.

Since the total number of games 15 · 14/2 = 105 is odd, so in the end of the tournament
A ≡ 2 mod 4.

Contradiction.

(b) Answer: Yes. We will construct an example of a tournament with one “odd” game.
Let us consider a graph, in which vertices represent teams and edges represent games. It
is enough to draw edges in such a way that every time (but one) we connect the vertices
of the same parity. Let us split all the vertices into three sets of five: A1, A2, . . . A5;
B1, . . . , B5; C1, . . . , C5. We proceed in three steps:
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(i) Step 1. Let us connect all vertices in each set in the following order: 1− 2, 3− 4,
2 − 3, 2 − 5, 1 − 5, 1 − 3, 1 − 4, 4 − 5, 2 − 4, 3 − 5. One can check that each time
we connect vertices of the same parity and in the end of this step all vertices have
parity 0.

(ii) Step 2. Now, consider a cycle A1B1C1A2B2C2 . . . A5B5C5. Let us connect vertices
in order A1 − B1, C1 − A2, . . . , A5 − B5 (the same parity 0), B5 − C5 (opposite
parities - the only odd connection), then C5 −A1, B1 −C1, . . . , C4 −A5 ( the same
parity 1). Note, that now all the vertices have parity 0.

(iii) Step 3. Now consider 5 sequences of five connections:

A1 −B1, A2 −B2, . . . , A5 −B5;

A1 −B2, A2 −B3, . . . , A5 −B1;

A1 −B3, A2 −B4, . . . , A5 −B2;

A1 −B4, A2 −B5, . . . , A5 −B3;

A1 −B5, A2−B1, . . . , A5 −B4.

We already made the first sequence. With each sequence the parities of vertices
A1, . . . , B5 change; so after 4 sequences executed parities are restored to 0. Now all
connections Ai −Bj are done.
In the same way we make remaining 20 connections of Bi − Cj and then remaining
20 connections Ci − Aj.

(b)′ Second solution. We construct an example for each n = 4k − 1, applying induction by
k. For k = 1, n = 3 we make connections 1− 2, 2− 3, 3− 1 with only second connection
odd.

Let us assume that the statement has been proven for n = 4k − 1; we will prove it for
n = 4k+3, proceeding from k to k+1. So, we add extra 4 points. Already we have n old
points connected between themselves with one odd connection. Now all these vertices
are even because each of them is connected with n− 1 = 4k − 2 others. Let us split old
points in k − 1 quartets and one triplet. Consider an old quartet Q1, . . . , Q4 and a new
one N1, . . . , N4 and make the following 4 sequences of 4 connections each:

Q1 −N1, Q2 −N2, Q3 −N3, Q4 −N4;

Q1 −N2, Q2 −N3, Q3 −N4, Q4 −N1;

Q1 −N3, Q2 −N4, Q3 −N1, Q4 −N2;

Q1 −N4, Q2 −N1, Q3 −N2, Q4 −N3.

After each sequence the parities of all points in both quartets change and in the end
they are restored. Let us repeat this procedure, connecting points N1, . . . , N4 with all
old points except T1, T2, T3 (last triplet).

Then we make connections T1 − N1, T2 − N2, T3 − N3 (all points but N4 become odd).
Now connect:

N2 −N3, N3 −N4, N4 − T3, N2 −N4, N4 − T2, N1 −N2, N1 −N4, N4 − T1, N1 −N3.

One can check easily that all these connections are even. Each new points is connected
with other points.
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4 Answer: if n is prime, Second Player has a winning strategy; otherwise First Player has.

(i) Let n be a prime number. Let First Player eat a triangle with side k. Leftover is a trapezoid
with sides (k, n − k, n, n − k). Denote a = max(k, n − k) b = min(k, n − k). Note that
a 6= b because gcd(a, b) = gcd(n, n − k) = 1. Second Player eats a triangle with the side
n− k, leaving the parallelogram with sides a and b.

(A) Now, if First Player eats triangle with side less than b, then Second Player repeats
his move symmetrically (with respect to the center of the parallelogram), and wins since
First Player has no move.

(B) If First Player eats triangle with side b, leftover is the trapezoid with sides (a−b, b, a, b),
where gcd(a− b, b) = gcd(a, b) = 1. The game is over when a = b = 1, meaning that the
last triangular chip is left after First Player’s move. Therefore, Second Player wins.

(ii) Let n be a composite number, p any prime divisor of n, n = kp. First Player eats triangle
with side p. Consider two cases:

(A) If Second Player eats triangle with a side, not equal to n − p, then First Player eats
triangle with side 1 and wins.

(B) If Second Player eats a triangle with the side n − p, then leftover is a parallelogram
with sides p and (k − 1)p. First Player eats the triangle with side p. Again, if Second
Player eats triangle with side, not equal to p, then First Player eats triangle with side
1 and wins. So, in the end, after First Player’s move, leftover is a triangle with side p.
We are in the situation (A) now; however, Second Player has the first move, therefore,
he loses.

5 Answer:21

(I) Example: Fig. 1

Fig. 1 Fig. 2
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(II) Let us prove, that 21 is a maximum.

First, note that cutting any square on the border results in the board falling apart. Cutting
any two adjacent squares also results in failure. Let us divide 7 × 7 board without central
square into four rectangles 3 × 4 as on Fig. 2. Let us show, that no more then five squares
can be cut in each rectangle. Assume, that it is possible to cut at least six. Since row of 3× 4
rectangle contains no more than two squares cut, so we have exactly two squares cut in each
row. Consider two cases:

(i) The first line is cut (X- -X). Then in the second row only one square could be cut.

(ii) The first row is cut (X-X-) or (-X-X) then second line is cut (-X-X) or (X-X-) and the
third line is cut like (X-X-) or (-X-X) again:

However, this results in the board falling apart. Contradiction.

(II)′ Second proof that 21 is a maximum. First of all, we cut all 81 squares. Let us prove
that one needs to repair at least 60 squares in order to restore integrity of the board. Really,
all squares are cut, the board splits into 180 pieces (9 triangles along each border and one
diamond at each pair of adjacent squares; there are 8 pairs of adjacent squares in each row
and column of the board; so we get

(
4× 9 + (9 + 9)× 8 = 180

)
of pieces.

Repairing one square we join no more than 4 different pieces, decreasing their total number

by no more than 3. So, to get 1 piece we need to repair at least
⌈179

3

⌉
= 60 squares.

6 Let O be the center of incircle, K and L tangency points with sides AD and BC respectively.

Solution 1. We start from two following statements:

Lemma 1. Points K, E, O and L are colinear.

Proof (see Fig.1 on next page). Note that OK and OL are perpendicular to bases of the
trapezoid and thus are parallel. So, O belongs to KL. One can assume with no loss of the
generality that AD > BC (if AD = BC our trapezoid is a rhombus and ∠AED = 90◦).

Let N be a point of intersection of AB and CD. Let K ′ be a point of tangency of incircle
of 4BCN with side BC. From the property of tangents (drawn from the same point to the
circle) we have

BK + BN = CK + CN

K ′C + BN = p

where p is a half-perimeter of 4BCN . So, BK = CK ′.
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Note that 4BEC ' 4DEA (BC ‖ AD). Then
BE

ED
=

BC

AD
and therefore

BE

ED
=

BK

LD
. This

implies that 4BKE ' 4DLE (∠KBE = ∠LDE and
BE

ED
=

BK

LD
). Then ∠BEK = ∠DEL

which means that points K, E,L are colinear. �
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Lemma 2. Let S be a midpoint of side PQ of 4PQR. If RS = 1
2
PQ then ∠PRS = 90◦. If

RS < 1
2
PQ then ∠PRS > 90◦.

Proof. Consider a circumference with diameter PQ. Then R belongs to this circumference
in the former case and lies inside of it in the latter case. �

Let M be a midpoint of CD (see Fig. 2); then OM is a midline of trapezoid KCDL, and
therefore it is parallel to its bases and is equal to (KC + LD)/2 = (PC + PD)/2 = CD/2
where P is a point of tangency with CD. Then by lemma 2 ∠COD = 90◦ and O belongs to a
circumference with diameter CD and a center M . Since MO ‖ CK, therefore MO ⊥ KL, we
conclude that KL is tangent to this circle at O. Then all points of KL (but O) are outside
of this circumference. Therefore ∠DEC does not exceed 90◦, so AED ≥ 90◦.

Solution 2. Extending AD beyond A (see Fig. 3), we choose point D′ such that AD′ = BC.
Also extending BC beyond B we choose point C ′ such that BC ′ = AD. Then CC ′D′D is a
parallelogram. Select point N on CC ′, such that C ′N = D′A = BC.
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Since AC ′BD is a parallelogram (C ′B = AD, C ′B ‖ AD) then C ′A ‖ BD. Therefore
∠BEC = ∠C ′AC. So we need to prove that ∠C ′AC ≥ 90◦. Let M be a midpoint of CC ′;
then M is a midpoint of NB. Then CC ′ = AD+BC = AB +CD (property of circumscribed
quadrilateral), and CD = AN (because ANC ′D′ is a parallelogram) and AB + AN ≥ 2AM
(triangle inequality). Then ∠C ′AC ≥ 90◦ due to lemma 2.
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