Seniors (Grades 11 and up)

International Mathematics TOURNAMENT OF THE TOWNS: SOLUTIONS

O-Level Paper

Fall 2002.

1 Let j and m be numbers selected by J and M respectively. Note that j|2002; otherwise J would know that m = 2002 - j. Also $j \neq 2002$; otherwise m = 1 (since $m \neq 0$). So, $j \leq 1001$. Further, the same is true for m. In addition, M knows that $j \leq 1001$. Therefore, m = 1001 (otherwise M would know j = 2002 : m).

So, m = 1001 is the only possible solution. One can check that it works.

- 2 Let N be the number of students in the class, M the number of the problems, P the number of passed students, H the number of hard problems. According to definition "a problem is hard" if it has not been solved by at least rN students; where $r = \frac{2}{3}, \frac{3}{4}, \frac{7}{10}$ in (a), (b),(c). Also, according to definition "a student passes" if he solves at least rM problems.
 - a) It is possible. Consider a class consisting of students S_1 , S_2 , S_3 and set of problems P_1, P_2, P_3 . Let S_1 solve P_1 and P_3 , S_2 solve P_2 and P_3 and S_3 solved neither P_1 nor P_2 . Then S_1, S_2 pass and P_1, P_2 are hard problems.
 - **b)** It is impossible. Let us write down the results of the test ("+" or "-") into $N \times M$ table.

Let passed students be on the top and hard problems on the left of the table. Let us estimate K_+ and K_- , the numbers of "+" and "-" in the table. First,

 $K_+ \geq (\text{number of "} + "\text{got by students who passed}) \geq P \times rM \geq r^2 MN$

and

 $K_{-} \ge (\text{number of "} - " \text{ got for hard problems}) \ge H \times rN \ge r^2 MN.$

Then $MN = K_+ + K_- \ge 2r^2 MN$ which is impossible for $r = \frac{3}{4}$.

c) It is impossible. Arguments of (b) do not work here since $2r^2 \leq 1$. Now we denote by K_+ and K_- the numbers of "+" and "-" in the top-left $P \times H$ sub-table. Then

 $K_+ \ge (\text{minimal number of "} + " \text{ for hard problems got by students who passed}) \ge P \times \frac{4}{7}H$

(a student cannot pass if he solves less than $\frac{4}{7}H$ of hard problems even if he solves all the easy problems, the number of which does not exceed $\frac{3}{7}M$). On the other hand,

 $K_{-} \ge (\text{minimal number of "} - " \text{ got by students who passed for hard problems}) \ge H \times \frac{4}{7}P.$

So, $PH = K_+ + K_- \ge \frac{8}{7}PH$ which is impossible.

3 Let us assume that such point B exists (separated from A by each line). Then segment AB intersects all the lines and therefore ray [BA) originated at B has no points of intersection beyond A. Therefore, A belongs to unbounded region.

Now, assume that A belongs to unbounded region. Our region is convex, bounded by two rays and maybe several segments. Note, that these rays are divergent. Therefore, one can draw a ray, originated at A and lying inside of our region. Without any loss of the generality we can assume that this ray is not-parallel to any of the lines; otherwise we can rotate it slightly. Then the opposite ray (originated at A) intersects all the lines and any point B beyond the last point of intersection satisfies the condition.

4 Since function $\cos x$ is a monotone decreasing on $(0, \pi/2)$ we have $(x - y)(\cos x - \cos y) \le 0$ (equality holds only for x = y). Also $(x - z)(\cos z - \cos x) \le 0$ and $(y - z)(\cos y - \cos z) \le 0$. Adding these inequalities we get

$$2(x\cos x + y\cos y + z\cos z) \le (y+z)\cos x + (x+z)\cos y + (y+x)\cos z$$

and therefore

$$3(x\cos x + y\cos y + z\cos z) \le (x + y + z)(\cos z + \cos y + \cos x)$$

which implies our inequality.

5 Let $\{a_k\}$ be our sequence. Note that $1 \le a_{k+1} - a_k \le 9$. Then the segment $[9 \dots 989, 9 \dots 999]$ contains a term of our sequence; $a_k = 9 \dots 99r$. If r is even than a_k is even. If r is odd then a_{k+1} must be odd.