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SOLUTIONS OF TOURNAMENT OF TOWNS

Spring 2001, Level A, Senior (grades 11-OAC)

Problem 1 [3] Find at least one polynomial P (x) of degree 2001 such that
P (x) + P (1 − x) = 1 holds for all real numbers x.

Solution. It is easy to see that polynomial

P (x) = (1 − x)2001 − x2001 +
1
2

satisfies identity P (x) + P (1 − x) = 1.

Problem 2 [5] At the end of the school year it became clear that for any arbitrarily chosen
group of no less than 5 students, 80% of the marks “F” received by this group were given
to no more than 20% of the students in the group. Prove that at least 3/4 of all “F” marks
were given to the same student.

Solution. Let us arrange all the students in the school according to the number of
“F”marks they received. So, F1 ≥ F2 ≥ · · · ≥ Fn where Fj is the number of “F” received
by j-th student, 1 ≤ j ≤ n, Fj ≥ 0 and

∑n
j=1 Fj = F where F is a total number of “F”

marks.
Now let us consider the first five students. According to the condition, one student

(who has to be on top of the list) got at least 80% of “F” marks received by this group
which leaves no more than 20% of “F” marks remaining for the other four students. So,
F2 + F3 + F4 + F5 ≤ 1

4F4 and we have an estimate F2 ≤ 1
4F1. Considering students from

k-th to k+4-th (k+4 ≤ n) we conclude that Fk+1 ≤ 1
4Fk which implies that Fk+1 ≤ 1

4k F1

(k ≤ n− 5) and Fn−3 + Fn−2 + Fn−1 + Fn ≤ 1
4Fn−4.

Now we have

F = F1 + F2 + · · · + Fn−4 + (Fn−3 + · · · + Fn) ≤

F1 +
1
4
F1 +

1
42

F1 + · · · + 1
4n−5

F1 +
1

4n−4
F1 <

∞∑
k=0

1
4k

F1 =
F1

1 − 1
4

=
4
3
F1;

Therefore F1 > 3
4F .

Problem 3 [5] Let AHA, BHB and CHC be the altitudes of triangle �ABC. Prove
that the triangle whose vertices are the intersection points of the altitudes of �AHBHC ,
�BHAHC and �CHAHB is congruent to �HAHBHC .

Solution. Let us notice that HCA1HBH and
HHAC1HB are parallelograms (HHA and HBC1 are
perpendicular to BC; HCA1, HHB and HAC1 are
perpendicular to AC; HHC and HBA1 are perpen-
dicular to AB). Therefore HCA1 = HAC1 and since
they are parallel we conclude that HCHAC1A1 is par-
allelogram, thus HCHA = A1C1. In a similar way we
can prove that HBHA = A1B1 and HCHB = B1C1.
Therefore �HCHAHB

∼= �A1B1C1.



2

Problem 4 [5] There are two matrices A and B of size m×n each filled only by “0”s and
“1”s. It is given that along any row or column its elements do not decrease (from left to
right and from top to bottom). It is also given that the numbers of “1”s in both matrices
are equal and for any k = 1, . . . ,m the sum of the elements in the top k rows of the matrix
A is no less than that of the matrix B. Prove for any l = 1, . . . , n the sum of the elements
in left l columns of the matrix A is no greater than that of the matrix B.

Solution. Let us denote the elements of matrices A and B by aij and bij respectively
where aij and bij are equal to 0 or 1. Notice that if aij = 1 then ai′j′ = 1 for all i′ ≥ i, j′ ≥ j
and the same is true for bij .

Let us assume that for some l

(*) The sum of the elements in left l columns of the matrix A is no greater than that of
the matrix B.

Let us consider the minimal l with this property. Let k be the number of “1”s in l-th
column of matrix A. Notice that k exceeds the number of “1”s in the same column of
matrix B, otherwise we would not have (*). Note that the l-th column and the p-th row
(p = m− k + 1) divide the matrices into four parts defined by relations:
P1 : 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ l;
P2 : 1 ≤ i ≤ p− 1 and l + 1 ≤ j ≤ n;
P3 : p ≤ i ≤ m and 1 ≤ j ≤ l;
P4 : p ≤ i ≤ m and l + 1 ≤ j ≤ m;

Let NA, NB , NAk
, NBk

be the number of “1”s in matrices A, B and their parts.
Now we will compare the number of “1”s in all parts.

In P1 we have NA1 = NB1 = 0.
In P1 ∪ P2 we have NA1 + NA2 ≥ NB1 + NB2 according to the condition of the problem.
In P1 ∪ P3 we have NA1 + NA3 ≥ NB1 + NB3 due to our assumption.
In P4 we have NA4 ≥ NB4 because this part of A consists of “1”s only.

Therefore, NA > NB which contradicts the condition of the problem.

Problem 5 In a chess tournament, every participant played with each other exactly once,
receiving 1 point for a win, 1/2 for a draw and 0 for a loss.
(a) [4] Is it possible that for every player P , the sum of points of the players who were

beaten by P is greater than the sum of points of the players who beat P?
(b) [4] Is it possible that for every player P , the first sum is less than the second one?

Solution. Let εij be result of the game between i-th and j-th players:

εij =




1 if i-th player wins,
−1 j-th player wins,

0 if they have a draw or i = j.

Then (a) asks if it is possible that

n∑
j=1

εijXj > 0 ∀i
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where Xj is a score of j-th player. Multiplying these inequalities by Xi and summing up
for all i we conclude that

n∑
i,j=1

εijXiXj > 0.

This is impossible since the left-hand expression is 0 because εij = −εji for all i, j. Part
(b) is considered in a similar way.

Problem 6 [8] Prove that there exist 2001 convex polyhedra such that any three of them
do not have any common points but any two of them touch each other (i.e., have at least
one common boundary point but no common inner points).

Solution. Let us set N = 2001 and describe construction of N convex polyhedra
satisfying the conditions of the problem.

Let us consider an infinite straight circular cone K
with the vertex at the origin and an axis directed
along OZ. Let C(t) be a circle with the center
O(t) = (0, 0, t) obtained by an intersection of K
and a plane {z = t}. Let us consider a regular
N -gon inscribed in C(1), with vertices Ai. Let Bi

be the middle points of arcs AiAi+1, i = 1, . . . , N .
Let us denote by At

i, B
t
i ∈ C(t) the points of inter-

section of generating lines OAi, OBi with {z = t},
t > 0, 1 ≤ i ≤ N . Now we need a following

Lemma. For any t0 > 0 and any i, 1 ≤ i ≤ N there exists T > t0 such that for

all t ≥ T the parallel translation of C(t0) by the vector
−→

Bt0
i Bt

i lies inside the segment
Si(t) = At

iB
t
iA

t
i+1 (bounded by an arc and a straight segment).

The proof is based on the fact that the distance from Bt
i to At

iA
t
i+1 is proportional to t.

Now we construct the polyhedra satisfying the conditions of the problem by induction.
Let us start with any t1 > 0. We may choose any convex polygon M1 inside a circle C(t1)
and form an infinite “up” prism P1 with the base M1 and lateral edges parallel to OB1.

Now suppose that we already defined numbers 0 < t1 < · · · < tn−1, constructed convex
polygons M1, . . . ,Mn−1 contained in circles C(t1), . . . , C(tn−1) and formed infinite prims
P1, . . . , Pn−1 with bases M1, . . . ,Mn−1 and lateral edges parallel to OB1, . . . , OBn−1 (n <
N), satisfying the conditions of the problem.

According to the lemma there exists tn > tn−1 such that Mn−1(tn) lies inside the
segment Sn−1(tn) (and all the previous polygons would remain in their segments).

Now we need to define Mn. It has to touch each of the previous prisms. In order to
find the points of tangency we make a parallel translation of every segment Atn

i Atn
i+1 until

it touches the polygon Mi(tn) (1 ≤ i ≤ n− 1). Now connecting points of tangency we get
a convex polygon Mn(tn) (we choose any point of tangency if there are many; for n = 2, 3
we add extra vertices). For future arguments we introduce translated lines  i(tn); these
lines separate Mi and Mn.
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Now we form an infinite “up” prism Pn with base Mn(tn) and lateral edges parallel to
OBn. Construction ends when we use the last segment; at this moment we cut the prisms
by a plane {z = T > tN}.

Now we need to check that these prisms satisfy conditions of the problem. It is enough
to prove that Pn intersects Pi (i < n) only in the plane {z = tn}. Assume that this is not
true. Then there exists a common point R ∈ {z = t} of these prisms, t > tn.

Let us draw straight lines parallel to OBn and OBi through R. These lines intersect
plane {z = tn} at points Rtn

n and Rtn
i respectively. Notice that Rtn

n ∈ Mn(tn) and Rtn
i ∈

Mi(tn). Also notice that vectors
−→

Rtn
i Rtn

n and
−→

Btn
i Btn

n have opposite directions and are not
equal to 0.

This cannot be true since Rtn
i and Btn

i lie on one side of  i(tn) and Rtn
n and Btn

n lie on
the other side. This contradiction completes the proof.

Problem 7 Several boxes are arranged in a circle. Each box may be empty or may
contain one or several chips. A move consists of taking all the chips from some box and
distributing them one by one into subsequent boxes clockwise starting from the next box
in the clockwise direction.
(a) [4] Suppose that on each move (except for the first one) one must take the chips from

the box where the last chip was placed on the previous move. Prove that after several
moves the initial distribution of the chips among the boxes will reappear.

(b) [4] Now, suppose that in each move one can take the chips from any box. Is it true
that for every initial distribution of the chips you can get any possible distribution?

Solution. (a) Let the state of the system described in the problem be defined by the
distribution of chips between boxes and the number of a box from which we move. Notice
that the sequence of states is uniquely defined going forward. Moreover, it is uniquely
defined going backwards. Really, if we start with the box where we put the last chip, and
go in the counter-clockwise direction, collecting one chip from each box until we get to an
empty box, then put all the collected chips in this box, we restore the previous state.

Let us notice that the number of different states is finite. Therefore, we can conclude
that the sequence of states is cyclic. Therefore the initial state will repeat itself.

(b) Now the sequence of states is not uniquely defined. Let us mark some box (M). Let
I be a state when all chips are collected in M .

Lemma 1. State I can be obtained from any state A.

Proof. Let us consider a box (M−1) next to a marked one (M) in a counter-clockwise
direction. Starting with that box we would increase the number of chips in M and empty
box M−1. Now we do the same with M−2. When it is empty we will return to M−1 again.
By doing so, each time we increase the number of chips in M and the number of empty
boxes until all chips are collected in M . �

Lemma 2. Let A and B be two states, such that B can be obtained from A. Then A
can be obtained from B.

Proof. Let us consider a case when we get B from A in one step. Starting with the
box where the last chip was put and continuing according to part (a) rules, we will come
eventually to A. The general case can be considered by induction.

Now it is easy to get the final result. Really, from any two states A and B we can get
the state I. Therefore, we can get B from I and thus from A. �


