International Mathematics TOURNAMENT OF THE TOWNS

Senior A-Level Paper

Fall 2001.

- 1. On the plane is a triangle with red vertices and a triangle with blue vertices. O is a point inside both triangles such that the distance from O to any red vertex is less than the distance from O to any blue vertex. Can the three red vertices and the three blue vertices all lie on the same circle?
- 2. Do there exist positive integers $a_1 < a_2 < \cdots < a_{100}$ such that for $2 \le k \le 100$, the least common multiple of a_{k-1} and a_k is greater than the least common multiple of a_k and a_{k+1} ?
- 3. An 8×8 array consists of the numbers 1, 2, ..., 64. Consecutive numbers are adjacent along a row or a column. What is the minimum value of the sum of the numbers along a diagonal?
- 4. Let F_1 be an arbitrary convex quadrilateral. For $k \geq 2$, F_k is obtained by cutting F_{k-1} into two pieces along one of its diagonals, flipping one piece over and then glueing them back together along the same diagonal. What is the maximum number of non-congruent quadrilaterals in the sequence $\{F_k\}$?
- 5. Let a and d be positive integers. For any positive integer n, the number a + nd contains a block of consecutive digits which constitute the number n. Prove that d is a power of 10.
- 6. In a row are 23 boxes such that for $1 \le k \le 23$, there is a box containing exactly k balls. In one move, we can double the number of balls in any box by taking balls from another box which has more. Is it always possible to end up with exactly k balls in the k-th box for $1 \le k \le 23$?
- 7. The vertices of a triangle have coordinates (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . For any integers h and k, not both 0, the triangle whose vertices have coordinates $(x_1 + h, y_1 + k)$, $(x_2 + h, y_1 + k)$ and $(x_3 + h, y_3 + k)$ has no common interior points with the original triangle.
 - (a) Is it possible for the area of this triangle to be greater than $\frac{1}{2}$?
 - (b) What is the maximum area of this triangle?

Note: The problems are worth 4, 5, 6, 6, 7, 7 and 3+6 points respectively.