
A study in derived algebraic geometry

Volume II: Deformations, Lie theory and formal

geometry

Dennis Gaitsgory

Nick Rozenblyum

2010 Mathematics Subject Classification. Primary

Contents

Preface xi

Acknowledgements xxvii

Introduction xxix

Part I. Inf-schemes 1

Introduction 3
1. Why inf-schemes? 3
2. Deformation theory 4
3. Inf-schemes 5
4. Ind-coherent sheaves on inf-schemes 7
5. Crystals and D-modules 8

Chapter 1. Deformation theory 11
Introduction 11
1. Push-outs of schemes 18
2. (pro)-cotangent and tangent spaces 23
3. Properties of (pro)-cotangent spaces 30
4. The (pro)-cotangent complex 35
5. Digression: square-zero extensions 42
6. Infinitesimal cohesiveness 50
7. Deformation theory 53
8. Consequences of admitting deformation theory 59
9. A criterion for being locally almost of finite type 63
10. Square-zero extensions of prestacks 69

Chapter 2. Ind-schemes and inf-schemes 75
Introduction 75
1. Ind-schemes 79
2. Proofs of results concerning ind-schemes 89
3. (Ind)-inf-schemes 101
4. (Ind)-inf-schemes and nil-closed embeddings 104

Chapter 3. Ind-coherent sheaves on ind-inf-schemes 115
Introduction 115
1. Ind-coherent sheaves on ind-schemes 120
2. Proper base change for ind-schemes 126
3. IndCoh on (ind)-inf-schemes 131
4. The direct image functor for ind-inf-schemes 136

vii

viii CONTENTS

5. Extending the formalism of correspondences to inf-schemes 144
6. Self-duality and multiplicative structure of IndCoh on ind-inf-schemes 151

Chapter 4. An appliction: crystals 155
Introduction 155
1. Crystals on prestacks and inf-schemes 160
2. Crystals as a functor out of the category of correspondences 166
3. Inducing crystals 170
4. Comparison with the classical theory of D-modules 174

Part II. Formal geometry 187

Introduction 189
1. What is formal geometry? 189
2. Lie algebras 191
3. Formal groups vs. Lie algebras 192
4. Lie algebroids 194
5. Infinitesimal differential geometry 195
6. A simplifying remark 197

Chapter 5. Formal moduli 199
Introduction 199
1. Formal moduli problems 202
2. Groupoids 209

Chapter 6. Lie algebras and co-commutative co-algebras 219
Introduction 219
1. Algebras over operads 222
2. Koszul duality 235
3. Associative algebras 245
4. Lie algebras and co-commutative co-algebras 250
5. The universal enveloping algebra 256
6. The universal envelope via loops 261
7. Modules 264
A. Proof of Theorem 2.9.4 273
B. Proof of the PBW theorem 277
C. Commutative co-algebras and bialgebras 279

Chapter 7. Formal groups and Lie algebras 283
Introduction 283
1. Formal moduli problems and co-algebras 288
2. Inf-affineness 297
3. From formal groups to Lie algebras 301
4. Proof of Theorem 3.1.4 312
5. Modules over formal groups and Lie algebras 316
6. Actions of formal groups on prestacks 320

Chapter 8. Lie algebroids 325
Introduction 325
1. The inertia group 329

CONTENTS ix

2. Lie algebroids: definition and basic pieces of structure 332
3. Examples of Lie algebroids 336
4. Modules over Lie algebroids and the universal enveloping algebra 340
5. Square-zero extensions and Lie algebroids 343
6. IndCoh of a square-zero extension 352
7. Global sections of a Lie algebroid 358
8. Lie algebroids as modules over a monad 362
9. Relation to classical Lie algebroids 368
A. An application: ind-coherent sheaves on push-outs 374

Chapter 9. Infinitesimal differential geometry 379
Introduction 379
1. Filtrations and the monoid A1 385
2. Deformation to the normal bundle 391
3. The canonical filtration on a Lie algebroid 398
4. The case of groups 402
5. Infinitesimal neighborhoods 405
6. Filtration on the universal enveloping algebra of a Lie algebroid 412
7. The case of a regular embedding 416
A. Weil restriction of scalars 423

Bibliography 427

Index of Notations 429

Index 433

Preface

Kto �? Ne kamenwik pr�moĭ,
Ne krovel~wik, ne korabel~wik, –
Dvuruxnik �, s dvoĭnoĭ duxoĭ,
� noqi drug, � dn� zastrel~wik.
O. Mandel~xtam. Grifel~na� oda.

Who am I? Not a straightforward mason,

Not a roofer, not a shipbuilder, –

I am a double agent, with a duplicitous soul,

I am a friend of the night, a skirmisher of the day.

O. Mandelshtam. The Graphite Ode.

1. What is the object of study in this book?

The main unifying theme of the two volumes of this book is the notion of ind-
coherent sheaf, or rather, categories of such on various geometric objects. In this
section we will try to explain what ind-coherent sheaves are and why we need this
notion.

1.1. Who are we? Let us start with a disclosure: this book is not really about
algebraic geometry.

Or, rather, in writing this book, its authors do not act as real algebraic geome-
ters. This is because the latter are ultimately interested in geometric objects that
are constrained/enriched by the algebraicity requirement.

We, however, use algebraic geometry as a tool: this book is written with a view
toward applications to representation theory.

It just so happens that algebraic geometry is a very (perhaps, even the most)
convenient way to formulate representation-theoretic problems of categorical na-
ture. This is not surprising, since, after all, algebraic groups are themselves objects
of algebraic geometry.

The most basic example of how one embeds representation theory into algebraic
geometry is this: take the category Rep(G) of algebraic representations of a linear
algebraic group G. Algebraic geometry allows us to define/interpret Rep(G) as the
category of quasi-coherent sheaves on the classifying stack BG.

The advantage of this point of view is that many natural constructions asso-
ciated with the category of representations are already contained in the package
of ‘quasi-coherent sheaves on stacks’. For example, the functors of restriction and

xi

xii PREFACE

coinduction1 along a group homomorphism G′
→ G are interpreted as the functors

of inverse and direct image along the map of stacks

BG′
→ BG.

But what is the advantage of this point of view? Why not stick to the explicit
constructions of all the required functors within representation theory?

The reason is that ‘explicit constructions’ involve ‘explicit formulas’, and once
we move to the world of higher categories (which we inevitably will, in order to
meet the needs of modern representation theory), we will find ourselves in trouble:
constructions in higher category theory are intolerant of explicit formulas (for an
example of a construction that uses formulas see point (III) in Sect. 1.5 below).
Rather, when dealing with higher categories, there is a fairly limited package of
constructions that we are allowed to perform (see Volume I, Chapter 1, Sects. 1
and 2 where some of these constructions are listed), and algebraic geometry seems
to contain a large chunk (if not all) of this package.

1.2. A stab in the back. Jumping ahead slightly, suppose for example that we
want to interpret algebro-geometrically the category g-mod of modules over a Lie
algebra g.

The first question is: why would one want to do that? Namely, take the
universal enveloping algebra U(g) and interpret g-mod as modules over U(g). Why
should one mess with algebraic geometry if all we want is the category of modules
over an associative algebra?

But let us say that we have already accepted the fact that we want to interpret
Rep(G) as QCoh(BG). If we now want to consider restriction functor

(1.1) Rep(G)→ g-mod,

(where g is the Lie algebra of G), we will need to give an algebro-geometric inter-
pretation of g-mod as well.

If g is a usual (=classical) Lie algebra, one can consider the associated formal
group, denoted in the book exp(g), and one can show (see Chapter 7, Sect. 5) that
the category g-mod is canonically equivalent to QCoh(B(exp(g))), the category of
quasi-coherent sheaves on the classifying stack2 of exp(g). With this interpretation
of g-mod, the functor (1.1) is simply the pullback functor along the map

B(exp(g))→ BG,

induced by the (obvious) map exp(g)→ G.

Let us now be given a homomorphism of Lie algebras α ∶ g′ → g. The functor
of restriction g-mod → g′-mod still corresponds to the pullback functor along the
corresponding morphism

(1.2) B(exp(g′))
fα
Ð→ B(exp(g)).

1What we call ‘coinduction’ is the functor right adjoint to restriction, i.e., it is the usual
representation-theoretic operation.

2One can (reasonably) get somewhat uneasy from the suggestion to consider the category of
quasi-coherent sheaves on the classifying stack of a formal group, but, in fact, this is a legitimate
operation.

1. WHAT IS THE OBJECT OF STUDY IN THIS BOOK? xiii

Note, however, that when we talk about representations of Lie algebras, the natural
functor in the opposite direction is induction, i.e., the left adjoint to restriction.
And being a left adjoint, it cannot correspond to the direct image along (1.2)
(whatever the functor of direct image is, it is the right adjoint of pullback).

This inconsistency leads to the appearance of ind-coherent sheaves.

1.3. The birth of IndCoh.

What happens is that, although we can interpret g-mod as QCoh(B(exp(g))),
a more natural interpretation is as IndCoh(B(exp(g))). The symbol ‘IndCoh’ will
of course be explained in the sequel. It just so happens that for a classical Lie
algebra, the categories QCoh(B(exp(g))) and IndCoh(B(exp(g))) are equivalent
(as QCoh(BG) is equivalent to IndCoh(BG)).

Now, the functor of restriction along the homomorphism α will be given by the
functor

(fα)
!
∶ IndCoh(B(exp(g′)))→ IndCoh(B(exp(g)));

this is the !-pullback functor, which is the raison d’être for the theory of IndCoh.

However, the functor of induction g′-mod→ g-mod will be the functor of IndCoh
direct image

(1.3) (fα)
IndCoh
∗ ∶ IndCoh(B(exp(g′)))→ IndCoh(B(exp(g))),

which is the left adjoint of (fα)
!. This adjunction is due to the fact that the

morphism fα is, in an appropriate sense, proper.

Now, even though, as was mentioned above, for a usual Lie algebra g, the
categories

QCoh(B(exp(g))) and IndCoh(B(exp(g)))

are equivalent, the functor (fα)
IndCoh
∗ of (1.3) is as different as can be from the

functor
(fα)∗ ∶ QCoh(B(exp(g′)))→ QCoh(B(exp(g)))

(the latter is quite ill-behaved).

For an analytically minded reader let us also offer the following (albeit some-
what loose) analogy: QCoh(−) behaves more like functions on a space, while
IndCoh(−) behaves more like measures on the same space.

1.4. What can we do with ind-coherent sheaves? As we saw in the example
of Lie algebras, the kind of geometric objects on which we will want to consider
IndCoh (e.g., B(exp(g))) are quite a bit more general than the usual objects on
which we consider quasi-coherent sheaves, the latter being schemes (or algebraic
stacks).

A natural class of algebro-geometric objects for which IndCoh is defined is that
of inf-schemes, introduced and studied in Volume II, Part I of the book. This
class includes all schemes, but also formal schemes, as well as classifying spaces of
formal groups, etc. In addition, if X is a scheme, its de Rham prestack3 XdR is an
inf-scheme, and ind-coherent sheaves on XdR will be the same as crystals (a.k.a.
D-modules) on X.

3The de Rham prestack of a given scheme X is obtained by ‘modding’ out X by the groupoid
of its infinitesimal symmetries, see Chapter 4, Sect. 1.1.1 for a precise definition.

xiv PREFACE

Thus, for any inf-scheme X we have a well-defined category IndCoh(X). For
any map of inf-schemes f ∶ X ′

→ X we have functors

f IndCoh
∗ ∶ IndCoh(X ′

)→ IndCoh(X)

and
f !
∶ IndCoh(X)→ IndCoh(X ′

).

Moreover, if f is proper4, then the functors (f IndCoh
∗ , f !

) form an adjoint pair.

Why should we be happy to have this? The reason is that this is exactly the
kind of operations one needs in geometric representation theory.

1.5. Some examples of what we can do.

(I) Take X ′ to be a scheme X and X =XdR, with f being the canonical projection
X →XdR. Then the adjoint pair

f IndCoh
∗ ∶ IndCoh(X)⇄ IndCoh(XdR) ∶ f !

identifies with the pair

indD-mod ∶ IndCoh(X)⇄ D-mod(X) ∶ indD-mod,

corresponding to forgetting and inducing the (right) D-module structure (as we
shall see shortly in Sect. 2.3, for a scheme X, the category IndCoh(X) is only
slightly different from the usual category of quasi-coherent sheaves QCoh(X)).

(II) Suppose we have a morphism of schemes g ∶ Y →X and set

YdR
f ∶=gdR
Ð→ XdR.

The corresponding functors

f IndCoh
∗ ∶ IndCoh(YdR)→ IndCoh(XdR) and f !

∶ IndCoh(XdR)→ IndCoh(YdR)

identify with the functors

g∗,Dmod ∶ Dmod(Y)→ Dmod(X) and g!
Dmod ∶ Dmod(X)→ Dmod(Y)

of D-module (a.k.a. de Rham) push-forward and pullback, respectively.

Note that while the operation of pullback of (right) D-modules corresponds to
!-pullback on the underlying O-module, the operation of D-module push-forward is
less straightforward as it involves taking fiber-wise de Rham cohomology. So, the
operation of the IndCoh direct image does something quite non-trivial in this case.

(III) Suppose we have a Lie algebra g that acts (by vector fields) on a scheme X.
In this case we can create a diagram

B(exp(g))
f1
←Ð BX(exp(g))

f2
Ð→XdR,

where BX(exp(g)) is an inf-scheme, which is the quotient of X by the action of g.

Then the composite functor

(f2)
IndCoh
∗ ○ (f1)

!
∶ IndCoh(B(exp(g)))→ IndCoh(XdR)

identifies with the localization functor

g-mod→ Dmod(X).

4Properness means the following: to every inf-scheme there corresponds its underlying re-

duced scheme, and a map between inf-schemes is proper if and only if the map of the underlying
reduced schemes is proper in the usual sense.

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xv

This third example should be a particularly convincing one: the localization
functor, which is usually defined by an explicit formula

M ↦DX ⊗

U(g)
M,

is given here by the general formalism.

2. How do we do we construct the theory of IndCoh?

Whatever inf-schemes are, for an individual inf-scheme X , the category IndCoh(X)

is bootstrapped from the corresponding categories for schemes by the following pro-
cedure:

(2.1) IndCoh(X) = lim
Z→X

IndCoh(Z).

Some explanations are in order.

2.1. What do we mean by limit?

(a) In formula (2.1), the symbol ‘lim’ appears. This is the limit of categories, but not
quite. If we were to literally take the limit in the category of categories, we would
obtain utter nonsense. This is a familiar phenomenon: the (literally understood)
limit of, say, triangulated categories is not well-behaved. A well-known example of
this is that the derived category of sheaves on a space cannot be recovered from the
corresponding categories on an open cover. However, this can be remedied if instead
of the triangulated categories we consider their higher categorical enhancements,
i.e., the corresponding ∞-categories.

So, what we actually mean by ‘limit’, is the limit taken in the ∞-category of
∞-categories. That is, in the preceding discussion, all our IndCoh(−) are actually
∞-categories. In our case, they have a bit more structure: they are k-linear over
a fixed ground field k; we call them DG categories, and denote the ∞-category of
such by DGCat.

Thus, ∞-categories inevitably appear in this book.

(b) The indexing (∞)-category appearing in the expression (2.1) is the (∞)-category
opposite to that of schemes Z equipped with a map Z → X to our inf-scheme X .
The transition functors are given by

(Z ′ f
→ Z) ∈ Sch/X ↝ IndCoh(Z)

f !

Ð→ IndCoh(Z ′
).

So, in order for the expression in (2.1) to make sense we need to make the
assignment

(2.2) Z ↝ IndCoh(Z), (Z ′ f
→ Z)↝ (IndCoh(Z)

f !

Ð→ IndCoh(Z ′
))

into a functor of ∞-categories

(2.3) IndCoh!
Sch ∶ (Sch)op

→ DGCat .

To that end, before we proceed any further, we need to explain what the DG
category IndCoh(Z) is for a scheme Z.

For a scheme Z, the category IndCoh(Z) will be almost the same as QCoh(Z).
The former is obtained from the latter by a renormalization procedure, whose
nature we shall now explain.

xvi PREFACE

2.2. Why renormalize? Keeping in mind the examples of Rep(G) and g-mod,
it is natural to expect that the assignment (2.2) (for schemes, and then also for
inf-schemes) should have the following properties:

(i) For every scheme Z, the DG category IndCoh(Z) should contain infinite direct
sums;

(ii) For a map Z ′ f
→ Z, the functor IndCoh(Z)

f !

Ð→ IndCoh(Z ′
) should preserve

infinite direct sums.

This means that the functor (2.3) takes values in the subcategory of DGCat,
where we allow as objects only DG categories satisfying (i)5 and as 1-morphisms
only functors that satisfy (ii)6.

Let us first try to make this work with the usual QCoh. We refer the reader to
Volume I, Chapter 3, where the DG category QCoh(X) is introduced for an arbi-
trary prestack, and in particular a scheme. However, for a scheme Z, whatever the
DG category QCoh(Z) is, its homotopy category (which is a triangulated category)
is the usual (unbounded) derived category of quasi-coherent sheaves on Z.

Suppose we have a map of schemes Z ′ f
→ Z. The construction of the !-pullback

functor
f !
∶ QCoh(Z)→ QCoh(Z ′

)

is quite complicated, except when f is proper. In the latter case, f !, which from
now on we will denote by f !,QCoh, is defined to be the right adjoint of

f∗ ∶ QCoh(Z ′
)→ QCoh(Z).

The only problem is that the above functor f !,QCoh does not preserve infinite
direct sums. The simplest example of a morphism for which this happens is

f ∶ Spec(k)→ Spec(k[t]/t2)

(or the embedding of a singular point into any scheme).

The reason for the failure to preserve infinite direct sums is this: the left adjoint
of f !,QCoh, i.e., f∗, does not preserve compactness. Indeed, f∗ does not necessarily
send perfect complexes on Z ′ to perfect complexes on Z, unless f is of finite Tor-
dimension7.

So, our attempt with QCoh fails (ii) above.

2.3. Ind-coherent sheaves on a scheme. The nature of the renormalization
procedure that produces IndCoh(Z) out of QCoh(Z) is to force (ii) from Sect. 2.2
‘by hand’.

As we just saw, the problem with f !,QCoh was that its left adjoint f∗ did not
send the corresponding subcategories of perfect complexes to one another. However,
f∗ sends the subcategory

Coh(Z ′
) ⊂ QCoh(Z ′

)

5Such DG categories are called cocomplete.
6Such functors are called continuous.
7We remark that a similar phenomenon, where instead of the category QCoh(Spec(k[t]/t2)) =

k[t]/t2-mod we have the category of representations of a finite group, leads to the notion of
Tate cohomology: the trivial representation on Z is not a compact object in the category of

representations.

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xvii

to
Coh(Z) ⊂ QCoh(Z),

where Coh(−) denotes the subcategory of bounded complexes, whose cohomology
sheaves are coherent (as opposed to quasi-coherent).

The category IndCoh(Z) is defined as the ind-completion of Coh(Z) (see Vol-
ume I, Chapter 1, Sect. 7.2 for what this means). The functor f∗ gives rise to a
functor Coh(Z ′

)→ Coh(Z), and ind-extending we obtain a functor

f IndCoh
∗ ∶ IndCoh(Z ′

)→ IndCoh(Z).

Its right adjoint, denoted f !
∶ IndCoh(Z) → IndCoh(Z ′

) satisfies (ii) from
Sect. 2.2.

Are we done? Far from it. First, we need to define the functor

f IndCoh
∗ ∶ IndCoh(Z ′

)→ IndCoh(Z)

for a morphism f that is not necessarily proper. This will not be difficult, and will
be done by appealing to t-structures, see Sect. 2.4 below.

What is much more serious is to define f ! for any f . More than that, we need
f ! not just for an individual f , but we need the data of (2.2) to be a functor of
∞-categories as in (2.3). Roughly a third of the work in this book goes into the
construction of the functor (2.3); we will comment on the nature of this work in
Sect. 2.5 and then in Sect. 3 below.

2.4. In what sense is IndCoh a ‘renormalization’ of QCoh? The tautological
embedding Coh(Z)↪ QCoh(Z) induces, by ind-extension, a functor

ΨZ ∶ IndCoh(Z)→ QCoh(Z).

The usual t-structure on the DG category Coh(Z) induces one on IndCoh(Z).
The key feature of the functor ΨZ is that it is t-exact. Moreover, for every fixed n,
the resulting functor

IndCoh(Z)
≥−n

→ QCoh(Z)
≥−n

is an equivalence8. The reason for this is that any coherent complex can be approx-
imated by a perfect one up to something in Coh(Z)

<−n for any given n.

In other words, the difference between IndCoh(Z) and QCoh(Z) occurs ‘some-
where at −∞’. So, this difference can only become tangible in the finer questions
of homological algebra (such as convergence of spectral sequences).

However, we do need to address such questions adequately if we want to have a
functioning theory, and for the kind of applications we have in mind (see Sect. 1.5
above) this necessitates working with IndCoh rather than QCoh.

As an illustration of how the theory of IndCoh takes something very familiar
and unravels it to something non-trivial, consider the IndCoh direct image functor.

In the case of schemes, for a morphism f ∶ Z ′
→ Z, the functor

f IndCoh
∗ ∶ IndCoh(Z ′

)→ IndCoh(Z)

does ‘little new’ as compared to the usual

f∗ ∶ QCoh(Z ′
)→ QCoh(Z).

8But the functor ΨZ is an equivalence on all of IndCoh(Z) if and only if Z is smooth.

xviii PREFACE

Namely, f IndCoh
∗ is the unique functor that preserves infinite direct sums and

makes the diagram

IndCoh(Z ′
)
≥−n ΨZ′

ÐÐÐÐ→
∼

QCoh(Z ′
)
≥−n

f IndCoh
∗

×
×
×
Ö

×
×
×
Ö

f∗

IndCoh(Z)
≥−n ΨZ

ÐÐÐÐ→
∼

QCoh(Z)
≥−n

commute for every n.

However, as was already mentioned, once we extend the formalism of IndCoh
direct image to inf-schemes, we will in particular obtain the de Rham direct image
functor. So, it is in the world of inf-schemes that IndCoh shows its full strength.

2.5. Construction of the !-pullback functor. As has been mentioned already,
a major component of work in this book is the construction of the functor

IndCoh!
Sch ∶ (Sch)op

→ DGCat

of (2.3).

We already know what IndCoh(Z) is for an individual scheme. We now need
to extend it to morphisms.

For a morphism f ∶ Z ′
→ Z, we can factor it as

(2.4) Z ′ f1
→ Z ′ f2

→ Z,

where f1 is an open embedding and f2 is proper. We then define

f !
∶ IndCoh(Z)→ IndCoh(Z ′

)

to be

f !
1 ○ f

!
2,

where

(i) f !
2 is the right adjoint of (f2)

IndCoh
∗ ;

(ii) f !
1 is the left adjoint of (f1)

IndCoh
∗ .

Of course, in order to have f ! as a well-defined functor, we need to show that
its definition is independent of the factorization of f as in (2.4). Then we will have
to show that the definition is compatible with compositions of morphisms. But this
is only the tip of the iceberg.

Since we want to have a functor between ∞-categories, we need to supply the
assignment

f ↝ f !

with a homotopy-coherent system of compatibilities for n-fold compositions of mor-
phisms, a task which appears infeasible to do ‘by hand’.

What we do instead is we prove an existence and uniqueness theorem... not
for (2.3), but rather for a more ambitious piece of structure. We refer the reader
to Volume I, Chapter 5, Proposition 2.1.4 for the precise formulation. Here we will
only say that, in addition to (2.3), this structure contains the data of a functor

(2.5) IndCoh ∶ Sch→ DGCat,

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xix

Z ↝ IndCoh(Z), (Z ′ f
→ Z)↝ (IndCoh(Z ′

)

f IndCoh
∗

Ð→ IndCoh(Z)),

as well as compatibility between (2.3) and (2.5).

The latter means that whenever we have a Cartesian square

(2.6)

Z ′
1

g′

ÐÐÐÐ→ Z ′

f1

×
×
×
Ö

×
×
×
Ö

f

Z1
g

ÐÐÐÐ→ Z

there is a canonical isomorphism of functors, called base change:

(2.7) (f1)
IndCoh
∗ ○ (g′)!

≃ g!
○ f IndCoh

∗ .

2.6. Enter DAG. The appearance of the Cartesian square (2.6) heralds another
piece of ‘bad news’. Namely, Z ′

1 must be the fiber product

Z1 ×
Z
Z ′.

But what category should we take this fiber product in? If we look at the
example

pt ×
A1

pt ÐÐÐÐ→ pt

×
×
×
Ö

×
×
×
Ö

pt ÐÐÐÐ→ A1,

(here pt = Spec(k), A1
= Spec(k[t])), we will see that the fiber product pt ×

A1
pt

cannot be taken to be the point-scheme, i.e., it cannot be the fiber product in the
category of usual (=classical) schemes. Rather, we need to take

pt ×
A1

pt = Spec(k ⊗

k[t]
k),

where the tensor product is understood in the derived sense, i.e.,

k ⊗

k[t]
k = k[ε], deg(ε) = −1.

This is to say that in building the theory of IndCoh, we cannot stay with
classical schemes, but rather need to enlarge our world to that of derived algebraic
geometry.

So, unless the reader has already guessed this, in all the previous discussion,
the word ‘scheme’ had to be understood as ‘derived scheme’9 (although in the main
body of the book we say just ‘scheme’, because everything is derived).

However, this is not really ‘bad news’. Since we are already forced to work
with ∞-categories, passing from classical algebraic geometry to DAG does not add
a new level of complexity. But it does add a lot of new techniques, for example in
anything that has to do with deformation theory (see Chapter 1).

Moreover, many objects that appear in geometric representation theory nat-
urally belong to DAG (e.g., Springer fibers, moduli of local systems on a curve,
moduli of vector bundles on a surface). That is, these objects are not classical, i.e.,

9Technically, for whatever has to do with IndCoh, we need to add the adjective ‘laft’=‘locally
almost of finite type’, see Volume I, Chapter 2, Sect. 3.5 for what this means.

xx PREFACE

we cannot ignore their derived structure if we want to study their scheme-theoretic
(as opposed to topological) properties. So, we would have wanted to do DAG in
any case.

Here are two particular examples:

(I) Consider the category of D-modules (resp., perverse) sheaves on the double
quotient

I/G((t))/I,

where G is a connected reductive group, G((t)) is the corresponding loop group
(considered as an ind-scheme) and I ⊂ G((t)) is the Iwahori subgroup. Then
Bezrukavnikov’s theory (see [Bez]) identifies this category with the category of
ad-equivariant ind-coherent (resp., coherent) sheaves on the Steinberg scheme (for
the Langlands dual group). But what do we mean by the Steinberg scheme? By
definition, this is the fiber product

(2.8) Ñ ×
g
Ñ ,

where Ñ is the Springer resolution of the nilpotent cone. However, in order for this
equivalence to hold, the fiber product in (2.8) needs be understood in the derived
sense.

(II) Let X be a smooth and complete curve. Let Pic(X) be the Picard stack of X,
i.e., the stack parameterizing line bundles onX. Let LocSys(X) be the stack param-
eterizing 1-dimensional local systems on X. The Fourier-Mukäı-Laumon transform
defines an equivalence

Dmod(Pic(X)) ≃ QCoh(LocSys(X)).

However, in order for this equivalence to hold, we need to understand LocSys(X)

as a derived stack.

2.7. Back to inf-schemes. The above was a somewhat lengthy detour into the
constructions of the theory of IndCoh on schemes. Now, if X is an inf-scheme, the
category IndCoh(X) is defined by the formula (2.1).

Thus, informally, an object F ∈ IndCoh(X) is a family of assignments

(Z
x
→ X)↝ FZ,x ∈ IndCoh(Z)

(here Z is a scheme) plus

(Z ′ f
→ Z) ∈ Sch/X ↝ f !

(FZ,x) ≃ FZ′,x′ ,

along with a homotopy-coherent compatibility data for compositions of morphisms.

For a map g ∶ X ′
→ X , the functor

g!
∶ IndCoh(X)→ IndCoh(X ′

)

is essentially built into the construction. Recall, however, that our goal is to also
have the functor

gIndCoh
∗ ∶ IndCoh(X ′

)→ IndCoh(X).

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxi

The construction of the latter requires some work (which occupies most of
Volume II, Chapter 3). What we show is that there exists a unique system of such
functors such that for every commutative (but not necessarily Cartesian) diagram

Z ′ i′

ÐÐÐÐ→ X
′

f
×
×
×
Ö

×
×
×
Ö

g

Z
i

ÐÐÐÐ→ X

with Z,Z ′ being schemes and the morphisms i, i′ proper, we have an isomorphism

gIndCoh
∗ ○ (i′)IndCoh

∗ ≃ iIndCoh
∗ ○ f IndCoh,

where iIndCoh
∗ (resp., (i′)IndCoh

∗) is the left adjoint of i! (resp., (i′)!).

Amazingly, this procedure contains the de Rham push-forward functor as a
particular case.

3. What is actually done in this book?

This book consists of two volumes. The first Volume consists of three Parts and
an Appendix and the second Volume consists of two Parts. Each Part consists of
several Chapters. The Chapters are designed so that they can be read independently
from one another (in a sense, each Chapter is structured as a separate paper with
its own introduction that explains what this particular chapter does).

Below we will describe the contents of the different Parts and Chapters from
several different perspectives: (a) goals and role in the overall project; (b) practical
implications; (c) nature of work; (d) logical dependence.

3.1. The contents of the different parts.

Volume I, Part I is called ‘preliminaries’, and it is really preliminaries.

Volume I, Part II builds the theory of IndCoh on schemes.

Volume I, Part III develops the formalism of categories of correspondences; it is
used as a ‘black box’ in the key constructions in Volume I, Part II and Volume II,
Part I: this is our tool of bootstrapping the theory of IndCoh out of a much smaller
amount of data.

Volume I, Appendix provides a sketch of the theory of (∞,2)-categories, which, in
turn, is crucially used in Volume I, Part III.
Volume II, Part I defines the notion of inf-scheme and extends the formalism of
IndCoh from schemes to inf-schemes, and in that it achieves one of the two main
goals of this book.

Volume II, Part II consists of applications of the theory of IndCoh: we consider
formal moduli problems, Lie theory and infinitesimal differential geometry; i.e.,
exactly the things one needs for geometric representation theory. Making these
constructions available is the second of our main goals.

xxii PREFACE

3.2. Which chapters should a practically minded reader be interested
in? Not all the Chapters in this book make an enticing read; some are downright
technical and tedious. Here is, however, a description of the ‘cool’ things that some
of the Chapters do:

None of the material in Volume I, Part I alters the pre-existing state of knowledge.

Volume I, Chapters 4 and 5 should not be a difficult read. They construct the
theory of IndCoh on schemes (the hard technical work is delegated to Volume I,
Chapter 7). The reader cannot avoid reading these chapters if he/she is interested
in the applications of IndCoh: one has to have an idea of what IndCoh is in order
to use it.

Volume I, Chapters 6 is routine. The only really useful thing from it is the functor

ΥZ ∶ QCoh(Z)→ IndCoh(Z),

given by tensoring an object of QCoh(Z) with the dualizing complex ωZ ∈ IndCoh(Z).
Extract this piece of information from Sects. 3.2-3.3 and move on.

Volume I, Chapter 7 introduces the formalism of correspondences. The idea of the
category of correspondences is definitely something worth knowing. We recommend
the reader to read Sect. 1 in its entirety, then understand the universal property
stated in Sect. 3, and finally get an idea about the two extension theorems, proved in
Sects. 4 and 5, respectively. These extension theorems are the mechanism by means
of which we construct IndCoh as a functor out of the category of correspondences
in Volume I, Chapter 5.

Volume I, Chapter 8 proves a rather technical extension theorem, stated in Sect.
1; we do not believe that the reader will gain much by studying its proof. This
theorem is key to the extension of IndCoh from schemes to inf-schemes in Volume
II, Chapter 3.

Volume I, Chapter 9 is routine, except for one observation, contained in Sects. 2.2-
2.3: the natural involution on the category of correspondences encodes duality. In
fact, this is how we construct Serre duality on IndCoh(Z) and Verdier duality on
Dmod(Z) where Z is a scheme (or inf-scheme), see Volume I, Chapter 5, Sect. 4.2,
Chapter 3, Sect. 6.2, and Chapter 4, Sect. 2.2, respectively.

Volume I, Chapter 10 introduces the notion of (∞,2)-category and some basic
constructions in the theory of (∞,2)-categories. This Chapter is not very technical
(mainly because it omits most proofs) and might be of independent interest.

Volume I, Chapter 11 does a few more technical things in the theory of (∞,2)-
categories. It introduces the (∞,2)-category of (∞,2)-categories, denoted 2 -Cat.
We then discuss the straightening/unstraightening procedure in the (∞,2)-categorical
context and the (∞,2)-categorical Yoneda lemma. The statements of the results
from this Chapter may be of independent interest.

Volume I, Chapter 12 discusses the notion of adjunction in the context of (∞,2)-
categories. The main theorem in this Chapter explicitly constructs the universal
adjointable functor (and its variants), and we do believe that this is of interest
beyond the particular goals of this book.

Volume II, Chapter 1 is background on deformation theory. The reason it is in-
cluded in the book is that the notion of inf-scheme is based on deformation theory.

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxiii

However, the reader may find the material in Sects. 1-7 of this Chapter useful
without any connection to the contents of the rest of the book.

Volume II, Chapter 2 introduces inf-schemes. It is quite technical. So, the prac-
tically minded reader should just understand the definition (Sect. 3.1) and move
on.

Volume II, Chapter 3 bootstraps the theory of IndCoh from schemes to inf-schemes.
It is not too technical, and should be read (for the same reason as Volume I,
Chapters 4 and 5). The hard technical work is delegated to Volume I, Chapter 8.

Volume II, Chapter 4 explains how the theory of crystals/D-modules follows from
the theory of IndCoh on inf-schemes. Nothing in this Chapter is very exciting, but
it should not be a difficult read either.

Volume II, Chapter 5 is about formal moduli problems. It proves a pretty strong
result, namely, the equivalence of categories between formal groupoids acting on
a given prestack X (assumed to admit deformation theory) and formal moduli
problems under X .

Volume II, Chapter 6 is a digression on the general notion of Lie algebra and Koszul
duality in a symmetric monoidal DG category. It gives a nice interpretation of
the universal enveloping algebra of a Lie algebra of g as the homological Chevalley
complex of the Lie algebra obtained by looping g. The reader may find this Chapter
useful and independently interesting.

Volume II, Chapter 7 develops Lie theory in the context of inf-schemes. Namely,
it establishes an equivalence of categories between group inf-schemes (over a given
base X) and Lie algebras in IndCoh(X). One can regard this result as one of the
main applications of the theory developed hereto.

Volume II, Chapters 8 and 9 use the theory developed in the preceding Chapters
for ‘differential calculus’ in the context of DAG. We discuss Lie algebroids and
their universal envelopes, the procedure of deformation to the normal cone, etc.
For example, the notion of n-th infinitesimal neighborhood developed in Volume
II, Chapter 9 gives rise to the Hodge filtration.

3.3. The nature of the technical work. The substance of mathematical thought
in this book can be roughly split into three modes of cerebral activity: (a) making
constructions; (b) overcoming difficulties of homotopy-theoretic nature; (c) dealing
with issues of convergence.

Mode (a) is hard to categorize or describe in general terms. This is what one
calls ‘the fun part’.

Mode (b) is something much better defined: there are certain constructions that
are obvious or easy for ordinary categories (e.g., define categories or functors by an
explicit procedure), but require some ingenuity in the setting of higher categories.
For many readers that would be the least fun part: after all it is clear that the thing
should work, the only question is how to make it work without spending another
100 pages.

Mode (c) can be characterized as follows. In low-tech terms it consists of
showing that certain spectral sequences converge. In a language better adapted for
our needs, it consists of proving that in some given situation we can swap a limit

xxiv PREFACE

and a colimit (the very idea of IndCoh was born from this mode of thinking). One
can say that mode (c) is a sort of analysis within algebra. Some people find it fun.

Here is where the different Chapters stand from the point of view of the above
classification:

Volume I, Chapter 1 is (b) and a little of (c).

Volume I, Chapter 2 is (a) and a little of (c).

Volume I, Chapter 3 is (c).

Volume I, Chapter 4 is (a) and (c).

Volume I, Chapter 5 is (a).

Volume I, Chapter 6 is (b).

Volume I, Chapters 7-9 are (b).

Volume I, Chapters 10-12 are (b).

Volume II, Chapter 1 is (a) and a little of (c).

Volume II, Chapter 2 is (a) and a little of (c).

Volume II, Chapter 3 is (a).

Volume II, Chapter 4 is (a).

Volume II, Chapter 5 is (a).

Volume II, Chapter 6 is (c) and a little of (b).

Volume II, Chapter 7 is (c) and a little of (a).

Volume II, Chapters 8 and 9 are (a).

3.4. Logical dependence of chapters. This book is structured so that Volume
I prepares the ground and Volume II reaps the fruit. However, below is a scheme of
the logical dependence of chapters, where we allow a 5% skip margin (by which we
mean that the reader skips certain things10 and comes back to them when needed).

3.4.1. Volume I, Chapter 1 reviews ∞-categories and higher algebra. Read it only
if you have no prior knowledge of these subjects. In the latter case, here is what
you will need in order to understand the constructions in the main body of the
book:

Read Sects. 1-2 to get an idea of how to operate with ∞-categories (this is a
basis for everything else in the book).

Read Sects. 5-7 for a summary of stable ∞-categories: this is what our QCoh(−)
and IndCoh(−) are; forget on the first pass about the additional structure of k-linear
DG category (the latter is discussed in Sect. 10).

Read Sects. 3-4 for a summary of monoidal structures and duality in the context
of higher category theory. You will need it for this discussion of Serre duality and
for Volume I, Chapter 6.

Sects. 8-9 are about algebra in (symmetric) monoidal stable ∞-categories. You
will need it for Volume II, Part II of the book.

10These are things that can be taken on faith without compromising the overall understanding
of the material.

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxv

Volume I, Chapter 2 introduces DAG proper. If you have not seen any of it
before, read Sect. 1 for the (shockingly general, yet useful) notion of prestack. Every
category of geometric objects we will encounter in this book (e.g., (derived) schemes,
Artin stacks, inf-schemes, etc.) will be a full subcategory of the ∞-category of
prestacks. Proceed to Sect. 3.1 for the definition of derived schemes. Skip all the
rest.

Volume I, Chapter 3 introduces QCoh on prestacks. Even though the main
focus of this book is the theory of ind-coherent sheaves, the latter theory takes a
significant input and interacts with that of quasi-coherent sheaves. If you have not
seen this before, read Sect. 1 and then Sects. 3.1-3.2.

3.4.2. In Volume I, Chapter 4 we develop the elementary aspects of the theory of
IndCoh on schemes: we define the DG category IndCoh(Z) for an individual scheme
Z, construct the IndCoh direct image functor, and also the !-pullback functor for
proper morphisms. This Chapter uses the material from Volume I, Part I mentioned
above. You will need the material from this chapter in order to proceed with the
reading of the book.

Volume I, Chapter 5 builds on Volume 1, Chapter 4, and accomplishes (mod-
ulo the material delegated to Volume I, Chapter 7) one of the main goals of this
book. We construct IndCoh as a functor out of the category of correspondences. In
particular, we construct the functor (2.3). The material from this Chapter is also
needed for the rest of the book.

In Volume I, Chapter 6 we study the interaction between IndCoh and QCoh.
For an individual scheme Z we have an action of QCoh(Z) (viewed as a monoidal
category) on IndCoh(Z). We study how this action interacts with the formalism of
correspondences from Volume I, Chapter 5, and in particular with the operation of
!-pullback. The material in this Chapter uses the formalism of monoidal categories
and modules over them from Volume I, Chapter 1, as well as the material from
Volume I, Chapter 5. Skipping Volume I, Chapter 6 will not impede your under-
standing of the rest of the book, so it might be a good idea to do so on the first
pass.

3.4.3. Volume I, Part II develops the theory of categories of correspondences. It
plays a service role for Volume I, Chapter 6 and Volume II, Chapter 3, and relies
on the theory of (∞,2)-categories, developed in Volume I, Appendix.

3.4.4. Volume I, Appendix develops the theory of (∞,2)-categories. It plays a
service role for Volume I, Part III.

Volume I, Chapters 11 and 12 rely on Volume I, Chapter 10, but can be read
independently of one another.

3.4.5. Volume II, Chapter 1 introduces deformation theory. It is needed for the
definition of inf-schemes and, therefore, for proofs of any results about inf-schemes
(that is, for Volume II, Chapter 2). We will also need it for the discussion of formal
moduli problems in Volume II, Chapter 5. The prerequisites for Volume II, Chapter

xxvi PREFACE

1 are Volume I, Chapters 2 and 3, so it is (almost)11 independent of the material
from Volume I, Part II.

In Volume II, Chapter 2 we introduce inf-schemes and some related notions
(ind-schemes, ind-inf-schemes). The material here relies in that of Volume II, Chap-
ter 1, and will be needed in Volume II, Chapter 3.

In Volume II, Chapter 3 we construct the theory of IndCoh on inf-schemes.
The material here relies on that from Volume I, Chapter 5 and Volume II, Chapter
2 (and also a tedious general result about correspondences from Volume I, Chapter
8). Thus, Volume II, Chapter 3 achieves one of our goals, the later being making the
theory of IndCoh on inf-schemes available. The material from Volume II, Chapter
3 will (of course) be used when will apply the theory of IndCoh, in Volume II,
Chapter 4 and 7–9.

In Volume II, Chapter 4 we apply the material from Volume II, Chapter 3 in
order to develop a proper framework for crystals (=D-modules), together with the
forgetful/induction functors that related D-modules to O-modules. The material
from this Chapter will not be used later, except for the extremely useful notion of
the de Rham prestack construction X ↝ XdR.

3.4.6. In Volume II, Chapter 5 we prove a key result that says that in the category
of prestacks that admit deformation theory, the operation of taking the quotient
with respect to a formal groupoid is well-defined. The material here relies on that
from Volume II, Chapter 1 (at some point we appeal to a proposition from Volume
II, Chapter 3, but that can be avoided). So, the main result from Volume II,
Chapter 5 is independent of the discussion of IndCoh.

Volume II, Chapter 6 is about Lie algebras (or more general operad algebras)
in symmetric monoidal DG categories. It only relies on the material from Volume I,
Chapter 1, and is independent of the preceding Chapters of the book (no DAG, no
IndCoh). The material from this Chapter will be used for the subsequent Chapters
in Volume II, Part II.

3.4.7. A shortcut. As has been mentioned earlier, Volume II, Chapters 7–9 are de-
voted to applications of IndCoh to ‘differential calculus’. This ‘differential calculus’
occurs on prestacks that admit deformation theory.

If one really wants to use arbitrary such prestacks, one needs the entire machin-
ery of IndCoh provided by Volume II, Chapter 3. However, if one is content with
working with inf-schemes (which would suffice for the majority of applications),
much less machinery would suffice:

The cofinality result from Chapter 3, Sect. 4.3 implies that we can bypass
the entire discussion of correspondences, and only use the material from Volume
I, Chapter 4, i.e., IndCoh on schemes and !-pullbacks for proper (in fact, finite)
morphisms.

3.4.8. Volume II, Chapters 7-9 form a logical succession. As input from the pre-
ceding chapters they use Volume II, Chapter 3 (resp., Volume I, Chapter 5 (see
Sect. 3.4.7 above), Volume II, Chapter 1 and Volume II, Chapters 5–6.

11Whenever we want to talk about tangent (as opposed to cotangent) spaces, we have to use
IndCoh rather than QCoh, and these parts in Volume II, Chapter 1 use the material from Volume

I, Chapter 5.

Acknowledgements

In writing this book, we owe a particular debt of gratitude to Jacob Lurie for
teaching us both the theory of higher categories and derived algebraic geometry.
Not less importantly, some of the key constructions in this book originated from
his ideas; among them is the concept of the category of correspondences.

We would like to thank V. Drinfeld, J. Francis and S. Raskin for numerous
illuminating discussions and suggestions related to this book.

We are grateful to A. Khan and S. Lysenko for pointing out multiple errors as
this book was evolving.

xxvii

Introduction

1. What is done in Volume II?

In this volume, we will apply the theory of IndCoh developed in Volume I to
do geometry (more precisely, to do what we understand by ‘doing geometry’).

Namely, we will introduce the class of geometric objects of interest, called
inf-schemes (or relative versions thereof), and study the corresponding categories
of ind-coherent sheaves. These are exactly the categories that one encounters in
representation-theoretic situations.

We will perform various operations with inf-schemes (such as taking the quo-
tient with respect to a groupoid), and we will study what such operations do to the
corresponding categories of ind-coherent sheaves.

1.1. As was already mentioned, our basic class of geometric objects is that of
inf-schemes, denoted infSchlaft. Just as any other class of geometric objects in this
book, infSchlaft is a full subcategory in the ambient category of prestacks. I.e., an
inf-scheme is a contravariant functor on Schaff that satisfies some conditions (rather
than having some additional structure).

As is often the case in algebraic geometry, along with a particular class of
objects, there is the corresponding relative notion. I.e., we also introduce what it
means for a map of prestacks to be inf-schematic.

What are inf-schemes? The definition is surprisingly simple. These are prestacks
(technically, locally almost of finite type) whose underlying reduced prestack is a
(reduced) scheme1, that admit deformation theory. The latter is a condition that
guarantees reasonable infinitesimal behavior; we refer the reader to Chapter 1 of
this volume for the precise definition of what it means to admit deformation theory.

Thus, one can informally say that the class of inf-schemes contains all prestacks
that are schemes ‘up to something infinitesimal, but controllable’. For example, all
(derived) schemes, the de Rham prestacks of schemes and formal schemes are all
examples of inf-schemes.

1.2. As was explained in Volume I, Chapter 5, once we have the theory of IndCoh
on schemes (almost of finite type), functorial with respect to the operation of !-
pullback, we can extend it to all prestacks (locally almost of finite type). In par-
ticular, we obtain the theory of IndCoh on inf-schemes, functorial with respect to
!-pullbacks.

1I.e., when we evaluate our prestack on reduced affine schemes, the result is representable by
a (reduced) scheme.

xxix

xxx INTRODUCTION

We proceed to define the functor of IndCoh-direct image for maps between
inf-schemes that satisfies base change with respect to !-pullback. Furthermore,
this leads to the operation of IndCoh-direct image for inf-schematic maps between
prestacks (locally almost of finite type).

The IndCoh categories and the functors of !-pullback and IndCoh-direct image
describe many of representation-theoretic categories and functors between them
that arise in practice.

1.3. As an illustration of the utility of inf-schemes, we proceed to develop Lie
theory in this context.

Let X be a base prestack (locally almost of finite type). On the one hand, we
consider the category of formal group-objects over Y. I.e., these are group-objects
in the category of prestacks Y equipped with a map f ∶ Y → X , such that f is inf-
schematic and induces an isomorphism at the reduced level. Denote this category
by Grp(FormMod/X).

On the other hand, we consider the category LieAlg(IndCoh(X)) of Lie algebra
objects in the (symmetric monoidal) category IndCoh(X). We establish a canonical
equivalence

(1.1) Grp(FormMod/X) ≃ LieAlg(IndCoh(X)).

I.e., this is an equivalence between formal groups and Lie algebras in full gen-
erality. We can view the equivalence (1.1) as a justification for the notion of inf-
scheme (or rather, inf-schematic map): we need those in order to define the category
FormMod/X .

We show that given a group-object G ∈ FormMod/X , one can form its classifying
space,

BX (G) ∈ FormMod/X ,

which is equipped with a section s ∶ X → BX (G) (i.e., it is pointed), so that G is
recovered as the loop-object of BX (G) in the category FormMod/X . The above
functor

BX ∶ Grp(FormMod/X)→ Ptd(FormMod/X)

is equivalence.

We show that there is a canonical equivalence

(1.2) IndCoh(BX (G)) ≃ g-mod(IndCoh(X)),

where the latter is the category of g-modules in the symmetric monoidal category
IndCoh(X), where g is the object of LieAlg(IndCoh(X)) corresponding to G via
(1.1).

With respect to this equivalence, the functors s! and sIndCoh
∗ correspond to

the forgetful and “free module” functors for the category of g-modules. Moreover,
for the natural map p ∶ BX (G) → X , the functors p! and pIndCoh

∗ correspond to
the trivial g-module and Lie algebra homology functors, respectively. In short, Lie
theory works at the level of representations as it should.

1. WHAT IS DONE IN VOLUME II? xxxi

1.4. Let X be a prestack (locally almost of finite type that admits deformation
theory). One of the basic objects involved in doing ‘differential geometry’ on X is
that of Lie algebroid. Here comes an unpleasant surprise, though:

We have not been able to define the notion of Lie algebroid purely algebraically.
Namely, the classical definition of Lie algebroid involves some binary operations that
satisfy some relations, and we were not able to make sense of those in our context
of derived algebraic geometry.

Instead, we define the notion of Lie algebroid via geometry: we set the cate-
gory LieAlgbroid(X) to be, by definition, that of formal groupoids over X . This
definition is justified by the equivalence (1.1), which says that Lie algebras are the
same as formal groups.

We show that Lie algebroids defined in this way indeed behave in the way we
expect Lie algebroids to behave. For example, we have a pair of adjoint functors

IndCoh(X)/T (X) ⇄ LieAlgbroid(X),

(here T (X) ∈ IndCoh(X) is the tangent complex2 of X), where the right adjoint
forgets the algebroid structure, and the left adjoint is the functor of free Lie alge-
broid.

We also show that the category LieAlgbroid(X) is equivalent to the category
FormModX / of formal moduli problems under X , i.e., to the category of prestacks
Y (locally almost of finite type that admit deformation theory) equipped with a
map f ∶ X → Y such that f is inf-schematic and induces an isomorphism at the
reduced level.

For example, we show that under the equivalence

(1.3) LieAlgbroid(X) ≃ FormModX /,

the functor of free Lie algebroid corresponds to the functor of square-zero extension.

Generalizing (1.2), we show that if L ∈ LieAlgbroid(X) corresponds to Y ∈

FormModX /, we have a canonical equivalence

(1.4) IndCoh(Y) ≃ L-mod(IndCoh(X)),

where the left-hand side is the appropriately defined category of objects of IndCoh(X),
equipped with an action of L.

A basic example of a Lie algebroid on X is the tangent algebroid T (X), whose
underlying ind-coherent sheaf is the tangent complex. The corresponding formal
moduli problem under X is XdR. By definition, IndCoh(XdR) is the category of
D-modules on X . As a consequence of the equivalence (1.4), we obtain that the
category of D-modules on X is given by modules in IndCoh(X) over the derived
version of the ring of differential operators (built as the enveloping algebra of the
algebroid T (X)).

Here is a typical construction from representation theory that uses the theory
of Lie algebroids. Let X be as above, and let g be a Lie algebra (i.e., a Lie algebra

2Another advantage of the theory of ind-coherent sheaves is that a prestack X (locally almost

of finite type that admits deformation theory) admit a tangent complex, which is an object of
IndCoh(X), while the more traditional cotangent complex is an object of the pro-category, and

thus is more difficult to work with.

xxxii INTRODUCTION

object in the category Vect of chain complexes of vector spaces over our ground
field) that acts on X . In this case, we can form a Lie algebroid gX on X , and a
functor

g-mod(Vect)→ gX -mod(IndCoh(X)).

Composing with the induction functor for the map gX → T (X) and using the
equivalence (1.4), we construct the localization functor

g-mod(Vect)→ IndCoh(XdR) ≃ Dmod(X).

1.5. At the end of this volume, we develop some elements of ‘infinitesimal differ-
ential geometry’. Namely, we address the following question:

Many objects of differential-geometric nature come equipped with natural fil-
trations. For example, we have the filtration on the ring of differential operators
(according to the order), or the filtration on a formal completion of a scheme along
a subscheme (the n-th infinitesimal neighborhoods). We wish to have similar struc-
tures in the general context of prestacks (locally almost of finite type that admit
deformation theory). However, as is always the case in higher category theory and
derived algebraic geometry, we cannot define these filtrations ‘by hand’.

Instead, we use the following idea: a filtered object (of linear nature) is the
same as a family of such objects over A1 that is equivariant with respect to the
action of Gm by dilations.

We implement this idea in geometry. Namely, we show that given a Y ∈

FormModX /, we can canonically construct its deformation to the normal cone,
which is a family

(1.5) Yt ∈ FormModX /, t ∈ A1,

that deforms the original Y to a vector bundle situation.

We show (which by itself might not be so well-known even in the context of usual
algebraic geometry) that this deformation gives rise to all the various filtrations that
we are interested in.

In its turn, the deformation (1.5) also needs to be constructed by a functo-
rial procedure (rather than an explicit formula). We construct it using a certain
geometric device, explained in Chapter 9, Sect. 2.

2. What do we use from Volume I?

2.1. One thing is unavoidable: we use the language of higher category theory. So,
the reader in encouraged to become familiar with the contents of Chapter 1, Sects.
1 and 2 of Volume I.

Here are some of the most essential pieces of notation. For the remainder of
this section, all references are to Volume I.

We denote by 1-Cat the (∞,1)-category of (∞,1)-categories, and by Spc its
full subcategory that consists of spaces (a.k.a. ∞-groupoids).

For a pair of (∞,1)-categories C and D, we let Funct(C,D) denote the (∞,1)-
category of functors between them.

For an (∞,1)-category C, and a pair objects c0,c1 ∈ C, we denote by MapsC(c0,c1)

the space of maps from c0 to c1.

2. WHAT DO WE USE FROM VOLUME I? xxxiii

2.2. Much of the time, we will work in a linear context, by which we mean the
world of DG categories. Note that we only consider ‘large,’ i.e. cocomplete (and
in fact, presentable) DG categories. We refer the reader to Chapter 1, Sect. 10 for
the definition.

We let Vect denote the DG category of chain complexes of vector spaces (over
a fixed ground field k, assumed to be of characteristic zero).

Given a pair of DG categories C and D, we will write Funct(C,D) for the
DG category of k-linear functors between them; this clashes with the notation
introduced earlier that denoted all functors, but we believe that this is unlikely to
lead to confusion.

We write Functcont(C,D) for the full subcategory of Funct(C,D) that consists
of continuous (i.e., colimit preserving) functors. We denote by DGCatcont the
(∞,1)-category formed by DG categories and continuous linear functors between
them.

For a given DG category C and a pair of objects c0,c1 ∈ C, we will write
MapsC(c0,c1) ∈ Vect for the chain complex of maps between them. The objects
MapsC(c0,c1) ∈ Vect and MapsC(c0,c1) ∈ Spc are related by the Dold-Kan func-
tor, see loc. cit.

For a pair of DG categories C and D, we denote by C⊗D their tensor product.

2.3. The basic notions pertaining to derived algebraic geometry are set up in
Chapter 2.

We denote by PreStk the (∞,1)-category of all prestacks, i.e., accessible func-
tors

(Schaff
)
op
→ Spc .

For this volume, it is of crucial importance to know the definition of the full
subcategory

PreStklaft ⊂ PreStk

that consists of prestacks that are locally almost of finite type, see Chapter 2, Sect.
1.7 for the definition.

Derived schemes are introduced in Chapter 2, Sect. 3; the corresponding cat-
egory is denoted by Sch. Henceforth, we will omit the word ‘derived’ and refer to
derived schemes as schemes.

For a prestack X , we denote by QCoh(X) the DG category of quasi-coherent
sheaves on it; see Chapter 3, Sect. 1 for the definition.

2.4. One cannot read this volume without knowing what ind-coherent sheaves
are. For an individual scheme X (almost of finite type), the category IndCoh(X)

is defined in Chapter 4, Sect. 1. The basic functoriality is given by the functor of
IndCoh-direct image

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y),

for a map f ∶X → Y , see Chapter 4, Sect. 2.

xxxiv INTRODUCTION

The machinery of the IndCoh functor is fully developed in Chapter 5, where
we construct the !-pullback functor

f !
∶ IndCoh(Y)→ IndCoh(X),

for f as above.

We denote by ωX ∈ IndCoh(X) the dualizing object, i.e., the pullback of the
generator

k ∈ Vect ≃ IndCoh(pt)

under the tautological projection X → pt.

The assignment X ↝ IndCoh(X) (with !-pullbacks) is extended from schemes
(almost of finite type) to all of PreStklaft by the procedure of left Kan extension.
Moreover, we make IndCoh a functor out of the 2-category of correspondences,

Corr(PreStklaft)
sch & proper
sch-qc;all → DGCat2-Cat

cont .

In the above formula, DGCat2-Cat
cont is the 2-categorical enhancement of DGCatcont,

see Chapter 1, Sect. 10.3.9.

One piece of notation from Chapter 6 that the reader might need is the functor

ΥX ∶ QCoh(X)→ IndCoh(X),

defined for any X ∈ PreStklaft, and given by tensoring a given object of QCoh(X)

by the dualizing object ωX ∈ IndCoh(X).

2.5. Chapter 7 introduces the category of correspondences. The idea is that
given an (∞,1)-category C and three classes of morphisms vert, horiz and adm,
we introduce an (∞,2)-category Corr(C)

adm
vert,horiz, whose objects are the same as

those of C, but where 1-morphisms from c0 to c1 are correspondences

c0,1
α

ÐÐÐÐ→ c0

×
×
×
Ö

β

c1

where α ∈ horiz and β ∈ vert. For a pair of correspondences (c0,1, α, β) and
(c′0,1, α

′, β′), the space of 2-morphisms between them is that of commutative dia-
grams

For a pair of correspondences (c0,1, α, β) and (c′0,1, α
′, β′), we want the space

of maps between them to be that of commutative diagrams

(2.1)

c1

c0c′0,1

c0,1

β

��

α
//

β′

��

α′

))
γ

��

with γ ∈ adm.

2. WHAT DO WE USE FROM VOLUME I? xxxv

2.6. The use of other notions and notations from Volume I is sporadic and the
reader can look it up, using the index of notation of Volume I when needed.

Part I

Inf-schemes

Introduction

1. Why inf-schemes?

1.1. The primary new geometric object considered in this book is the notion of
inf-scheme. Let us start with the definition: an inf-scheme is a prestack X such
that:

(a) X is laft (locally almost of finite type, see Volume I, Chapter 2, Sect. 1.7 for
what this means);

(b) X admits deformation theory (i.e., has reasonable infinitesimal properties, see
Chapter 1 of this volume or Sect. 2 of this Introduction);

(c) The underlying reduced prestack red
X is a (reduced) scheme.

Let us explain what are the favorable properties enjoyed by inf-schemes and
how one is led to this definition.

1.2. Our initial goal was to have a geometric framework in which we could talk
simultaneously about QCoh(X) and Dmod(X) (where X ∈ Schaft) equipped with
the pair of adjoint functors of forgetting the D-module structure to that of an
O-module, and inducing an O-module to a D-module.

However, as was explained in [GaRo2], if we replace QCoh(X) by IndCoh(X),
the resulting adjoint pair has much better properties. So what we really want to
consider is the functors

(1.1) indX ∶ IndCoh(X)⇆ Dmod(X) ∶ oblvX ,

and their compatibility with the direct and inverse functors on IndCoh(−) and
Dmod(−) for maps between schemes.

According to [GaRo2], the category Dmod(X) is defined as IndCoh(XdR),
where XdR is the de Rham prestack of X (i.e., Maps(S,XdR) = Maps(redS,X)).

So it is natural to set up the sought-for theory as IndCoh of a certain class of
prestacks that contains schemes and de Rham prestacks of schemes. We would like
the adjoint pair (1.1) to be given by the push-forward/pullback adjunct

(pdR,X)
IndCoh
∗ ∶ IndCoh(X)⇆ IndCoh(XdR) ∶ (pdR,X)

!,

where pdR,X denotes the tautological map X →XdR.

1.3. Let us try to be minimalistic and consider only prestacks X such that red
X

is a (reduced) scheme. Let us denote the sought-for class of prestacks by C, and let
us list some constructions that we would like to be possible within C.

3

4 INTRODUCTION

(i) For a map f ∶ X1 → X2 between objects of C we should have a well-defined
push-forward functor

f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2),

that satisfies base change with respect to the !-pullback. I.e., IndCoh restricted to
C should extend to a functor out of the category of correspondences on C.

(ii) Since we want to talk about base change, C should contain fiber products. Now,
for a scheme X, the fiber product X ×

XdR

X is the formal completion X∧ of X in

X ×X. Hence, it is natural to ask that C contain formal schemes, i.e., ind-schemes,
whose underlying reduced prestacks are (reduced) schemes.

(iii) Having included in C all formal schemes, one’s appetite grows a little more.
Let G be a formal groupoid over a scheme X that belongs to C. One would like to
be able to form the quotient of X by G, which is still a prestack in our class C. For
example, the quotient of X of X∧ should give us back XdR.

(iv) Finally, we would like to have a description of formal group-objects in C over
a scheme X in terms of their Lie algebras. As will be explained in Chapter 1,
the latter, being tangent spaces at the unit section, are objects of IndCoh(X). So
by a ‘Lie algebra’ we should understand a Lie algebra in the symmetric monoidal

category IndCoh(X) with respect to the
!
⊗-tensor product.

1.4. As we will eventually see in Part I of this volume, properties (iii) and (iv)
will force us to include into our class C all inf-schemes X , defined as above.

However, one can consider it a strike of luck that as general a definition as one
given in Sect. 1.1 above produces a workable notion, i.e., IndCoh on inf-schemes
has the properties mentioned above.

2. Deformation theory

The definition of inf-schemes involves the notion of admitting deformation the-
ory. In Chapter 1 of this part of the book we make a review of deformation theory.

2.1. A prestack X is said to admit deformation theory if:

(i) X is convergent, i.e., for S ∈ Sch, the map

Maps(S,X)→ lim
n

Maps(≤nS,X)

is an isomorphism. (In other words, the values of X on all affine schemes are
completely determined by its values on eventually coconnective affine schemes.)

(ii) For a push-out diagram

S1 ÐÐÐÐ→ S2

×
×
×
Ö

×
×
×
Ö

S′1 ÐÐÐÐ→ S′2,

3. INF-SCHEMES 5

of affine schemes, where the map S1 → S′1 (and, hence, also S2 → S′2) is a nilpotent
embedding, the corresponding diagram

Maps(S1,X) ←ÐÐÐÐ Maps(S2,X)

Õ
×
×
×

Õ
×
×
×

Maps(S′1,X) ←ÐÐÐÐ Maps(S′2,X),

is a pull-back diagram.

In condition (ii), we remind that a map of affine schemes S → S′ is said to be
nilpotent embedding if the corresponding map of classical schemes clS → clS′ is a
closed embedding with a nilpotent ideal of definition.

We also remind that if

S1 = Spec(A1), S2 = Spec(A2), S
′
1 = Spec(A′

1), S
′
2 = Spec(A′

2),

then to be a push-out diagram means that the map

A′
2 → A′

1 ×
A1

A2

should be an isomorphism in Vect≤0.

2.2. The above way of formulating what it means to admit deformation theory
may at first appear mysterious (why these push-outs, and who has ever seen push-
outs in algebraic geometry anyway?). And indeed, the more common definition,
and the one we give in Chapter 1, Sect. 7 is different (but, of course, equivalent).
The advantage of the definition given above is that it is concise.

It turns out that the infinitesimal behavior of a prestack that admits deforma-
tion theory is goverened by its pro-cotangent complex, where the latter is a functorial
assignment for any

S
x
Ð→ X ∈ Sch/X

of an object T ∗x (X) ∈ Pro(QCoh(S−)). The precise meaning of the words ‘governed
by’ is explained in the Introduction to Chapter 1.

Here we just say informally that, say when X is laft, the knowledge of the
values of X on reduced affine schemes and some linear data (expressible in terms of
the pro-cotangent complex of X) allows to recover the values of X on all schemes.

2.3. Going back to inf-schemes, requiring the condition that they admit defor-
mation theory makes them reasonable objects: by condition (c) in Sect. 1.1, the
values of an inf-scheme X on a reduced scheme are given by a scheme X =

red
X ,

and when we want evaluate X on an arbitrary scheme S, the fibers of the map

Maps(S,X)→Maps(redS,X) ≃ Maps(redS,X)

are controlled by linear data.

3. Inf-schemes

In Chapter 2 we introduce inf-schemes and study their basic properties. The
main results of this chapter are Theorems 4.1.3 and 4.2.5. Here we will informally
explain what these theorems say.

6 INTRODUCTION

3.1. Let X be an inf-scheme such that red
X = X ∈

redSch. Consider the full
subcategory

(Schaft)nil-isom to X ⊂ (Sch)/X

consisting of those maps Z → X that are nil-isomorphisms, i.e., induce an isomor-
phism

redZ → red
X =X.

The assertion of Chapter 2, Theorem 4.1.3 (in the guise of Chapter 2, Corollary
4.3.3) is that the resulting map

colim
Z∈(Schaft)nil-isomto X

Z → X

is an isomorphism of prestacks.

The latter means, by definition, that for an affine scheme S, the map

(3.1) colim
Z∈(Schaft)nil-isomto X

Maps(S,Z)→Maps(S,X)

is an isomorphism.

Equivalently, for an affine scheme S and a map S → X , the category Factor(x,aft,nil-isom)

of its factorizations as

S → Z → X

with Z ∈ Schaft and the map Z → X being a nil-isomorphism, is contractible.

3.2. Let us emphasize, however, that it is not true that the map (3.1) is an
isomorphism if S is non-affine. Equivalently, it is not true that the category
Factor(x,aft,nil-isom) is contractible if S is non-affine.

We remark, however, that in Sects. 1 and 2 we study a more restricted class of
objects, commonly called formal schemes (but we choose to call nil-schematic ind-
schemes), for which the map (3.1) is an isomorphism (and the category Factor(x,aft,nil-isom)

is contractible).

In fact, we consider the full subcategory

(Schaft)nilp-embed into X ⊂ (Schaft)nil-isom to X ,

consisting of those Z → X that are nilpotent embeddings.

We show that if X is a nil-schematic ind-scheme, then the category (Schaft)nil-embedinto X
is filtered and the map

colim
Z∈(Schaft)nilp-embed into X

Maps(S,Z)→Maps(S,X)

is an isomorphism for any (i.e., not necessarily affine) S ∈ Sch.

Equivalently, for a given S
x
→ X , the corresponding category Factor(x,aft,nilp-embed)

is contractible.

4. IND-COHERENT SHEAVES ON INF-SCHEMES 7

3.3. We will now explain the content of the second main result of this Chapter,
namely, Chapter 2, Theorem 4.2.5 (in its guise as Chapter 2, Corollary 4.4.6).

Let X be an inf-scheme, such that X ∶=
red
X is affine. It follows from Theorem

4.1.3 that X , when viewed as a functor

(Schaff
)
op
→ Spc,

is completely determined3 by its restriction to the category

Schaff
×

redSchaff
{X}.

In words, the above category is that of affine schemes, whose reduced subscheme
is of finite type and is equipped with a map to X.

Now, Chapter 2, Theorem 4.2.5 is a converse to the above assertion. Namely,
it says that any functor

(Schaff
×

red Schaff
{X})

op

→ Spc,

that satisfies deformation theory-like conditions, gives rise to an inf-scheme X with
red
X ≃X.

4. Ind-coherent sheaves on inf-schemes

Chapter 3 of this part is a central one for this book. In it we study the category
IndCoh on inf-schemes.

4.1. What makes this theory manageable is Chapter 2, Theorem 4.1.3 mentioned
above. Namely, when we write

X ≃ colim
α∈A

Zα,

where Zα ∈ Schaft and the transition maps fα,β ∶ Zα → Zβ are nil-isomorphisms, we
have:

IndCoh(X) ≃ lim
α∈Aop

Zα,

where the limit is formed with respect to the functors of !-pullback

fα,β ↝ f !
α,β ∶ IndCoh(Zβ)→ IndCoh(Zα).

The above presentation of IndCoh(X) as a limit tells what the objects and
morphisms are in this category. However, since the functors f !

α,β admit left adjoints,
by Volume I, Chapter 1, Proposition 2.5.7 we also have:

(4.1) IndCoh(X) ≃ colim
α∈A

IndCoh(Zα),

where the colimit is formed with respect to the push-forward functors

fα,β ↝ (fα,β)
IndCoh∗

∶ IndCoh(Zα)→ IndCoh(Zβ).

The latter presentation tells us what it takes to construct a functor out of
IndCoh(X). Namely, such a functor amounts to a compatible family of functors
out of IndCoh(Xα).

3 Technically, by ‘completely determined’ we mean ‘is the left Kan extension from’.

8 INTRODUCTION

4.2. The main construction in Chapter 3 is that of the direct image functor.
Namely, let f ∶ X 1

→ X
2 be a map between inf-schemes. We want to construct the

functor

(4.2) f IndCoh
∗ ∶ IndCoh(X 1

)→ IndCoh(X 2
).

For example, when X i = Xi
dR where Xi

∈ Schft, the resulting functor will be
the de Rham (D-module) direct image.

In Theorem 4.3.2 we show that there exists a functor (4.2) that is uniquely
characterized by the requirement that whenever

Z1 g1
ÐÐÐÐ→ X

1

f ′
×
×
×
Ö

×
×
×
Ö

f

Z2 g2
ÐÐÐÐ→ X

2

is a commutative diagram with Zi ∈ Schaft and the maps gi nil-isomorphisms, then
the diagram of functors

IndCoh(Z1
)

(g1)IndCoh
∗

ÐÐÐÐÐÐ→ IndCoh(X 1
)

(f ′)IndCoh
∗

×
×
×
Ö

×
×
×
Ö

f IndCoh
∗

IndCoh(Z2
)

(g2)IndCoh
∗

ÐÐÐÐÐÐ→ IndCoh(X 2
)

commutes, where the functors (gi)
IndCoh
∗ are the ones from the presentation (4.1).

4.3. Having constructed direct images, we show that they satisfy the proper base
change property. Then, by applying the general machinery from Volume I, Chap-
ter 8, Sect. 1, we show that IndCoh, viewed as a functor out of the category of
correspondences

IndCohCorr(Schaft)proper
corr:all;all

∶ Corr(Schaft)
proper
corr:all;all → DGCat2 -Cat

cont

uniquely extends to a functor

(4.3) IndCohCorr(indinfSchlaft)ind-proper
corr:all;all

∶ Corr(indinfSchlaft)
ind-proper
corr:all;all → DGCat2 -Cat

cont .

5. Crystals and D-modules

In Chapter 4 we apply the theory of IndCoh on inf-schemes to construct the
theory of D-modules, viewed as a functor

(5.1) DmodCorr(Schaft)proper
corr:all;all

∶ Corr(Schaft)
proper
corr:all;all → DGCat2 -Cat

cont .

5.1. Namely, we stipulate that for X ∈ Schaft

(5.2) Dmod(X) ∶= IndCoh(XdR).

Now, the operation X ↦XdR defines a functor

Corr(Schaft)
proper
corr:all;all → Corr(indinfSchlaft)

ind-proper
corr:all;all .

Thus, composing this functor with (4.3), we obtain the desired functor (5.1).

5. CRYSTALS AND D-MODULES 9

5.2. The definition of D-modules as in (5.2) gives also a natural framework for
the induction functor

(5.3) IndCoh(X)→ Dmod(X),

left adjoint to the tautological forgetful functor.

Namely, the functor (5.3) is the functor of direct image with respect to the
tautological morphism

X →XdR.

5.3. In Sect. 4 of this Chapter, we explain why the definition of D-modules (5.2)
is the right thing to do.

Namely, we show that when X is a smooth affine scheme, IndCoh(XdR) does
indeed recover the category of modules over the ring DiffX of differential operators
on X.

Moreover, we show that for a map f ∶ X → Y between smooth schemes, the
functors

(fdR)
!
∶ IndCoh(YdR)→ IndCoh(XdR) and (fdR)

IndCoh
∗ ∶ IndCoh(XdR)→ IndCoh(YdR)

correspond to the usual functors of pullback and push-forward on the corresponding
categories of D-modules.

CHAPTER 1

Deformation theory

Introduction

0.1. What does deformation theory do?
0.1.1. Deformation theory via pullbacks. ‘Admitting deformation theory’ refers to
a certain property of a prestack. Namely, although the initial definition will be
different, according to Proposition 7.2.2, a prestack X admits deformation theory
if:

(a) It is convergent, i.e., for S ∈ Schaff the map Maps(S,X) → lim
n

Maps(≤nS,X) is

an isomorphism;
(b) For a push-out diagram of objects of Schaff

S1 ÐÐÐÐ→ S2

×
×
×
Ö

×
×
×
Ö

S′1 ÐÐÐÐ→ S′2,

where the map S1 → S′1 is a nilpotent embedding (i.e., the map of classical affine
schemes clS1 →

clS2 is a closed embedding, whose ideal of definition vanishes to
some power), the resulting diagram in Spc

Maps(S1,X) ←ÐÐÐÐ Maps(S2,X)

Õ
×
×
×

Õ
×
×
×

Maps(S′1,X) ←ÐÐÐÐ Maps(S′2,X)

is a pullback diagram.

The reason that this notion is useful is that it allows to study the infinitesimal
behavior of X (i.e., properties of the map Maps(S′,X) → Maps(S,X) whenever
S → S′ is a nilpotent embedding) by using linear objects. Let us explain this in
more detail.

0.1.2. Pro-cotangent fibers and cotangent complex. For S = Spec(A) and an S-point
x ∶ S → X , by considering nilpotent embeddings of the form S → S′ for

S′ = SI ∶= Spec(A⊕M), M = Γ(S,I), I ∈ QCoh(S)≤0,

one shows that the functor

(0.1) I ↦MapsS/(SI ,X), QCoh(S)≤0
→ Spc

is given by a well-defined object

Tx(X) ∈ Pro(QCoh(S)−),

11

12 1. DEFORMATION THEORY

called the pro-cotangent space of X at x. We emphasize that the fact that the
functor (0.1) comes from such an object is already a non-trivial condition and
amounts to this functor commuting with certain pullbacks that are among the
pullbacks in Sect. 0.1.1.

Next, one shows that the assignments

(0.2) (S,x) ∈ (Schaff
)/X ↝ T ∗x (X) ∈ Pro(QCoh(S)−),

are compatible in the sense that for

f ∶ S1 → S2, x2 ∈ Maps(S2,X), x1 = x2 ○ f,

the natural map in Pro(QCoh(S1)
−
)

T ∗x1
(X)→ Pro(f∗)(T ∗x2

(X))

is an isomorphism. This follows from the condition in Sect. 0.1.1 applied to the
push-out diagram

S1
f

ÐÐÐÐ→ S2

×
×
×
Ö

×
×
×
Ö

(S1)I ÐÐÐÐ→ (S2)f∗(I).

Furthermore, one shows that for X =X ∈ Sch, we have T ∗x (X) ∈ QCoh(S)≤0, so
that the assignment (0.2) comes from a well-defined object T ∗(X) ∈ QCoh(X)

≤0,
called the cotangent complex of X.

By functoriality, for (S,x) ∈ (Schaff
)/X , we have a canonically defined map in

Pro(QCoh(S)−)
T ∗x (X)→ T ∗(S),

called the co-differential of x.

0.1.3. Square-zero extensions. Among nilpotent embeddings S → S′ one singles out
a particular class, called square-zero extensions. Namely, one shows that for every
object I ∈ QCoh(S)≤0 equipped with a map

T ∗(S)
γ
→ I[1]

one can canonically attach a nilpotent embedding

S
i
→ SI,γ ,

such that
Fib(OSI,γ → i∗(OS)) ≃ i∗(I).

In fact, the pair (i, SI,γ) can be uniquely characterized by the property that

for a map f ∶ S → U in Schaff , the data of extension of f to a map SI,γ → U is
equivalent to that of a null-homotopy of the composed map

f∗(T ∗(U))→ T ∗(S)
γ
→ I[1],

where the map f∗(T ∗(U))→ T ∗(S) is the co-differential of f .

In particular, for γ = 0 we have tautologically SI,0 = SI , where SI is as in
Sect. 0.1.2.

When S is classical and I ∈ QCoh(S)♡, one shows that the above assignment

(I, γ)↝ SI,γ

INTRODUCTION 13

is an equivalence between QCoh♡T ∗(S)[−1]/ and the category of closed embeddings

S → S′ with S′ being a classical scheme such that the ideal of definition of S in S′

squares to 0.

0.1.4. From square-zero extensions to all nilpotent extensions. A fact of crucial im-
portance is that any nilpotent embedding S → S′ can be obtained as a composition
of square-zero extensions, up to any given truncation. More precisely, there exists
a sequence of affine schemes

S = S0 → S1 → S2 → ...→ Sn → ...→ S′

such that each Si → Si+1 is a square-zero extension, and for every n there exists m
such that the maps

≤nSm →
≤nSm+1 → ...→ ≤nS′

are all isomorphisms.

Thus, if X is convergent, then if we can control the map

Maps(S′,X)→Maps(S,X)

when S → S′ is a square-zero extension, we can control it for any nilpotent embed-
ding.

0.1.5. Back to deformation theory. One shows that if X admits deformation theory,

then, given a point S
x
→ X , the datum of its extension to a point SI,γ → X is

equivalent to the datum of a null-homotopy for the map

(0.3) T ∗x (X)→ T ∗(S)
γ
→ I[1].

The latter fact, combined with Sect. 0.1.4, is the precise expression of the above-
mentioned principle that extensions of a given map S → X to a map S′ → X (for a
nilpotent embedding S → S′) are controlled by linear objects, the latter being the
objects in Pro(QCoh(S)−) appearing in (0.3).

0.2. What is done in this chapter? This chapter splits naturally into two
halves: the build-up to the formulation of what it means to admit deformation
theory (Sects. 1-6) and consequences of the property of admitting deformation
theory (Sects. 7-10).

0.2.1. Push-outs. In Sect. 1, we study the operation of push-out on affine schemes.
The reason we need to do this is, as was mentioned above, we formulate the property
of a prestack X to admit deformation theory in terms of push-outs.

Note that the operation of push-out is not so ubiquitous in algebraic geometry–
we are much more used to pullbacks. In terms of rings, pullbacks are given by

(A1 ← A→ A2) ↦ A1 ⊗
A
A2,

while push-outs by

(A1 → A← A2) ↦ τ≤0
(A1 ×

A
A2).

The operation of push-out on affine schemes is not so well-behaved (for example,
a push-out of affine schemes may not be a push-out in the category of all schemes).

14 1. DEFORMATION THEORY

However, there is one case in which it is well-behaved: namely, when we consider
push-out diagrams

S1 ÐÐÐÐ→ S2

×
×
×
Ö

×
×
×
Ö

S′1 ÐÐÐÐ→ S′2,

in which S1 → S′1 is a nilpotent embedding.

0.2.2. (Pro)-cotangent spaces. In Sect. 2 we define what it means for a prestack X
to admit a (pro)-cotangent space at a given S-point

S
x
→ X .

By definition, a (pro)-cotangent space, if it exists, is an object

T ∗x (X) ∈ Pro(QCoh(S)−).

The definition is given in terms of the notion of split-square zero extension, S → SF ,
see Sect. 0.1.2.

We shall say that X admits a cotangent space at x if T ∗x (X) actually belongs
to QCoh(S)−.

One result in this section that goes beyond definitions is Proposition 2.5.3 that
gives the expression of the (pro)-cotangent space of a prestack X that is itself given
as a colimit of prestacks Xα. Namely, if both X and all Xα admit (pro)-cotangent
spaces, then the (pro)-cotangent space of X is the limit of the (pro)-cotangent
spaces of Xα (as is natural to expect).

0.2.3. The tangent space. In Sect. 3 we discuss various conditions that make sense
for objects of Pro(QCoh(S)−) that one can impose on pro-cotangent spaces. We
would like to draw the reader’s attention to two of these properties: one is conver-
gence and the other is laft-ness.

An object Φ ∈ Pro(QCoh(S)−) is said to be convergent it for F ∈ QCoh(S)−,
the map

Maps(Φ,F)→ lim
n

Maps(Φ, τ≥−n(F))

is an isomorphism.

It follows almost tautologically that if X is convergent (in the sense of Sect. 0.1.1),
then its pro-cotangent spaces are convergent in the above sense.

An object Φ ∈ Pro(QCoh(S)−) is said to be laft if it is convergent and for every
m1,m2, the functor

F ↦Maps(Φ,F), F ∈ QCoh(S)≥−m1,≤m2

commutes with filtered colimits.

Again, it follows almost tautologically that if X is laft, then its pro-cotangent
spaces are laft in the above sense.

If S is itself laft, the full subcategory

Pro(QCoh(S)−)laft ⊂ Pro(QCoh(S)−)

has the following nice interpretation: Serre duality identifies it with the opposite
of the category IndCoh(S).

INTRODUCTION 15

So, instead of thinking of T ∗x (X) as an object of Pro(QCoh(S)−), we can think
of its formal dual, denoted

Tx(X) ∈ IndCoh(S),

and called the tangent space of X at x.

0.2.4. The naive tangent space. We want to emphasize that in our interpretation,
the tangent space is not the naive dual of the (pro)-cotangent space, but rather the
Serre dual. One can define the naive duality functor

(0.4) (Pro(QCoh(S)−)laft)
op
→ QCoh(S)

by sending

Φ ∈ Pro(QCoh(S)−)laft ↦ Φ(OS),

where Φ(OS) is regarded as an A-module if S = Spec(A).

However, the above functor is the composition of the Serre duality equivalence

(Pro(QCoh(S)−)laft)
op
→ IndCoh(S),

followed by the functor

IndCoh(S)→ QCoh(S), F ↦ Hom(ωS ,F),

while the latter fails to be conservative (even for S eventually coconnective).

So, in general, the naive duality functor (0.4) loses information, and hence it
is not a good idea to think of the tangent space as an object of QCoh(S) equal to
the naive dual of the (pro)-cotangent case.

In the case when S is eventually coconnective, one can explicitly describe a full
subcategory inside Pro(QCoh(S)−)laft on which the naive duality functor (0.4) is
fully faithful:

This is the image of the fully faithful embedding

QCoh(S)→ (Pro(QCoh(S)−)laft)
op,

given by

F ∈ QCoh(S)↦ ΦF , ΦF(F1) = colim
n

Γ(S,F ⊗ τ≥−n(F1)), F1 ∈ QCoh(S)−.

0.2.5. The (pro)-cotangent complex. In Sect. 4 we impose a condition on a prestack
X that its (pro)-cotangent spaces are compatible under pullbacks, see Sect. 0.1.2.
If this condition is satisfied, we say that X admits a (pro)-cotangent complex.

If X is laft, we show (using Sect. 0.2.3 above) that if it admits a pro-cotangent
complex, then it admits a tangent complex, which is an object of IndCoh(X).

16 1. DEFORMATION THEORY

0.2.6. Square-zero extensions. In Sect. 5 we introduce the category of square-zero
extensions of a scheme, already mentioned in Sect. 0.1.3 above.

By definition, the category of square-zero extensions of X, denoted SqZ(X), is

((QCoh(X)
≤0

)T (X)[−1]/)
op.

As was explained in Sect. 0.1.3 we have a functor

RealSqZ ∶ SqZ(X)→ (Sch)X/.

We note, however, that unless X is classical and we restrict ourselves to the
part of SqZ(X) that corresponds to ((QCoh(X)

♡
)T (X)[−1]/)

op, the functor RealSqZ
is not fully faithful. I.e., being a square-zero extension is not a condition but
additional structure.

We proceed to study several crucial pieces of structure pertaining to square-zero
extensions:

(i) A canonical structure of square-zero extension on an (n+1)-coconnective scheme
of square-zero extension of its n-coconnective truncation;

(ii) The approximation of any nilpotent embedding by a series of square-zero ex-
tensions, already mentioned in Sect. 0.1.4;

(iii) Functoriality of square-zero extension under push-forwards: given a square-
zero extension X1 → X ′

1 by means of I ∈ QCoh(X1)
≤0 and an affine morphism

f ∶X1 →X2, we obtain a canonically defined structure of square-zero extension by
means of f∗(I) on X2 →X ′

2 ∶=X
′
1 ⊔
X1

X2.

(iv) Functoriality of square-zero extension under pullbacks: given a square-zero
extension X2 →X ′

2 by means of I ∈ QCoh(X2)
≤0 and a map f ′ ∶X ′

1 →X ′
2, we obtain

a canonically defined structure of square-zero extension on X2 ×
X′

2

X ′
1 =∶X1 →X ′

1 by

means of f∗(I), where f is the resulting map X1 →X2.

0.2.7. Infinitesimal cohesiveness. In Sect. 6 we define what it means for a prestack
X to be infinitesimally cohesive. Namely, we say that X is infinitesimally cohesive
if whenever S → S′ is a square-zero extension of affine schemes given by

T ∗(S)
γ
→ I[1], I ∈ QCoh(S)≤0,

and x ∶ S → X is a map, the (naturally defined) map from the space of extensions
of x to a map x′ ∶ S′ → X to the space of null-homotopies of the composed map

T ∗x (X)→ T ∗(S)
γ
→ I[1]

is an isomorphism.

We explain that this property can also be interpreted as the fact that X takes
certain push-outs in Schaff to pullbacks in Spc.

0.2.8. Finally: deformation theory! In Sect. 7 we finally introduce what it means
for a prestack X to admit deformation theory. We define it as follows: we say that
X admits deformation theory if:

(a) It is convergent;

(b’) It admits a pro-cotangent complex;

(b”) It is infinitesimally cohesive.

INTRODUCTION 17

However, as was mentioned in Sect. 0.1.1, in Proposition 7.2.2, we show that
one can replace conditions (b’) and (b”) by just one condition (b) from Sect. 0.1.1,
namely that X takes certain push-out to pullbacks.

We proceed to study some properties of prestacks associated with the notion
of admitting deformation theory:

(i) We introduce and study the notion of formal smoothness of a prestack;

(ii) We show that for any integer k, prestacks that are k-Artin stacks admit defor-
mation theory.

0.2.9. Consequences of admitting deformation theory. In Sect. 8 we derive some
consequences of the fact that a given prestack admits deformation theory:

(i) If X0 is a classical prestack and i ∶ X0 →
cl
X is a nilpotent embedding, then if

X0 satisfies étale descent, then so does X ;

(ii) In the above situation, if f ∶ X → X
′ is a map where X ′ admits deformation

theory such that for any classical affine scheme S and a map x0 ∶ S → X0, the map

T ∗f○i○x0
(X

′
)→ T ∗i○x0

(X)

is an isomorphism, then f itself is an isomorphism.

0.2.10. Deformation theory and laft-ness. In Sect. 9 we prove two assertions related
to the interaction of deformation theory with the property of a prestack to be laft
(locally almost of finite type).

The first assertion, Theorem 9.1.2, gives the following infinitesimal criterion
to determine whether X is laft. Namely, it says that a prestack X admitting
deformation theory is laft if and only if:

(i) cl
X is locally of finite type;

(ii) For any classical scheme of finite type S and a point x ∶ S → cl
X , we have

T ∗x (X) ∈ Pro(QCoh(S)−)laft,

The second assertion, Theorem 9.1.4, says that if X admits deformation theory,
its laft-ness property implies something stronger than for arbitrary laft prestacks.
Namely, it says that X , when viewed as a functor

(Schaff
)
op
→ Spc

is the left Kan extension from

(Schaff
aft)

op
⊂ (Schaff

)
op.

I.e., for any (S,x) ∈ (Schaff
)/X , the space of factoring x as

S → U → X , U ∈ Schaff
aft

is contractible.

Note that for arbitrary prestacks such a property holds not on all S ∈ Schaff

but only on truncated ones.

18 1. DEFORMATION THEORY

0.2.11. Square-zero extensions of prestacks. In Sect. 10 we define the notion of
square-zero extension of a given prestack X by means of I ∈ QCoh(X)

≤0. This is de-
fined via the functoriality of square-zero extensions under pullbacks, see Sect. 0.2.6(iv).

Assuming that X admits deformation theory, we prove that under certain cir-
cumstances, the map from SqZ(X ,I) to Maps(T ∗(X),I[1]) is an isomorphism,
and that any prestack obtained as a square-zero extension of X itself admits defor-
mation theory.

1. Push-outs of schemes

In this subsection we study the operation of push-out on schemes. This opera-
tion is not so ubiqutous in algebraic geometry. However, it is crucial for deformation
theory. In fact, deformation theory is defined in terms of compatibility with certain
push-outs.

1.1. Push-outs in the category of affine schemes. In this subsection we de-
scribe what push-outs look like in the category of affine schemes.

1.1.1. Let

i↦Xi, i ∈ I

be an I-diagram in Schaff for some I ∈ 1 -Cat.

Let Y denote its colimit in the category Schaff . I.e., if Xi = Spec(Ai), then
Y = Spec(B), where

B = lim
i
Ai,

where the limit is taken in the category of connective commutative k-algebras.

Remark 1.1.2. Note that in the above formula B = τ≤0
(B′

), where

B′
= lim

i
Ai,

the limit is taken in the category ComAlg(Vect) of all commutative k-algebras.
Note also that the forgetful functor

oblvCom ∶ ComAlg(Vect)→ Vect

commutes with limits, so that it is easy to understand what B′ looks like.

The functor τ≤0 of connective truncation used above is also very explicit.
Namely, by definition, the category of connective commutative k-algebras is ComAlg(Vect≤0

),
and the functor τ≤0 is the right adjoint to the embedding

ComAlg(Vect≤0
)→ ComAlg(Vect).

This functor makes the diagram

ComAlg(Vect≤0
)

τ≤0

←ÐÐÐÐ ComAlg(Vect)

oblvCom

×
×
×
Ö

×
×
×
Ö

oblvCom

Vect≤0 τ≤0

←ÐÐÐÐ Vect

commute.

1. PUSH-OUTS OF SCHEMES 19

1.1.3. In particular, consider a diagram X1 ←X →X2 in Schaff and set

Y ∶=X1 ⊔
X
X2,

where the push-out is taken in Schaff . I.e., if Xi = Spec(Ai) and X = Spec(A), then
Y = Spec(B), where

B ∶= A1 ×
A
A2.

Note that if X →X1 is a closed embedding, then so is the map X2 → Y .

1.2. The case of closed embeddings. In this subsection we show that if we take
push-outs with respect to maps that are closed embeddings, then this operation is
well-behaved.

1.2.1. Suppose we are in the context of Sect. 1.1.3. We observe the following:

Lemma 1.2.2. Suppose that both maps X →Xi are closed embeddings. Then:

(a) The Zariski topology on Y is induced by that on X1 ⊔X2.

(b) For open affine subschemes
○
Xi ⊂ Xi such that

○
X1 ∩X =

○
X2 ∩X =∶

○
X, and the

corresponding (by point (a)) open subscheme
○
Y ⊂ Y , the map

○
X1 ⊔

○

X

○
X2 →

○
Y

is an isomorphism, where the push-out is taken in Schaff .

(c) The diagram

X ÐÐÐÐ→ X1

×
×
×
Ö

×
×
×
Ö

X2 ÐÐÐÐ→ Y

is also a push-out diagram also in Sch.

1.2.3. From here we obtain:

Corollary 1.2.4. Let X1 ← X → X2 be a diagram in Sch, where both maps
Xi →X are closed embeddings. Then:

(a) The push-out Y ∶=X1 ⊔
X
X2 in Sch exists.

(b) The Zariski topology on Y is induced by that on X1 ⊔X2.

(c) For open subschemes
○
Xi ⊂ Xi such that

○
X1 ∩X =

○
X2 ∩X =∶

○
X, and the corre-

sponding (by point (b)) open subscheme
○
Y ⊂ Y , the map

○
X1 ⊔

○

X

○
X2 →

○
Y

is an isomorphism.

1.3. The push-out of a closed nil-isomorphism. The situation studied in this
subsection is of crucial importance for deformation theory.

20 1. DEFORMATION THEORY

1.3.1. We recall (see Volume I, Chapter 4, Sect. 6.1.4) that a map X → Y is Sch
is called a nil-isomorphism if it induces an isomorphism

redX → redY,

where the notation redX means the reduced classical scheme underlying clX.

We emphasize that ‘nil-isomorphism’ does not imply ‘closed embedding’.

1.3.2. Let

X1 →X ′
1

be a closed nil-isomorphism of affine schemes, and let f ∶X1 →X2 be a map, where
X2 ∈ Schaff .

Let X ′
2 =X

′
1 ⊔
X1

X2, where the colimit is taken in Schaff . Note that the map

X2 →X ′
2

is also a closed nil-isomorphism.

We observe:

Lemma 1.3.3. In the above situation we have:

(a) For an open affine subscheme
○
X2 ⊂ X2, f−1

(

○
X2) =∶

○
X1 ⊂ X1, and the corre-

sponding open affine subschemes
○
X ′
i ⊂X

′
i for i = 1,2, the map

○
X ′

1 ⊔
○

X1

○
X2 →

○
X ′

2

is an isomorphism, where the push-out is taken in Schaff .

(b) The diagram

X ′
1 ÐÐÐÐ→ X ′

2

Õ
×
×
×

Õ
×
×
×

X1 ÐÐÐÐ→ X2

is also a push-out diagram in Sch.

1.3.4. As a corollary we obtain:

Corollary 1.3.5. Let X1 →X ′
1 be a closed nil-isomorphism of (not necessarily

affine) schemes, and let f ∶X1 →X2 be an affine map between schemes. Then:

(a) The push-out X ′
2 ∶= X ′

1 ⊔
X1

X2 in Sch exists, the map X2 → X ′
2 is a closed

nil-isomorphism (and in particular affine).

(b) For an open subscheme
○
X2 ⊂ X2, f−1

(

○
X2) =∶

○
X1 ⊂ X1, and the corresponding

open affine subscheme
○
X ′
i ⊂X

′
i, the map

○
X ′

1 ⊔
○

X1

○
X2 →

○
X ′

2

is an isomorphism, where the push-out is taken in Sch.

(c) If f is an open embedding, then so is the map X ′
1 →X ′

2.

1. PUSH-OUTS OF SCHEMES 21

Proof. By Lemma 1.3.3, it suffices to prove the corollary when X2 is affine,
in which case it also follows from Lemma 1.3.3.

�

Remark 1.3.6. Note that in the situation of Corollary 1.3.5(a), if the map
X1 →X2 is not affine, the map X2 →X ′

2 is not necessarily a closed embedding. In
fact, it can look like a “pinching”:

Let X2 ∶= A2, and let X1 be its blow-up at the origin. Let X1 ↪ X ′
1 be the

square-zero extension supported on exceptional divisor with ideal O(−2)⊕2, given
by the canonical element in Ext1

(O(1),O(−2)⊕2
). Then X ′

2 is the spectrum of the
algebra consisting of polynomials with a vanishing derivative at the origin.

1.4. Behavior of quasi-coherent sheaves. In this subsection we will describe
how the categories QCoh and IndCoh behave with respect to the operation of push-
out.

1.4.1. Let f ∶ X1 → X2 and g1 ∶ X1 → X ′
1 be maps of affine schemes with g1 being

a closed embedding. Let
X ′

2 ∶=X
′
1 ⊔
X1

X2

be the push-out in the category Schaff .

We claim:

Proposition 1.4.2. In the diagram

(1.1)

QCoh(X1)
g∗1

←ÐÐÐÐ QCoh(X ′
1)

f∗
Õ
×
×
×

Õ
×
×
×

f ′∗

QCoh(X2)
g∗2

←ÐÐÐÐ QCoh(X ′
2),

the map
QCoh(X ′

2)→ QCoh(X2) ×
QCoh(X1)

QCoh(X ′
1)

is fully faithful.

Remark 1.4.3. We note that even when the maps f and g1 are closed embed-
dings, the diagram (1.1) is generally not1 a pullback square in DGCatcont. Indeed,
this fails already for X1 = pt, X2 ≃X

′
1 ≃ A1.

That said, one can show that the diagram consisting of perfect complexes

QCoh(X1)
perf

g∗1
←ÐÐÐÐ QCoh(X ′

1)
perf

f∗
Õ
×
×
×

Õ
×
×
×

f ′∗

QCoh(X2)
perf

g∗2
←ÐÐÐÐ QCoh(X ′

2)
perf ,

is a pullback square, see Chapter 8, Sect. A.2.

We note that there is no contradiction between the above two facts: if

C→D← E

1We are grateful to D. Nadler who pointed this out to us, thereby correcting a mistake in
the previous version.

22 1. DEFORMATION THEORY

is a diagram of compactly generated categories with functors preserving compact
objects, the inclusion

(Cc
×
Dc

Ec
)↪ (C ×

D
E)

c

is in general not an equality (although the corresponding fact is true for filtered
limits).

Proof of Proposition 1.4.2. One readily reduces the assertion to the case
when X2 (and hence also X1 and X ′

1) are affine. In the latter case, we will prove
the proposition just assuming that the map g1 is a closed embedding.

We construct a functor

QCoh(X ′
1) ×

QCoh(X1)
QCoh(X2)→ QCoh(X ′

2),

right adjoint to the tautological functor

(f ′∗ × g∗2) ∶ QCoh(X ′
2)→ QCoh(X ′

1) ×
QCoh(X1)

QCoh(X2),

by sending a datum

(F
′
1 ∈ QCoh(X ′

1), F2 ∈ QCoh(X2), F1 ∈ QCoh(X1), g
∗
1(F

′
1) ≃ F1 ≃ f

∗
(F2))

to
Fib (f ′∗(F

′
1)⊕ g2∗(F2)→ h∗(F1)) ,

where h denotes the map X1 →X ′
2.

We claim that the unit of the adjunction is an isomorphism. Indeed, we have
to check that for F ∈ QCoh(X ′

2), the map

F → Fib (f ′∗ ○ f
′∗
(F)⊕ g2∗ ○ g

∗
2(F)→ h∗ ○ h

∗
(F))

is an isomorphism. However, the above map is obtained by tensoring F with the
corresponding map for F = OX . Hence, since X is affine, it suffices to check that
the map

Γ(X ′
2,OX′

2
)→ Fib (Γ(X ′

1,OX′
1
)⊕ Γ(X2,OX2)→ Γ(X1,OX1))

is an isomorphism. However, the latter follows from the construction of the push-
out

�

1.4.4. Assume now that in the above situation, X1,X2,X
′
1 belong to Schaff

aft and

the map f ∶X1 →X2 is finite so that X ′
2 also belongs to Schaff

aft.

We claim:

Proposition 1.4.5. In the diagram

(1.2)

IndCoh(X1)
g!
1

←ÐÐÐÐ IndCoh(X ′
1)

f !
Õ
×
×
×

Õ
×
×
×

f ′!

IndCoh(X2)
g!
2

←ÐÐÐÐ IndCoh(X ′
2),

the map
IndCoh(X ′

2)→ IndCoh(X2) ×
IndCoh(X1)

IndCoh(X ′
1)

is fully faithful.

2. (PRO)-COTANGENT AND TANGENT SPACES 23

Remark 1.4.6. Unlike the situation with QCoh, in Chapter 8, Sect. A.1, we
will see that (1.2) is a pullback square2.

Proof of Proposition 1.4.5. We construct the left adjoint to the

(f ′! × g!
2) ∶ IndCoh(X ′

2)→ IndCoh(X ′
1) ×

IndCoh(X1)
IndCoh(X2),

by sending a datum

(F
′
1 ∈ IndCoh(X ′

1), F2 ∈ IndCoh(X2), F1 ∈ IndCoh(X1), g
!
1(F

′
1) ≃ F1 ≃ f

!
(F2))

to

coFib (hIndCoh
∗ (F1)→ (f ′)IndCoh

∗ (F
′
1)⊕ (g2)

IndCoh
∗ (F2)) .

We claim that the co-unit of the adjunction is an isomorphism. I.e., we claim
that for F ∈ IndCoh(X ′

2), the map

(1.3) coFib (hIndCoh
∗ ○ h!

(F)→ (f ′)IndCoh
∗ ○ (f ′)!

(F)⊕ (g2)
IndCoh
∗ ○ g!

2(F))→ F

is an isomorphism.

Note that in order to check this, it is enough to take F ∈ Coh(X ′
2), in which

case, both sides in (1.3) belong to IndCoh(X ′
2)
+. Hence, it is enough to show that

the map (1.3) becomes an isomorphism after applying the functor

ΓIndCoh
(X ′

2,−) ∶ IndCoh(X ′
2)→ Vect .

Denote

Ai = Γ(Xi,OXi), A
′
i = Γ(X ′

i,OX′
i
), i = 1,2.

Denote M ∶= ΓIndCoh
(X ′

2,F). After applying ΓIndCoh
(X ′

2,−) to the left-hand
side in (1.3) we obtain

coFib (MapsA′
2-mod(A1,M)→MapsA′

2-mod(A
′
1,M)⊕MapsA′

2-mod(A2,M)) ,

and that maps isomorphically to M , since

A′
2 → Fib(A′

1 ⊕A2 → A1)

is an isomorphism.
�

2. (pro)-cotangent and tangent spaces

In this section we define what it means for a prestack to admit a (pro)-cotangent

space at a given S-point, where S ∈ Schaff . The definition is given in terms of the
construction known as the split zero extension.

2.1. Split square-zero extensions. In this subsection we review the construc-
tion of split zero extensions; see [Lu2, Sect. 7.3.4].

2We are again grateful to D. Nadler, who pointed out a gap in the proof of this assertion in
an earlier version.

24 1. DEFORMATION THEORY

2.1.1. Let S be an object of Schaff . There is a natural functor

RealSplitSqZ ∶ (QCoh(S)≤0
)
op
→ (Schaff

)S/

that assigns to F ∈ QCoh(S)≤0 the corresponding split square-zero extension RealSplitSqZ(F),
also denoted by SF .

Namely, if S = Spec(A) and Γ(S,F) =M ∈ A-mod,

SF = Spec(A⊕M).

2.1.2. One can show (see [Lu2, Theorem 7.3.4.13] or Chapter 6, Proposition 1.8.3)
that the functor RealSplitSqZ defines an equivalence

QCoh(S)≤0
≃ ComMonoid(((Schaff

)S/ /S)
op

),

where ComMonoid(−) denotes the category of commutative monoids in a given
(∞,1)-category, see Volume I, Chapter 1, Sect. 3.3.3.

2.1.3. The following is nearly tautological:

Lemma 2.1.4. The functor

RealSplitSqZ ∶ (QCoh(S)≤0
)
op
→ (Schaff

)S/

commutes with colimits.

In addition, as in Lemma 1.3.3 one shows:

Lemma 2.1.5. The composite functor

RealSplitSqZ ∶ (QCoh(S)≤0
)
op
→ (Schaff

)S/ → SchS/

also commutes with colimits.

2.1.6. Terminology. In what follows, for an affine scheme S, we will also use the
notation

SplitSqZ(S) ∶= (QCoh(S)≤0
)
op,

so that RealSplitSqZ is a functor

SplitSqZ(S)→ (Schaff
)S/.

2.2. The condition of admitting a (pro)-cotangent space at a point. The
condition that a given prestack admit a (pro)-cotangent space at a point means
that it is infinitesimally linearizable, i.e., defines an exact (=excisive) functor on
split square-zero extensions.

2.2.1. Let X be an arbitrary object of PreStk, and let (S,x) be an object of

(Schaff
)/X .

We consider the functor QCoh(S)≤0
→ Spc, given by

(2.1) F ∈ QCoh(S)≤0
↦ MapsS/(SF ,X) ∈ Spc.

2. (PRO)-COTANGENT AND TANGENT SPACES 25

2.2.2. Let F1 → F2 be a map in QCoh(S)≤0, such that H0
(F1) → H0

(F2) is a
surjection. Set

F ∶= 0 ×
F2

F1.

By assumption, F ∈ QCoh(S)≤0.

Note that by Lemma 2.1.4,

(2.2) S ⊔
SF2

SF1 → SF

is a push-out diagram in Schaff (and, by Lemma 2.1.5 or Lemma 1.3.3(b), also in
Sch).

Consider the corresponding map

(2.3) MapsS/(SF ,X)→ ∗ ×
MapsS/(SF2

,X)
MapsS/(SF1 ,X).

Definition 2.2.3. Let X be an object of PreStk. We shall say that X admits
a pro-cotangent space at the point x, if the map (2.3) is an isomorphism for all
F1 → F2 as above.

2.2.4. For example, from Lemma 1.3.3(b) we obtain:

Corollary 2.2.5. If X = X ∈ Sch, then X admits a pro-cotangent space at
any (S,x) ∈ (Schaff

)/X .

2.2.6. Suppose that X admits a pro-cotangent space at x. Note that the functor
(2.1) can be extended to a functor

(2.4) QCoh(S)− → Spc,

by sending F ∈ QCoh(S)≤k to

Ωi(MapsS/(SF[i],X))

for i ≥ k. The fact that this is well-defined is guaranteed by the isomorphism (2.3).

In addition, the isomorphism (2.3) implies that the functor (2.4) is exact.
Hence, it is pro-corepresentable by an object of Pro(QCoh(S)−). In what follows
we shall denote this object by

T ∗x (X) ∈ Pro(QCoh(S)−)

and refer to it as the pro-cotangent space to X at x.

2.2.7. Let us recall (see [Lu1, Corollary 5.3.5.4]) that for any (accessible) (∞,1)-
category C with finite limits, the category (Pro(C))

op is the full subcategory of
Funct(C,Spc) that consists of (accessible) functors that preserve finite limits.

Recall also (see Volume I, Chapter 1, Sects. 7.2.1) that if C is stable, we can
identify this category with that of exact functors

C→ Sptr,

by composing with the forgetful functor Ω∞
∶ Sptr→ Spc.

Finally, if C is a k-linear DG category (such in our case of interest QCoh(S)−)),
we can identify it also with that of k-linear exact functors

C→ Vect,

26 1. DEFORMATION THEORY

by composing with the Dold-Kan functor

Dold-KanSptr
∶ Vect→ Sptr,

see Volume I, Chapter 1, Sect. 10.2.)

Given an object Φ ∈ Pro(C), the corresponding functor C → Vect is explicitly
given by

F ↦MapsPro(C)(Φ,F),

where we regard Pro(C) also as a k-linear DG category, and C as its full subcate-
gory.

2.2.8. Suppose that

(2.5)

F
′
1 ÐÐÐÐ→ F1

×
×
×
Ö

×
×
×
Ö

F
′
2 ÐÐÐÐ→ F2

is a pullback diagram in the category QCoh(S), where all objects belong to QCoh(S)≤0.
I.e., we have F1,F2,F

′
2 ∈ QCoh(S)≤0, and we require that

F
′
1 ∶= F1 ×

F2

F
′
2

also belongs to QCoh(S)≤0.

Note that by Lemma 2.1.4,

SF ′
1
←ÐÐÐÐ SF1

Õ
×
×
×

Õ
×
×
×

SF ′
2
←ÐÐÐÐ SF2

is a push-out diagram in (Schaff
)S/.

For a given map x ∶ S → X , consider the corresponding map

(2.6) MapsS/(SF ′
1
,X)→MapsS/(SF1 ,X) ×

MapsS/(SF2
,X)

MapsS/(SF ′
2
,X).

We have:

Lemma 2.2.9. Suppose X admits a pro-cotangent space at x. Then (2.6) is an
isomorphism.

Proof. Follows from the commutation of Maps(T ∗x (X),−) with finite limits.
�

2.2.10. We end this subsection with the following definition:

Definition 2.2.11. Let X be an object of PreStk. We shall say that X admits
a cotangent space at (S,x) ∈ (Schaff

)/X if it admits a pro-cotangent space, and
T ∗x (X) belongs to

QCoh(S)− ⊂ Pro(QCoh(S)−).

2.3. The condition of admitting (pro)-cotangent spaces.

2. (PRO)-COTANGENT AND TANGENT SPACES 27

2.3.1. We give the following definition:

Definition 2.3.2. Let X be an object of PreStk.

(a) We shall say that X admits pro-cotangent spaces, if admits a pro-cotangent

space for every (S,x) ∈ (Schaff
)/X .

(b) We shall say that X admits cotangent spaces, if admits a cotangent space for

every (S,x) ∈ (Schaff
)/X .

2.3.3. For example, Corollary 2.2.5 can be reformulated as saying that any scheme
admits pro-cotangent spaces.

Remark 2.3.4. We shall soon see that every X ∈ Sch actually admits cotangent
spaces, see Proposition 3.2.6.

2.3.5. Zariski gluing allows us to extend the construction of split square-zero ex-
tensions to schemes that are not necessarily affine. Thus, for Z ∈ Sch, we obtain a
well-defined functor:

RealSplitSqZ ∶ (QCoh(Z)
≤0

)
op
→ SchZ/, F ↦ ZF .

Let X be an object of PreStk that admits pro-cotangent spaces. Assume also
that X is a sheaf in the Zariski topology.

Fix a map x ∶ Z → X . It follows formally that the functor

QCoh(Z)
≤0
→ Spc, F ↦MapsZ/(ZF ,X)

is pro-corepresentable by an object

T ∗x (X) ∈ Pro(QCoh(Z)
−
).

2.4. The relative situation. The same definitions apply when we work over a
fixed prestack X0.

2.4.1. For X ∈ PreStk/X0
and (S,x) ∈ (Schaff

)/X , we shall say that X admits a
pro-cotangent space at x relative to X0 if in the situation of Sect. 2.2.2, the diagram

MapsS/(SF ,X) ÐÐÐÐ→ ∗ ×
MapsS/(SF2

,X)
MapsS/(SF1 ,X)

×
×
×
Ö

×
×
×
Ö

MapsS/(SF ,X0) ÐÐÐÐ→ ∗ ×
MapsS/(SF2

,X0)
MapsS/(SF1 ,X0)

is a pullback square, i.e., if the fibers of the map

MapsS/(SF ,X)→ ∗ ×
MapsS/(SF2

,X)
MapsS/(SF1 ,X)

map isomorphically to the fibers of the map

MapsS/(SF ,X0)→ ∗ ×
MapsS/(SF2

,X0)
MapsS/(SF1 ,X0).

28 1. DEFORMATION THEORY

2.4.2. If this condition holds, we will denote by

T ∗x (X /X0) ∈ Pro(QCoh(S)−)

the object that pro-corepresents the functor

F ↦MapsS/(SF ,X) ×
MapsS/(SF ,X0)

∗.

2.4.3. Note that if in the above situation X0 admits a pro-cotangent space at
x0 ∶ S → X → X0, then X admits a pro-cotangent space at x if and only if X admits
a pro-cotangent space at x relative to X0 and

T ∗x (X /X0) ≃ coFib(T ∗x0
(X0)→ T ∗x (X)).

2.4.4. The next assertion easily results from the definitions:

Lemma 2.4.5. A prestack X admits pro-cotangent spaces relative to X0 if and
only if for every S0 ∈ (Schaff

)/X0
, the prestack S0 ×

X0

X admits pro-cotangent spaces.

2.5. Describing the pro-cotangent space as a limit. In this subsection we
will study (pro)-cotangent spaces of prestacks that are presented as colimits.

2.5.1. Let X be an object of PreStk, written as

(2.7) X = colim
a∈A

Xa,

where the colimit is taken in PreStk.

Assume that each Xa admits pro-cotangent spaces. We wish to express the
pro-cotangent spaces of X (if they exist) in terms of those of Xa.

2.5.2. For (S,x) ∈ (Schaff
)/X , let Ax/ denote the category co-fibered over A, whose

fiber over a given a ∈ A is the space of factorizations of x as

S
xa
Ð→ Xa → X .

We claim:

Proposition 2.5.3. Suppose that T ∗x (X) exists and that the category Ax/ is

sifted3. Then the natural map

(2.8) T ∗x (X)→ lim
(a,xa)∈(Ax/)op

T ∗xa(Xa),

where the limit is taken in Pro(QCoh(S)−), is an isomorphism.

Proof. We need to show that for F ∈ QCoh(S)≤0, the map

(2.9) colim
(a,xa)∈Ax/

Maps(T ∗xa(Xa),F)→Maps(T ∗x (X),F),

where the colimit is taken in Vect, is an isomorphism.

Denote Va ∶=Maps(T ∗xa(Xa),F), V ∶=Maps(T ∗x (X),F). We claim that it is
enough to show that for every n ∈ N, the resulting composite map

(2.10) colim
(a,xa)∈Ax/

τ≤n(Va)→ τ≤n(colim
(a,xa)∈Ax/

Va)→ τ≤n(V)

is an isomorphism.

3See [Lu1, Sect. 5.5.8] for what this means.

2. (PRO)-COTANGENT AND TANGENT SPACES 29

Indeed, if (2.10) is an isomorphism, then the map

colim
(a,xa)∈Ax/

Va ≃ colim
(a,xa)∈Ax/

colim
n

τ≤n(Va) ≃ colim
n

colim
(a,xa)∈Ax/

τ≤n(Va)→ colim
n

τ≤n(V) ≃ V

is an isomorphism as well.

We note that the composite map in (2.10) can be interpreted as the shift by
[−n] of the map

(2.11) colim
(a,xa)∈Ax/

τ≤0
(Maps(T ∗xa(Xa),F[n]))→ τ≤0

(Maps(T ∗x (X),F[n]))

in Vect≤0. So, it suffices to show that the map (2.11) is an isomorphism.

Now, using the assumption that Ax/ is sifted and the fact that the functor

Dold-Kan ∶ Vect≤0
→ Spc

commutes with sifted colimits (see Volume I, Chapter 1, Sect. 10.2.3), when we
apply it to (2.11), we obtain the map

(2.12) colim
(a,xa)∈Ax/

MapsS/(SF[n],Xa)→MapsS/(SF[n],X).

Thus, since Dold-Kan is conservative, we obtain that it suffices to show that
(2.12) is an isomorphism.

Hence, it remains to show that for a S′ ∈ Schaff
S/ , the map

colim
(a,xa)∈Ax/

MapsS/(S
′,Xa)→MapsS/(S

′,X)

is an isomorphism. However, this follows from the isomorphism (2.7).
�

2.5.4. We now claim:

Lemma 2.5.5. Suppose that in the situation of (2.7), the category A is filtered.
Then X admits pro-cotangent spaces, and there is a canonical isomorphism

T ∗x (X)→ lim
(a,xa)∈(Ax/)op

T ∗xa(Xa).

Proof. As in (2.11), we have an identification

MapsS/(SF ,X) ≃ colim
(a,xa)∈Ax/

Dold-Kan (τ≤0
(Maps(T ∗xa(Xa),F))) ,

functorial in F ∈ QCoh(S)≤0.

First, we note that the filteredness assumption on A implies that all the cate-
gories Ax/ are filtered and in particular sifted. Hence,

colim
(a,xa)∈Ax/

Dold-Kan (τ≤0
(Maps(T ∗xa(Xa),F))) ≃

≃ Dold-Kan(colim
(a,xa)∈Ax/

τ≤0
(Maps(T ∗xa(Xa),F))) .

Since Ax/ is filtered, the functor τ≤0
∶ Vect → Vect≤0 commutes with colimits

along Ax/, and we obtain:

colim
(a,xa)∈Ax/

τ≤0
(Maps(T ∗xa(Xa),F)) ≃ τ≤0

(colim
(a,xa)∈Ax/

Maps(T ∗xa(Xa),F)) .

30 1. DEFORMATION THEORY

This implies the assertion of the lemma.
�

3. Properties of (pro)-cotangent spaces

By definition, the (pro)-cotangent space of a prestack at a given S-point is an
object of Pro(QCoh(S)−). One can impose the condition that the (pro)-cotangent
space belong to a given subcategory of Pro(QCoh(S)−), and obtain more restricted
infinitesimal behavior. In this section, we will study various such conditions.

3.1. Connectivity conditions. The first type of condition is obtained by requir-
ing that the (pro)-cotangent space be bounded above.

3.1.1. We start with the following observation: let C be a stable (∞,1)-category,
in which case the category Pro(C) is also stable 4.

Assume now that C is endowed with a t-structure. In this case Pro(C) also
inherits a t-structure, so that its connective subcategory Pro(C)

≤0 consists of those
left-exact5 functors

C→ Spc

that map C>0 to ∗ ∈ Spc.

Equivalently, if we interpret objects of Pro(C) as exact functors

C→ Sptr,

the subcategory Pro(C)
≤0 consists of those functors that send C≥0 to the subcate-

gory Sptr≥0
⊂ Sptr.

Clearly,

C ∩Pro(C)
≤n

= C≤n,

as subcategories of C.

3.1.2. Restriction along C≤n
↪C defines a functor

(3.1) Pro(C)
≤n
→ Pro(C≤n

),

Lemma 3.1.3. The functor (3.1) is an equivalence.

Similarly, for any m ≤ n, the natural functor

Pro(C)
≥m,≤n

→ Pro(C≥m,≤n
)

is an equivalence.

In what follows we shall denote by Pro(C)event-conn the full subcategory of
Pro(C) equal to ∪

n
Pro(C)

≤n. I.e., Pro(C)event-conn is the same thing as Pro(C)
−.

4Note, however, that even if C is presentable, the category Pro(C) is not, so caution is

required when applying such results as the adjoint functor theorem.
5We recall that a functor is said to be left-exact if it commutes with finite limits. This notion

has nothing to do with t-structures.

3. PROPERTIES OF (PRO)-COTANGENT SPACES 31

3.1.4. We give the following definitions:

Definition 3.1.5. Let X be an object of PreStk.

(a) We shall say that X admits a (−n)-connective pro-cotangent (resp., cotangent)
space at x if it admits a pro-cotangent (resp., cotangent) space at x and T ∗x (X) ∈

Pro(QCoh(S)≤n).

(a’) We shall say that X admits an eventually connective pro-cotangent space at x
if it admits a (−n)-connective pro-cotangent space at x for some n.

(b) We shall that X admits (−n)-connective pro-cotangent (resp., cotangent) spaces,
if it admits a (−n)-connective pro-cotangent (resp., cotangent) space for every

(S,x) ∈ (Schaff
)/X .

(b’) We shall that X admits locally eventually connective pro-cotangent spaces, if it

admits an eventually connective pro-cotangent space for every (S,x) ∈ (Schaff
)/X .

(c) We shall that X admits uniformly eventually connective pro-cotangent (resp.,
cotangent) spaces, if there exists an integer n ∈ Z such that X admits a (−n)-

connective pro-cotangent (resp., cotangent) space for every (S,x) ∈ (Schaff
)/X .

3.1.6. Tautologically, if X admits a pro-cotangent space at x, then this pro-
cotangent space is (−n)-connective if and only if for some/any i ≥ 0 and F ∈

QCoh(S)≥−i,≤0, the space

MapsS/(SF ,X)

is (n + i)-truncated.

3.1.7. Let us consider separately the case when n = 0 (in this case, we shall say
‘connective’ instead of ‘0-connective’). Almost tautologically, we have:

Lemma 3.1.8. A prestack X admits a connective pro-cotangent space at x ∶ S →
X if and only if the functor (2.1) commutes with finite limits (equivalently, takes
pullbacks to pullbacks).

Remark 3.1.9. The point of Lemma 3.1.8 is that the condition of admitting
a connective pro-cotangent space is stronger than that of just admitting a pro-
cotangent space: the former requires that functor (2.1) take any pullback square in
QCoh(S)≤0 to a pullback square, while the latter does so only for those pullback
squares in QCoh(S)≤0 that stay pullback squares in all of QCoh(S) .

3.1.10. From Lemma 1.3.3(b) we obtain:

Corollary 3.1.11. Every X =X ∈ Sch admits connective pro-cotangent spaces.

3.2. Pro-cotangent vs cotangent. Assume that X admits a (−n)-connective
pro-cotangent space at x. We wish to give a criterion for when X admits a cotangent
space at x. In this case, T ∗x (X) would be an object of QCoh(S)≤n.

3.2.1. We have:

Lemma 3.2.2. Let C be as in Sect. 3.1.1, and let c be an object of Pro(C≤n
).

Assume that C contains filtered limits and retracts. Then c belongs to C≤n if and
only if the corresponding functor C≤n

→ Spc commutes with filtered limits.

32 1. DEFORMATION THEORY

3.2.3. From the lemma we obtain:

Corollary 3.2.4. If X admits a (−n)-connective pro-cotangent space at x,
then it admits a cotangent space at x if and only if the functor (2.1) commutes with
filtered limits.

3.2.5. We now claim:

Proposition 3.2.6. Any X =X ∈ Sch admits connective cotangent spaces.

Proof. According to Corollaries 3.1.11, we only need to show that the com-
posite functor

RealSplitSqZ ∶ (QCoh(S)≤0
)
op
→ (Schaff

)S/ → SchS/ → Sch

commutes with filtered colimits. However, taking into account Lemma 2.1.5, this
follows from the fact that the forgetful functor SchS/ → Sch commutes with colimits
indexed by any contractible category.

�

3.3. The convergence condition. The convergence condition says that the value
of the (pro)-cotangent space on a given F ∈ QCoh(S)− is determined by the coho-
mological truncations τ≥−n(F). It is the infinitesimal version of the condition of
convergence on a prestack itself.

3.3.1. For S ∈ Schaff , we let
convPro(QCoh(S)−) ⊂ Pro(QCoh(S)−)

denote the full subcategory spanned by objects Φ that satisfy the following conver-
gence condition:

We require that when Φ ∈ Pro(QCoh(S)−) is viewed as a functor QCoh(S)≤0
→

Spc, then for any F ∈ QCoh(S)≤0, the map

Φ(F)→ lim
n

Φ(τ≥−n(F))

be an isomorphism.

We note the analogy between this definition and the notion of convergence for
objects of PreStk, see Volume I, Chapter 2, Sect. 1.4.

3.3.2. The following is nearly tautological:

Lemma 3.3.3. Suppose that X ∈ PreStk is convergent, and suppose that it ad-
mits a pro-cotangent space at (S,x) ∈ (Schaff

)/X . Then T ∗x (X) belongs to convPro(QCoh(S)−).

In addition, we have:

Lemma 3.3.4. Suppose that X ∈ PreStk is convergent. Then in order to
test whether X admits pro-cotangent spaces (resp., (−n)-connective pro-cotangent
spaces), it is enough to do so for (S,x) with S eventually coconnective and check
that (2.3) is an isomorphism for Fi ∈ QCoh(S)>−∞,≤0, i = 1,2.

Similarly, we have the following extension of Lemma 2.4.5:

Lemma 3.3.5. Let π ∶ X → X0 be a morphism in convPreStk. Then in order to
check that X admits pro-cotangent spaces relative to X0, it sufficient to check that
for every S0 ∈ (

<∞Schaff
)/X0

, the fiber product S0 ×
X0

X admits pro-cotangent spaces.

3. PROPERTIES OF (PRO)-COTANGENT SPACES 33

3.4. The almost finite type condition. In this subsection we introduce another
condition on an object of Pro(QCoh(X)

−
), namely, that it be ‘almost of finite type’.

3.4.1. For a scheme X, let

Pro(QCoh(X)
−
)laft ⊂ Pro(QCoh(X)

−
)

denote the full subcategory consisting of objects Φ satisfying the following two
conditions:

(1) Φ ∈
convPro(QCoh(X)

−
);

(2) For every m ≥ 0, the resulting functor Φ ∶ QCoh(X)
≥−m,≤0

→ Spc com-
mutes with filtered colimits.

We note the analogy between the above definition and the corresponding defi-
nition for prestacks, see Volume I, Chapter 2, Sect. 1.7.

3.4.2. From now until the end of this subsection we will assume that X ∈ Schaft.
In particular, we have a well-defined (non-cocomplete) DG subcategory

Coh(X) ⊂ QCoh(X).

3.4.3. Here is a more explicit interpretation of Condition (2) in Sect. 3.4.1 in the
eventually connective case.

Let X be an object of Schaft, and let Φ be an object of Pro(QCoh(X)
≤n

) for
some n. We have:

Lemma 3.4.4. The following conditions are equivalent:

(a) For every m ≥ 0, the functor Φ ∶ QCoh(X)
≥−m,≤0

→ Spc commutes with filtered
colimits.

(b) For every m ≥ 0, the truncation τ≥−m(Φ) belongs to the full subcategory

Pro(Coh(X)
≥−m,≤n

) ⊂ Pro(QCoh(X)
≥−m,≤n

).

(c) The cohomologies of Φ belong to Pro(Coh(X)
♡
) ⊂ Pro(QCoh(X)

♡
).

3.4.5. Note that restriction along Coh(X)↪ QCoh(X) defines a functor

(3.2) Pro(QCoh(X)
−
)→ Pro(Coh(X)).

We claim:

Proposition 3.4.6. The functor (3.2) defines an equivaence

Pro(QCoh(X)
−
)laft → Pro(Coh(X)).

Remark 3.4.7. Note the analogy between this proposition and the correspond-
ing assertion in Volume I, Chapter 2, Proposition 1.7.6.

Proof of Proposition 3.4.6. We construct the inverse functor as follows.

Given Φ̃ ∈ Pro(Coh(X)), viewed as a functor

Coh(X)
≤0
→ Spc,

we construct a functor
Φb ∶ QCoh(X)

>−∞,≤0
→ Spc,

as the left Kan extension of Φ̃ under

Coh(X)
≤0
↪ QCoh(X)

>−∞,≤0.

34 1. DEFORMATION THEORY

We define the sought-for functor Φ ∶ QCoh(X)
≤0
→ Spc as the right Kan ex-

tension of Φb under

QCoh(X)
>−∞,≤0

↪ QCoh(X)
≤0.

Explicitly,

Φ(F) = lim
m

Φb(τ≥−m(F)).

It is easy to check that the construction Φ̃↦ Φ is the inverse to (3.2).
�

Corollary 3.4.8. For X ∈ Schaft there exists a canonical equivalence

(Pro(QCoh(X)
−
)laft)

op
≃ IndCoh(X).

Proof. Follows from the canonical equivalence between (Pro(Coh(X)))
op

and
IndCoh(X) given by Serre duality

DSerre
S ∶ (Coh(X))

op ∼
→ Coh(X),

see Volume I, Chapter 5, Sect. 4.2.10. �

The following results from the construction:

Lemma 3.4.9.

(a) Under the equivalence of Corollary 3.4.8, the full subcategory of (Pro(QCoh(X)
−
)laft)

op

corresponding to

Pro(QCoh(X)
−
)laft ∩Pro(QCoh(X)

−
)event-conn ⊂ Pro(QCoh(X)

−
)

maps onto IndCoh(X)
+
⊂ IndCoh(X).

(b) Under the equivalence of Corollary 3.4.8, the full subcategory of (Pro(QCoh(X)
−
)laft)

op

corresponding to

Pro(QCoh(X)
−
)laft ∩QCoh(X)

−
⊂ Pro(QCoh(X)

−
)

maps onto the full subcategory of IndCoh(X)
+, consisting of objects with coherent

cohomologies.

3.5. Prestacks locally almost of finite type. In this subsection, we will study
what the ‘locally almost of finite type’ condition on a prestack implies about its
(pro)-cotangent spaces.

3.5.1. The definition of the subcategory

PreStklaft ⊂ PreStk

implies:

Lemma 3.5.2. Suppose that X ∈ PreStk belongs to PreStklaft, and suppose that
it admits a pro-cotangent space at (S,x) ∈ (Schaff

)/X . Then T ∗x (X) belongs to

Pro(QCoh(S)−)laft ⊂ Pro(QCoh(S)−).

Moreover, we have:

Lemma 3.5.3. Suppose that X belongs to PreStklaft. Then the condition on X
to have pro-cotangent spaces is enough to check on (S,x) with S ∈

<∞Schaff
ft and

Fi ∈ Coh(S)≤0, i = 1,2.

We also have following extension of Lemma 2.4.5:

4. THE (PRO)-COTANGENT COMPLEX 35

Lemma 3.5.4. Let π ∶ X → X0 be a morphism in PreStklaft. Then in order to
check that X admits pro-cotangent spaces relative to X0, it sufficient to check that
for every S0 ∈ (

<∞Schaff
ft)/X0

, the fiber product S0 ×
X0

X admits pro-cotangent spaces.

3.5.5. Suppose that X = X ∈ Schlaft, and let (x ∶ S → X) ∈ (Schaff
)/X with

S ∈ Schaff
aft. Consider the object

T ∗x (X) ∈ QCoh(S)≤0.

From Lemma 3.4.4 we obtain:

Corollary 3.5.6. The object object T ∗x (X) has coherent cohomologies.

3.5.7. The tangent space. Using Corollary 3.4.8 and Lemma 3.5.2, we obtain that
if X ∈ PreStklaft admits a pro-cotangent space at x for (S,x) ∈ (Schaff

aft)/X , then it
admits a well-defined tangent space

Tx(X) ∈ IndCoh(S).

Namely, we let Tx(X) be the object of IndCoh(S) corresponding to T ∗x (X) via
the contravariant equivalence of Corollary 3.4.8.

4. The (pro)-cotangent complex

A prestack admits a pro-cotangent complex if it admits pro-cotangent spaces
that are compatible under the operation of pullback. We will study this notion in
this section.

4.1. Functoriality of (pro)-cotangent spaces. In this section we define what
it means for a prestack to admit a (pro)-cotangent complex. We reformulate this
definition as compatibility with a certain type of push-outs.

4.1.1. Let f ∶ S1 → S2 be a map of affine schemes. Consider the functor

f∗ ∶ QCoh(S2)
−
→ QCoh(S1)

−,

and let Pro(f∗) denote the resulting functor

Pro(QCoh(S2)
−
)→ Pro(QCoh(S1)

−
).

Note that we when regard Pro(QCoh(Si)
−
) as a full subcategory of (the oppo-

site of)

Funct(QCoh(Si)
≤0,Spc),

the functor Pro(f∗) is induced by the functor

LKEf∗ ∶ Funct(QCoh(S2)
≤0,Spc)→ Funct(QCoh(S1)

≤0,Spc).

Even more explicitly, for F1 ∈ QCoh(S1)
≤0 and Φ2 ∈ Pro(QCoh(S2)

−
), we have:

(4.1) ((Pro(f∗)(Φ2)))(F1) = Φ2(f∗(F1)).

36 1. DEFORMATION THEORY

4.1.2. Note also (see [Lu2, Theorem 7.3.4.18]) that we have a commutative dia-
gram of functors

(4.2)

QCoh(S1)
≤0 f∗
ÐÐÐÐ→ QCoh(S2)

≤0

RealSplitSqZ
×
×
×
Ö

×
×
×
Ö

RealSplitSqZ

(Schaff
)S1/ ÐÐÐÐ→ (Schaff

)S2/,

where the bottom horizontal arrow is given by push-out.

4.1.3. Let X be an object of PreStk that admits pro-cotangent spaces. Let f ∶

S1 → S2 be a map of affine schemes. Let x2 ∶ S2 → X and denote x1 ∶= x2 ○ f .

From (4.2), for F1 ∈ QCoh(S1)
≤0, we obtain a canonically defined map

(4.3) MapsS2/((S2)f∗(F1),X)→MapsS1/((S1)F1 ,X),

which depends functorially on F1.

We can interpret the map (4.3) as a map

(4.4) T ∗x1
(X)→ Pro(f∗)(T ∗x2

(X))

in Pro(QCoh(S1)
−
).

Definition 4.1.4. We shall say that X admits a pro-cotangent complex if it
admits pro-cotangent spaces and the map (4.4) is an isomorphism for any (S2, x2 ∶

S2 → X) and f as above.

4.1.5. Equivalently, X admits a pro-cotangent complex if it admits pro-cotangent
spaces and the map (4.3) is an isomorphism for any (S2, x2 ∶ S2 → X), f and F1 as
above.

Still equivalently, from (4.2), we obtain that X admits a pro-cotangent complex
it admits pro-cotangent spaces and takes push-outs of the form

(S1)F1 ⊔
S1

S2,

where (S1)F1 is a split square-zero extension of S1, to pullbacks in Spc.

Remark 4.1.6. Note that both the condition of admitting pro-cotangent spaces
and a pro-cotangent complex are expressed as the property of taking certain push-
outs in Schaff to pullbacks in Spc.

4.1.7. The cotangent complex. We give the following definition:

Definition 4.1.8. We shall say that X admits a cotangent complex it admits
cotangent spaces and a pro-cotangent complex.

In other words, we require that for every (S,x), the object T ∗x (X) belong to
QCoh(S)−, and that for a map f ∶ S1 → S2, the resulting canonical map

T ∗x1
(X)→ f∗(T ∗x2

(X))

be an isomorphism in QCoh(S1)
−.

Thus, if X admits a cotangent complex, the assignment

(S,x) ∈ (Schaff
)/X ↝ T ∗x (X) ∈ QCoh(S)

4. THE (PRO)-COTANGENT COMPLEX 37

defines an object of QCoh(X), which we shall denote by T ∗(X) and refer to as the
cotangent complex of X .

4.1.9. Let Z ∈ Sch, regarded as a prestack. We already know that Z admits
cotangent spaces. Moreover, from Lemma 1.3.3(b), it follows that the maps (4.3)
are isomorphisms. Hence, we obtain that Z admits a cotangent complex.

4.1.10. The relative situation. The same definitions apply in the relative situation,
when we consider prestacks and affine schemes over a given prestack X0.

The analog of Lemma 2.4.5 holds when we replace ‘cotangent spaces’ by ‘cotan-
gent complex’.

4.2. Conditions on the (pro)-cotangent complex. In this subsection we in-
troduce various conditions that one can impose on the (pro)-cotangent complex of
a prestack.

4.2.1. Connectivity conditions.

Definition 4.2.2.

(a) We shall say that X admits an (−n)-connective pro-cotangent complex (resp.,
cotangent complex) if it admits (−n)-connective pro-cotangent spaces (resp., cotan-
gent spaces) and a pro-cotangent complex.

(b) We shall say that X admits a locally eventually connective pro-cotangent com-
plex if it admits a pro-cotangent complex and its pro-cotangent spaces are eventually
connective.

(c) We shall say that X admits a uniformly eventually connective pro-cotangent
complex (resp., cotangent complex) if there exists an integer n such that X admits
an (−n)-connective pro-cotangent complex (resp., cotangent complex).

For example, we obtain that any X ∈ Sch, regarded as an object of PreStk,
admits a connective cotangent complex.

4.2.3. The (pro)-cotangent complex in the convergent/finite type case. Suppose now
that X is convergent (resp., belongs to PreStklaft). By Lemma 3.3.4 (resp., Lemma 3.5.3),
the condition that X admit pro-cotangent spaces is sufficient to test on affine
schemes that are eventually coconnective (resp., eventually coconnective and of
finite type).

Similarly, we have:

Lemma 4.2.4.

(a) Assume that X is convergent. Then X admits a pro-cotangent complex if and
only if it admits pro-cotangent spaces, and the map (4.3) is an isomorphism for

S1, S2 ∈
<∞Schaff and F1 ∈ QCoh(S1)

>−∞,≤0.

(b) Assume that X ∈ PreStklaft. Then X admits a pro-cotangent complex if and

only if it admits pro-cotangent spaces, and for any map f ∶ S1 → S2 in (
<∞Schaff

ft)/X
and F1 ∈ Coh(S1)

≤0, the map

colim
F2∈Coh(S2)≤0,f∗(F2)→F1

MapsS2/((S2)F2 ,X)→MapsS1/((S1)F1 ,X)

is an isomorphism in Spc.

In addition:

38 1. DEFORMATION THEORY

Lemma 4.2.5. Let π ∶ X → X0 be a morphism in convPreStk (resp., PreStklaft).
Then in order to check that X admits a pro-cotangent complex relative to X0, it is
sufficient to check that for any S0 ∈

<∞
(Schaff

)/X0
(resp., S0 ∈ (

<∞Schaff
ft)/X0

), the
fiber product S0 ×

X0

X admits a pro-cotangent complex.

4.2.6. Cotangent vs (pro)-cotangent. We observe the following:

Proposition 4.2.7. Let X be convergent (resp., locally almost of finite type)
and admit a locally eventually connective pro-cotangent complex. Suppose that X
admits cotangent spaces for all S → X with S ∈

<∞Schaff (resp., S ∈
<∞Schaff

ft).
Then X admits a cotangent complex.

Proof. First, we note that the assertion in the locally almost of finite type
case follows formally from that in the convergent case.

To prove the latter we need to show the following. Let T be an object of
Pro(QCoh(S)≤0

), such that for every truncation in ∶
≤nS → S, we have

(Pro(i∗n))(T) ∈ QCoh(≤nS)≤0.

Then T ∈ QCoh(S)≤0.

This follows from the next general observation (which is a particular case of
Volume I, Chapter 3, Proposition 3.6.10):

Lemma 4.2.8. The functors {i∗n} define an equivalence

QCoh(S)≤0
→ lim

n
QCoh(≤nS)≤0.

�

4.3. The pro-cotangent complex as an object of a category. In this sub-
section we will show that for a prestack X locally almost of finite type that admits
a (pro)-cotangent complex, there exists a tangent complex, which is naturally an
object of IndCoh(X).

4.3.1. Let X be a prestack. We define the category

Pro(QCoh(X)
−
)
fake

as
lim

(S,x)∈(Schaff)/X
Pro(QCoh(S)−).

Let us emphasize that Pro(QCoh(X)
−
)
fake is not the same as Pro(QCoh(X)

−
)

where the latter is the pro-completion of the category

QCoh(X)
−
∶= ∪

n
QCoh(X)

≤n.

We have a fully faithful embedding

QCoh(X)
−
→ Pro(QCoh(X)

−
)
fake,

given by QCoh(S)− ↪ Pro(QCoh(S)−) for every (S,x) ∈ (Schaff
)/X .

4.3.2. By definition, if X admits a pro-cotangent complex, then we have a well-
defined object

T ∗(X) ∈ Pro(QCoh(X)
−
)
fake,

whose value on every (S,x) ∈ (Schaff
)/X is T ∗x (X) ∈ Pro(QCoh(S)−).

4. THE (PRO)-COTANGENT COMPLEX 39

4.3.3. Let
convPro(QCoh(X)

−
)
fake

⊂ Pro(QCoh(X)
−
)
fake

be the full subcategory equal to

lim
(S,x)∈(Schaff)/X

convPro(QCoh(S)−).

We note:

Lemma 4.3.4. Assume that X is convergent. Then the restriction functor

convPro(QCoh(X)
−
)
fake

= lim
(S,x)∈(Schaff)/X

convPro(QCoh(S)−)→

→ lim
(S,x)∈(<∞Schaff)/X

convPro(QCoh(S)−)

is an equivalence.

4.3.5. By Lemma 3.3.3, if X is convergent and admits a pro-cotangent complex,
we have

T ∗(X) ∈
convPro(QCoh(X)

−
)
fake.

4.3.6. Assume now that X ∈ PreStklaft. By Lemma 4.3.4, we can rewrite

(4.5) convPro(QCoh(X)
−
)
fake

≃ lim
(S,x)∈(<∞Schaff

ft)/X

convPro(QCoh(S)−).

Let
Pro(QCoh(X)

−
)
fake
laft ⊂

convPro(QCoh(X)
−
)
fake

be the full subcategory equal, in terms of (4.5), to

lim
(S,x)∈(<∞Schaff

ft)/X
Pro(QCoh(S)−)laft ⊂ lim

(S,x)∈(<∞Schaff
ft)/X

convPro(QCoh(S)−).

By Lemma 3.5.2, obtain that if X belongs to PreStklaft and admits a pro-
cotangent complex, we have

T ∗(X) ∈ Pro(QCoh(X)
−
)
fake
laft .

4.4. The tangent complex.
4.4.1. Assume again that X ∈ PreStklaft. By Corollary 3.4.8 and the convergence
property of IndCoh (see Volume I, Chapter 5, Sect. 3.4.1), we obtain:

Corollary 4.4.2. There exists a canonically defined equivalence

(Pro(QCoh(X)
−
)
fake
laft)

op
≃ IndCoh(X).

4.4.3. Assume now that admits a pro-cotangent complex. We obtain that there
exists a canonically defined object

T (X) ∈ IndCoh(X),

which is obtained from T ∗(X) ∈ Pro(QCoh(X)
−
)
fake
laft via the equivalence of Corol-

lary 4.4.2 above.

Concretely, T (X) is given by the assignment

(S,x) ∈ (Schaff
aft)/X ↝ Tx(X)

(see Sect. 3.5.7 for the notation Tx(X)).

We shall refer to T (X) as the tangent complex of X .

40 1. DEFORMATION THEORY

4.5. The (co)differential. We will now introduce another basic structure asso-
ciated with the pro-cotangent complex, namely, the co-differential map.

4.5.1. Let S be an object of Schaff . By the above, we have a canonical object

T ∗(S) ∈ QCoh(S).

We claim that there is a canonical map of schemes under S:

(4.6) d ∶ ST ∗(S) → S,

where T ∗(S) is regarded as an object of QCoh(S)≤0.

Indeed, the map d corresponds to the identity map on the left-hand side in the
isomorphism

Maps(T ∗(S), T ∗(S)) ≃ MapsS/(ST ∗(S), S),

where we take the target prestack X to be S, and the map x ∶ S → X to be the
identity map.

4.5.2. Let X be an object of PreStk that admits pro-cotangent spaces, and let
x ∶ S → X be a map. We claim that there is a canonical map in Pro(QCoh(S)−).

(dx)∗ ∶ T ∗x (X)→ T ∗(S).

The map (dx)∗ corresponds via the isomorphism

Maps(T ∗x (X), T ∗(S)) ≃ MapsS/(ST ∗(S),X),

to the map

ST ∗(S)
d
Ð→ S

x
→ X .

We shall refer to (dx)∗ as the codifferential of x.

4.5.3. Assume for a moment that X ∈ PreStklaft and S ∈ Schaff
aft. In this case (dx)∗

corresponds to a canonically defined map in IndCoh(Z),

dx ∶ T (S)→ Tx(X),

which we shall refer to as the differential of x.

4.5.4. Finally, let us note that the construction of the map d is local in the Zariski
topology. Hence, we obtain that it is well-defined for any X ∈ Sch, which is not
necessarily affine:

d ∶XT ∗(X) →X,

4.6. The value of the (pro)-cotangent complex on a non-affine scheme.
In this subsection we will study the pullback of the (pro)-cotangent complex of a
prestack to a non-affine scheme.

4. THE (PRO)-COTANGENT COMPLEX 41

4.6.1. Let Z be a scheme.

(4.7) Z = colim
a∈A

Ua

where Ua ∈ Schaff , the maps Uα → Z are open embeddings, and where the colimit
is taken in Sch.

We have a pair of mutually adjoint functors

(4.8) lim
a∈A

Pro(QCoh(Ua)
−
)⇄ Pro(QCoh(Z)

−
),

where the functor ← is given by left Kan extension along each j∗a , and the functor
→ sends a compatible family

{Φa ∈ Pro(QCoh(Ua)
−
)}

to the functor Φ ∶ QCoh(Z)
−
→ Vect given by

Φ(F) ∶= lim
a∈A

Φa(j
∗
a(F)).

We have:

Lemma 4.6.2. Let Z be quasi-compact. Then functors in (4.8) are mutually
inverse equivalences.

Proof. Follows easily from the fact that we can replace the limit over the
category A by a finite limit. �

4.6.3. Let X be a prestack that admits a pro-cotangent complex. Assume that X
is a sheaf in the Zariski topology. Let Z be a quasi-compact scheme.

Let x ∶ Z → X be a map. Recall that according to Sect. 2.3.5, we have a
well-defined object

T ∗x (X) ∈ Pro(QCoh(Z)
−
).

The fact that the map (4.4) is an isomorphism implies that T ∗(X) gives rise
to a well-defined object

(4.9) {T ∗x∣Ua (X)} ∈ lim
a∈A

Pro(QCoh(Ua)
−
).

By definition, we have:

Lemma 4.6.4. The object T ∗x (X) is canonically isomorphic to the image of
{T ∗x∣Ua

(X)} under the functor → in (4.8).

In particular, from Lemma 4.6.2 we obtain:

Corollary 4.6.5. Let f ∶ Z1 → Z2 be a map in (Schqc)/X . Then the canonical
map

T ∗x1
(X)→ Pro(f∗)(T ∗x2

(X))

is an isomorphism in Pro(QCoh(Z1)
−
).

42 1. DEFORMATION THEORY

4.6.6. The Zariski-locality of the construction in Sect. 4.5.2 implies that that there
exists a canonically defined map

(dx)∗ ∶ T ∗x (X)→ T ∗(Z).

Furthermore, if X ∈ PreStklaft and Z ∈ Schaft, (dx)∗ corresponds to a map in
IndCoh(Z),

dx ∶ T (Z)→ Tx(X).

5. Digression: square-zero extensions

The notion of square-zero extension is central to deformation theory. It allows
to obtain nilpotent embeddings of a scheme by iterating a certain linear construc-
tion.

5.1. The notion of square-zero extension. In this subsection we introduce
(following [Lu2, Sect. 7.4.1]) the notion of square-zero extension and study its
basic properties.

5.1.1. Let X be an object of Sch. The category of square-zero extensions is by
definition

((QCoh(X)
≤−1

)T ∗(X)/)
op
.

There is a naturally defined functor

(5.1) RealSqZ ∶ ((QCoh(X)
≤−1

)T ∗(X)/)
op
→ SchX/

that sends

T ∗(X)
γ
→ F ∈ (QCoh(X)

≤−1
)T ∗(X)/

to

X ′
∶=X ⊔

XF
X,

where the two maps XF ⇉ F are the tautological projection XF
pr
→X, and the map

XF
γ
→XT ∗(X)

d
Ð→X,

respectively. The map X → X ′ corresponds to the first factor in X ⊔
XF

X; it is a

closed nil-isomorphism.

5.1.2. Here is a functorial interpretation of the functor (5.1):

Given X ∈ Sch, let SchX/, inf-closed be the full subcategory of SchX/, spanned by
those f ∶X → Y , for which the codifferential

(df)∗ ∶ T ∗f (Y) = f∗(T ∗(Y))→ T ∗(X)

induces a surjection on H0. I.e., T ∗(X/Y) ∈ QCoh(X)
≤−1.

We have a functor

(5.2) SchX/, inf-closed → ((QCoh(X)
≤−1

)T ∗(X)/)
op, (Y, f)↦ T ∗(X/Y).

Unwinding the definitions, we see that the functor RealSqZ of (5.1) is the left
adjoint of (5.2).

5. DIGRESSION: SQUARE-ZERO EXTENSIONS 43

5.1.3. The following observation may be helpful in parsing the above construction
of the functor RealSqZ. Let F be an object of QCoh(X)

≤−1, and let γ1, γ2 be maps
T ∗(X)→ F . We have:

Lemma 5.1.4. There is a canonical isomorphism in (Sch)X/

X ⊔
0,XF ,γ

X ≃X ⊔
γ1,XF ,γ2

X,

where X maps to both sides via the left copy of X in the push-out, and γ = γ1 − γ2.

Proof. By definition, the left-hand and the-right side are the co-equalizers in
SchX/ of the maps

XF ⇉X,

equal to (pr,d ○ γ) and (d ○ γ1,d ○ γ2), respectively.

Given a map x ∶X → Y , where Y ∈ Sch, in each of the two cases, the datum of
a map

co-Eq(XF ⇉X)→ Y

in SchX/ is equivalent to that of a map

T ∗x (Y)→ Eq(T ∗(X)⇉ F),

where T ∗x (Y)→ T ∗(X) is (dx)∗, and the maps T ∗(X)⇉ F are

(0, γ) and (γ1, γ2),

respectively. This makes the assertion of the lemma manifest.
�

5.1.5. We shall denote the category

((QCoh(X)
≤−1

)T ∗(X)/)
op

also by SqZ(X), and refer to its objects as square-zero extensions of X. Compare
this with the notation SplitSqZ(X) in Sect. 2.1.6.

Thus, RealSqZ is a functor

SqZ(X)→ SchX/ .

We shall say that (X ↪X ′
) ∈ SchX/ has a structure of square-zero extension if

it given as the image of an object of SqZ(X) under the functor RealSqZ.

Note, however, that in general, the functor RealSqZ is not fully faithful.

5.1.6. For a fixed F ∈ QCoh(X)
≤−1, we shall refer to the category (in fact, space)

Maps(T ∗(X),F)

as that of square-zero extensions of X by means of I ∶= F[−1].

The reason for this terminology is the following. Let

(X
i
↪X ′

) = RealSqZ(T ∗(X)→ F).

Then from the construction of X ′ as a push-out it follows that we have a fiber
sequence in QCoh(X ′

):

(5.3) i∗(I)→ OX′ → i∗(OX),

where i denotes the closed embedding X →X ′. I.e., I is the ‘ideal’ of X inside X ′.

44 1. DEFORMATION THEORY

5.1.7. Finally, let us note that we have the following pullback diagram of cate-
gories:

(QCoh(X)
≤0

)
op
ÐÐÐÐ→ ((QCoh(X)

≤−1
)T ∗(X)/)

op

=
×
×
×
Ö

×
×
×
Ö

=

SplitSqZ(X) ÐÐÐÐ→ SqZ(X)

RealSplitSqZ
×
×
×
Ö

×
×
×
Ö

RealSqZ

(Sch)X/ /X ÐÐÐÐ→ (Sch)X/,

where the top horizontal arrow is the functor

F ∈ QCoh(X)
≤0

↦ (T ∗(X)
0
→ F[1]) ∈ (QCoh(X)

≤−1
)T ∗(X)/.

5.2. Functoriality of square-zero extensions. In this subsection we will study
how square-zero extensions behave under push-outs along affine morphisms.

5.2.1. Let f ∶X1 →X2 be an affine map in Sch. We claim that there is a canoni-
cally defined functor

(5.4) (QCoh(X1)
≤−1

)T ∗(X1)/ → (QCoh(X2)
≤−1

)T ∗(X2)/

that makes the diagram

SqZ(X1) ÐÐÐÐ→ SqZ(X2)

RealSqZ
×
×
×
Ö

×
×
×
Ö

RealSqZ

SchX1/ ÐÐÐÐ→ SchX2/

commute, where the functor SchX1/ → SchX2/ is given by push-out:

(X1 ↪X ′
1)↦ (X2 ↪X2 ⊔

X1

X ′
1).

Indeed, the functor (5.4) sends γ1 ∶ T
∗
(X1)→ F1 to

γ2 ∶ T
∗
(X2)→ f∗(F1),

where γ2 is obtained by the (f∗, f∗)-adjunction from the composition

f∗(T ∗(X2)) ≃ T
∗
f (X2)

(df)∗
Ð→ T ∗(X1)

γ1
Ð→ F1.

Note that the assumption that f be affine was used to ensure that f∗(F1) ∈

QCoh(X2)
≤−1.

Remark 5.2.2. Note that for a map f ∶X1 →X2 as above, the diagram

SplitSqZ(X1) ÐÐÐÐ→ SplitSqZ(X2)

×
×
×
Ö

×
×
×
Ö

SqZ(X1) ÐÐÐÐ→ SqZ(X2).

commutes, where the top horizontal arrow is

f∗ ∶ QCoh(X1)
≤0
→ QCoh(X2)

≤0.

5. DIGRESSION: SQUARE-ZERO EXTENSIONS 45

5.2.3. The construction in Sect. 5.2.1 makes the assignment

X ↝ SqZ(X)

into a functor (Sch)affine → 1 -Cat, where

(Sch)affine ⊂ Sch

is the 1-full subcategory, where we restrict 1-morphisms to be affine.

Thus we obtain a co-Cartesian fibration

(SqZ(Sch))affine → (Sch)affine,

whose fiber over X ∈ Sch is SqZ(X).

5.2.4. In particular, given an affine map f ∶X1 →X2 and objects

(T ∗(Xi)
γi
→ Fi) ∈ SqZ(Xi), i = 1,2

we obtain a well-defined notion of map of square-zero extensions

(T ∗(X1)
γi
→ F1)→ (T ∗(X2)

γi
→ F2),

extending f .

By definition, a datum of such a map amounts to a morphism F2 → f∗(F1),
equipped with a datum of commutativity of the diagram

f∗(T ∗(X2))
(df)∗
ÐÐÐÐ→ T ∗(X1)

γ2

×
×
×
Ö

×
×
×
Ö

γ1

f∗(F2) ÐÐÐÐ→ F1.

In the above circumstances we shall say that for

(Xi ↪X ′
i) = RealSqZ(T ∗(Xi)

γi
→ Fi),

the resulting commutative diagram

X1 ÐÐÐÐ→ X ′
1

f
×
×
×
Ö

×
×
×
Ö

f ′

X2 ÐÐÐÐ→ X ′
2

has been given a structure of map of sqaure-zero extensions.

5.3. Pull-back of square-zero extensions. In this subsection we will show that,
in addition to push-outs of square-zero extensions with respect to the source, one
can also form pullbacks with respect to maps of the target.

46 1. DEFORMATION THEORY

5.3.1. Note that the category SqZ(Sch)affine, introduced above, admits a forgetful
functor to the category Funct([1], (Sch)affine) of pairs of schemes (X → X ′

) and
affine maps between them.

The functor

targ ∶ Funct([1], (Sch)affine)→ (Sch)affine, (X →X ′
)→X ′

is a Cartesian fibration (via the formation of fiber products).

We claim:

Proposition 5.3.2. The composite functor

(5.5) SqZ(Sch)affine → Funct([1], (Sch)affine)
targ
Ð→ (Sch)affine

is a Cartesian fibration, and the forgetful functor

SqZ(Sch)affine → Funct([1], (Sch)affine)

sends Cartesian arrows to Cartesian arrows.

5.3.3. The concrete meaning of this proposition is that if

(X ↪X ′
) = RealSqZ(T ∗(X)

γX
Ð→ FX),

then for an affine map Y ′
→X ′, the object

(X ×
X′
Y ′

=∶ Y ↪ Y ′
) ∈ SchY /

has a canonical structure of square-zero extension; moreover as such it satisfies an
appropriate universal property (for mapping into it).

5.3.4. Proof of Proposition 5.3.2. In the notations of Sect. 5.3.3, note that γX
canonically factors as

T ∗(X)→ T ∗(X/X ′
)

γ′X
Ð→ FX .

Set FY ∶= f∗(FX). We construct the morphism

γY ∶ T ∗(Y)→ FY

as the composite

T ∗(Y)→ T ∗(Y /Y ′
) ≃ f∗(T ∗(X/X ′

))

f∗(γ′X)
Ð→ f∗(FX).

By Sect. 5.1.2, the square-zero extension of Y corresponding to γY is equipped
with a canonical map to Y ′. This map is an isomorphism by (5.3).

The fact that this square-zero extension satisfies the required universal property
is a straightforward verification.

�

5.3.5. The construction of pullback in Proposition 5.3.2 is local in the Zariski
topology. This allows to extend the Cartesian fibration (5.5) to a Cartesian fibration

SqZ(Sch)→ Sch,

i.e., the formation of structure of square-zero extension on the pullback is applicable
to not necessarily affine morphisms between schemes.

5. DIGRESSION: SQUARE-ZERO EXTENSIONS 47

5.4. Square-zero extensions and truncations. In this subsection we will es-
tablish a crucial fact that a scheme can be obtained as a succession of square-zero
extensions of its n-coconnective truncations.

5.4.1. We claim (which is essentially [Lu2, Theorem 7.4.1.26]):

Proposition 5.4.2.

(a) For X ∈
clSch, the category of its square-zero extensions by means of objects of

QCoh(X)
♡ is equivalent to that of closed embeddings of classical schemes X ↪X ′,

where the ideal of X in X ′ is such that its square vanishes.

(b) For Xn ∈
≤nSch, the category of

(Xn+1 ∈
≤n+1Sch, ≤nXn+1 ≃Xn)

is canonically equivalent to that of square-zero extensions of Xn by objects of

QCoh(Xn)
♡
[n + 1] ⊂ QCoh(Xn).

Proof. We will prove point (b), as the proof of point (a) is similar but simpler.
We have the fiber sequence

i∗(F[−1])→ OXn+1 → i∗(OXn),

where F ∈ (QCoh(Xn)
♡
)[n + 2].

We claim that Xn+1 has a structure of square-zero extension of Xn, correspond-
ing to a canonically defined map γ ∶ T ∗(Xn)→ F .

Indeed, consider the fiber sequence

T ∗i (Xn+1)
(di)∗
→ T ∗(Xn)→ T ∗(Xn/Xn+1),

and the existence and canonicity of the required map γ follows from the next
observation:

⎧
⎪⎪
⎨
⎪⎪
⎩

Hk
(T ∗(Xn/Xn+1)) = 0 for k ≥ −n − 1

H−n−2
(T ∗(Xn/Xn+1)) ≃ F ,

which in turns results from the following general assertion (see [Lu2, Theorem
7.4.3.1]):

Lemma 5.4.3. Let i ∶ X → Y be a closed embedding of schemes. Consider the
corresponding fiber sequence

I → OY → i∗(OX).

Then:

(a) H0
(T ∗(X/Y)) = 0 and

H−1
(T ∗(X/Y)) =H0

(i∗(I))

as objects of QCoh(X)
♡.

(b) For n ≥ 0 we have:

τ≥−n(I) = 0 ⇒ τ≥−n−1
(T ∗(X/Y)) = 0.

In the latter case clX ≃
clY and

H−n−2
(T ∗(X/Y)) ≃H−n−1

(I)

as objects of QCoh(X)
♡
≃ QCoh(Y)

♡. �

48 1. DEFORMATION THEORY

5.4.4. The assertion of Proposition 5.4.2(b) in particular constructs a functor

(5.6) ≤n+1Sch→ SqZ(Sch)affine ×
Sch×Sch

(
≤nSch×≤n+1Sch).

Proposition 5.4.5. The functor (5.6) is the (fully faithful) right adjoint of the
forgetful functor

SqZ(Sch)affine ×
Sch×Sch

(
≤nSch×≤n+1Sch)→ ≤n+1Sch .

Proof. We construct the unit of the adjunction as follows. Given a square-
zero extension

(T ∗(X)
γ
Ð→ F), X ∈

≤nSch, F ∈ QCoh(X)
≥−n−2,≤−1,

denote
(X ↪X ′

) ∶= RealSqZ(T ∗(X)
γ
Ð→ F),

and note that there exists a canonically defined commutative diagram of scheme6

X ÐÐÐÐ→ X ′

f
×
×
×
Ö

×
×
×
Ö

id

≤nX ′
ÐÐÐÐ→ X ′.

Let (X ↪X ′
) be given by a map γ ∶ T ∗(X)→ F , where F ∈ QCoh(X)

≥−n−2,≤−1.
We obtain a commutative diagram in QCoh(X):

f∗(T ∗(≤nX ′
)) ÐÐÐÐ→ f∗(T ∗(≤nX ′

/X ′
))

(df)∗
×
×
×
Ö

×
×
×
Ö

T ∗(X) ÐÐÐÐ→ F .

We note that F lives in the cohomological degrees ≥ −n−2, while, by Lemma 5.4.3,
T ∗(≤nX ′

/X ′
) lives in the cohomological degrees ≤ −n − 2 with

H−n−2
(T ∗(≤nX ′

/X ′
)) ≃H−n−1

(I),

where T ∗(≤nX ′
)→ I[1] is the map defining the square-zero extension ≤nX ′

↪X ′.

Hence, the map f∗(T ∗(≤nX ′
/X ′

))→ F canonically gives rise to a map f∗(I[1])→
F , and we obtain a commutative diagram

f∗(T ∗(≤nX ′
)) ÐÐÐÐ→ f∗(I[1])

(df)∗
×
×
×
Ö

×
×
×
Ö

T ∗(X) ÐÐÐÐ→ F ,

which defines the sought-for unit for the adjunction. The fact that it satisfies the
adjunction axioms is a straightforward check.

�

5.5. Nilpotent embeddings. In this subsection we will show that a nilpotent
embedding of a scheme can be obtained as a (infinite) composition of square-zero
extensions.

6In order to unburden the notation, for the duration of this Chapter, for a scheme Y , we

will denote by ≤nY the object of Sch that should be properly denoted by Lτ≤n(Y), see Volume I,
Chapter 2, Sect. 2.6.2. I.e., this is the n-coconnective truncation of Y , viewed as an object of

Sch, rather than ≤nSch.

5. DIGRESSION: SQUARE-ZERO EXTENSIONS 49

5.5.1. We shall say that a map X → Y of schemes is a nilpotent embedding if
clX → clY is a closed embedding of classical schemes, such that the ideal of clX in
clY is nilpotent (i.e., there exists a power n that annihilates every section).

5.5.2. We are going to prove the following useful result:

Proposition 5.5.3. Let X → Y be a nilpotent embedding of schemes. There
exists a sequence of schemes

X =X0
0 ↪X1

0 ↪ ...↪Xi
0 ↪ ...↪Xn

0 =X0 ↪X1 ↪ ...↪Xj ↪ ...↪ Y,

such that:

● Each of the maps Xi
0 ↪Xi+1

0 , X ′
0 ↪X0 and Xj ↪Xj+1 has a structure of

square-zero extension;
● For every j, the map gj ∶Xj → Y induces an isomorphism ≤jXj →

≤jY .

The rest of this subsection is devoted to the proof of Proposition 5.5.3.

5.5.4. Step 1. Let

clX =X0
cl,0 ↪X1

cl,0 ↪ ...↪Xk
cl,0 ↪ ...Xn

cl,0 =
clY

be a sequence of square-zero extensions of classical schemes. It exists by the as-
sumption that the ideal of the closed embedding clX → clY is nilpotent. Set

Xi
0 ∶=X

0
0 ⊔

clX0
cl,0

Xk
cl,0.

By construction, g0 ∶X0 → Y induces an isomorphism clX0 →
clY .

5.5.5. Step 2. Starting from g0 ∶ X0 → Y , we shall construct g1 ∶ X1 → Y using
the following general procedure. The same procedure constructs gi+1 ∶ Xi+1 → Y
starting from gi ∶Xi → Y .

Let h ∶ Z → Y be a map that induces an isomorphism of the underlying classical
schemes, and such that T ∗(Z/Y) lives in the cohomological degrees ≤ −(k+1) with
k ≥ 0.

We will construct a map f ∶ Z ↪ Z ′ with a structure of square-zero extension
by an object J ∈ QCoh(Z)

♡
[k], and an extension of the map h to a map h′ ∶ Z ′

→ Y
so that h′ such that T ∗(Z/Y) lives in the cohomological degrees ≤ −(k+2). (Hence,
by Lemma 5.4.3, the ‘ideal’ of Z ′ in Y lives in degrees ≤ −(k+1), and in particular,
≤kZ → ≤kY is an isomorphism.)

Namely, consider the fiber sequence

T ∗h (Y)→ T ∗(Z)→ T ∗(Z/Y),

and take

J ∶=H−k−1
(T ∗(Z/Y))[k] = τ≥−(k+1)

(T ∗(Z/Y))[−1].

We let the sought-for square-zero extension Z ↪ Z ′ be given by the composite
map

T ∗(Z)→ T ∗(Z/Y)→ J [1].

The composition

T ∗h (Y)→ T ∗(Z)→ J [1]

acquires a canonical null-homotopy by constriction, thereby giving rise to a map
h′ ∶ Z ′

→ Y .

50 1. DEFORMATION THEORY

In order to show that T ∗(Z ′
/Y) lives in QCoh(Z ′

)
≤−(k+2), consider the fiber

sequences

I → OY → h∗(OZ) and I ′ → OY → h′∗(OZ′)

and the diagram

h∗(J) ÐÐÐÐ→ h′∗(OZ′) ÐÐÐÐ→ h∗(OZ)
Õ
×
×
×

Õ
×
×
×

Õ
×
×
×

Id

I ÐÐÐÐ→ OY ÐÐÐÐ→ h∗(OZ)
Õ
×
×
×

Õ
×
×
×

Õ
×
×
×

I
′

ÐÐÐÐ→ I
′

ÐÐÐÐ→ 0.

By Lemma 5.4.3, the map I → h∗(J) identifies with the truncation map

I → τ≥−k(I).

Hence, I ′ ∈ QCoh(Y)
≤−(k−1). Now, this implies that T ∗(Z ′

/Y) ∈ QCoh(Z ′
)
≤−(k+2)

again by Lemma 5.4.3.
�

6. Infinitesimal cohesiveness

Infinitesimal cohesiveness is a property of a prestack that allows to describe
maps into it from a square-zero extension of an affine scheme S as data involving
QCoh(S).

6.1. Infinitesimal cohesiveness of a prestack. In this subsection we introduce
the notion of infinitesimal cohesiveness in terms of compatibility with certain type
of push-outs.

6.1.1. Let X ∈ PreStk, and let (S,x) be an object of (Schaff
)/X . For

T ∗(S)
γ
→ F ∈ (QCoh(S)≤−1

)T ∗(S)/)
op

= SqZ(S)

and the corresponding

(S ↪ S′) ∶= RealSqZ(T ∗(S)
γ
→ F) = S ⊔

SF
S

we obtain a canonically defined map

(6.1) MapsS/(S
′,X)→ ∗ ×

Maps(SF ,X)
Maps(S,X),

where ∗→Maps(SF ,X) corresponds to the composition

SF
pr
Ð→ S

x
→ X .

Definition 6.1.2. We shall say that X is infinitesimally cohesive if the map
(6.1) is an isomorphism for all S,x and

(T ∗(S)
γ
→ F) ∈ ((QCoh(S)≤−1

)T ∗(S)/)
op

as above.

We observe that by Lemma 1.3.3(b), any X =X ∈ Sch is infinitesimally cohesive.

6. INFINITESIMAL COHESIVENESS 51

6.1.3. Suppose that X is convergent (resp., belongs to PreStklaft). Then as in
Lemmas 3.3.4 (resp., 3.5.3), in order to verify the condition of infinitesimal co-

hesiveness, it is sufficient to consider S ∈
<∞Schaff and F ∈ QCoh(S)>−∞ (resp.,

S ∈
<∞Schaff

ft and F ∈ Coh(S)).

6.1.4. The relative situation. The notion of infinitesimal cohesiveness renders au-
tomatically to the relative situation.

We note that the analog of Lemma 2.4.5 holds when we replace ‘admitting
cotangent spaces’ by ‘infinitesimal cohesiveness’.

We also note that when X and X0 are convergent (resp., locally almost of finite
type), the analog of Lemma 4.2.5 holds.

6.2. Rewriting the condition of infinitesimal cohesiveness. We will now
rewrite the definition of infinitesimal cohesiveness in terms of QCoh.

6.2.1. Note that the space

∗ ×
Maps(SF ,X)

Maps(S,X)

identifies with the space of homotopies between the following two points of MapsS/(SF ,X):
the first being

SF
pr
Ð→ S

x
→ X ,

and the second being

SF
γ
→ ST ∗(S)

d
Ð→ S

x
→ X .

6.2.2. Assume that X admits a pro-cotangent space at x. We obtain that the
space

∗ ×
Maps(SF ,X)

Maps(S,X)

identifies with the space of null-homotopies of the composed map

T ∗x (X)

(dx)∗
Ð→ T ∗(S)

γ
→ F .

6.2.3. Thus, we obtain that if X admits pro-cotangent spaces, the condition of
infinitesimal cohesiveness can be formulated as saying that given (S,x), for every

(T ∗(S)→ F) ∈ (QCoh(S)≤−1
)T ∗(S)/

and the corresponding

(S ↪ S′) = RealSqZ(T ∗(S)→ F) ∈ Schaff
S/ ,

the canonical map of spaces

(6.2) MapsS/(S
′,X) ≃ {null homotopies of T ∗x (X)

(dx)∗
→ T ∗(S)→ F}

be an isomorphism.

Equivalently, this can be phrased as saying that for (S,x), the functor

(Schaff
)S/ /X ×

(Schaff)S/

SqZ(S)→ (QCoh(S)≤−1
)
coFib(T ∗x (X)

(dx)∗

→ T ∗(S))/

is an equivalence.

52 1. DEFORMATION THEORY

6.2.4. Suppose that X both admits a pro-cotangent complex and is infinitesimally
cohesive. Assume also that X is a sheaf in the Zariski topology.

Let Z be a scheme. From Lemma 4.6.2, we obtain:

Corollary 6.2.5. For (T ∗(Z)→ F) ∈ (QCoh(Z)
≤−1

)/T ∗(Z) and

(Z ↪ Z ′
) = RealSqZ(T ∗(Z)→ F) ∈ SchZ/,

the map

MapsZ/(Z
′,X)→ {null homotopies of T ∗x (X)

(dx)∗
→ T ∗(Z)→ F}

is an isomorphism.

6.3. Consequences of infinitesimal cohesiveness. If a prestack is infinitesi-
mally cohesive, one can deduce that it has certain properties from the fact that the
underlying reduced prestack has these properties.

6.3.1. First, combining Sect. 6.2.2 and Proposition 5.4.2, we obtain:

Lemma 6.3.2. Assume that X ∈ PreStk admits (−k)-connective pro-cotangent

spaces and is infinitesimally cohesive. Let S be an object of ≤nSchaff , and let S0 ⊂
clS

be given by a nilpotent ideal. Then the fibers of the map

Maps(S,X)→Maps(S0,X)

are (k + n)-truncated.

In particular, we obtain that if cl
X takes values in Sets ⊂ Spc, then for S ∈

≤nSchaff , the space Maps(S,X) is n-truncated.

6.3.3. From Sect. 5.2.1 we obtain:

Lemma 6.3.4. Let X be an object of PreStk, which both admits a pro-cotangent
complex and is infinitesimally cohesive. Then if

S′1 ⊔
S1

S2 → S′2

is a push-out diagram in Schaff , where S1 ↪ S′1 has a structure of a square-zero
extension. Then

Maps(S′2,X)→Maps(S′1,X) ×
Maps(S1,X)

Maps(S2,X)

is a pullback diagram.

Iterating, from Lemma 6.3.4, we obtain:

Corollary 6.3.5. Let X be an object of PreStk which both admits a pro-
cotangent complex and is infinitesimally cohesive. Let

S′1 ⊔
S1

S2 → S′2

be a push-out diagram in Schaff such that S′1 can be obtained from S1 as a finite
succession of square-zero extensions. Then

Maps(S′2,X)→Maps(S′1,X) ×
Maps(S1,X)

Maps(S2,X)

is a pullback diagram.

7. DEFORMATION THEORY 53

Furthermore, from Corollary 6.2.5, we obtain:

Corollary 6.3.6. Let X be an object of PreStk which both admits a pro-
cotangent complex and is infinitesimally cohesive. Assume also that X is a sheaf
in the Zariski topology. Let

Z ′
1 ⊔
Z1

Z2 → Z ′
2

be a push-out diagram in Sch, where the map Z1 → Z2 is affine, and Z ′
1 can be

obtained from Z1 as a finite succession of square-zero extensions. Then the map

Maps(Z ′
2,X)→Maps(Z ′

1,X) ×
Maps(Z1,X)

Maps(Z2,X)

is an isomorphism.

7. Deformation theory

In this section we finally define what it means for a prestack to admit defor-
mation theory, and discuss some basic consequences of this property.

7.1. Prestacks with deformation theory. In this subsection we give the defi-
nition of admitting deformation theory.

7.1.1. We now give the following crucial definition:

Definition 7.1.2. Let X be a prestack. We shall say that X admits deforma-
tion theory (resp., admits corepresentable deformation theory) if:

● It is convergent;
● It admits a pro-cotangent (resp., cotangent) complex;
● It is infinitesimally cohesive.

Note that the last two conditions are of the form that the functor X should
send certain push-outs in Schaff to pullbacks in Spc; see also Sect. 7.2.4.

7.1.3. In what follows we shall denote by

PreStkdef ⊂ PreStk and PreStklaft-def ⊂ PreStklaft

the full subcategories spanned by objects that admit deformation theory.

It is clear that the above subcategories are closed under finite limits taken in
PreStk.

7.1.4. We shall also consider the following variants:

Definition 7.1.5.

(a) We shall say that X admits an (−n)-connective deformation theory (resp.,
corepresentable deformation theory) if it admits deformation theory (resp., corep-
resentable deformation theory) and its cotangent spaces are (−n)-connective.

(b) We shall say that X admits a locally eventually connective deformation theory
if it admits deformation theory and its pro-cotangent spaces are locally eventually
connective.

(c) We shall say that X admits a uniformly eventually connective deformation the-
ory (resp., corepresentable deformation theory) if there exists an integer n such that
X admits a (−n)-connective deformation theory (resp., corepresentable deformation
theory).

54 1. DEFORMATION THEORY

As was mentioned above, any scheme X admits a connective corepresentable
deformation theory.

7.1.6. The same definitions carry over to the relative situations for X ∈ PreStk/X0

for some fixed X0 ∈ PreStk.

Let π ∶ X → X0 be a morphism in PreStk. Replacing the words ‘infinitesimal
cohesiveness’ by ‘admitting deformation theory’ we render the contents of Sect. 6.1.4
to the present context.

7.2. Compatibility with push-outs. In this subsection we rewrite the condition
of admitting deformation theory in terms of compatibility with certain type of push-
outs.

7.2.1. One of the main properties of prestacks with deformation theory is given
by the following proposition:

Proposition 7.2.2. Assume that X admits deformation theory, and let S′1 ⊔
S1

S2

be a push-out diagram in Schaff , where the map S1 → S′1 is a nilpotent embedding.
Then the map

Maps(S′1 ⊔
S1

S2,X)→Maps(S′1,X) ×
Maps(S1,X)

Maps(S2,X)

is an isomorphism.

Proof of Proposition 7.2.2. Follows from Corollary 6.3.5 using Proposi-
tion 5.5.3.

�

Corollary 7.2.3. Assume that X admits deformation theory, and is a sheaf
in the Zariski topology. Let

Z ′
1 ⊔
Z1

Z2 → Z ′
2

be a push-out diagram in Sch, where Z1 → Z ′
1 is a nilpotent embedding. Assume

that the map Z1 → Z2 is affine. Then the map

Maps(Z ′
2,X)→Maps(Z ′

1,X) ×
Maps(Z1,X)

Maps(Z2,X)

is an isomorphism.

7.2.4. Now, we have that the following converse of Proposition 7.2.2 holds:

Proposition 7.2.5. Let X ∈ PreStk be convergent. Assume that whenever
S′1 ⊔

S1

S2 is a push-out diagram in Schaff , where the map S1 → S′1 is a nilpotent

embedding, the map

Maps(S′1 ⊔
S1

S2,X)→Maps(S′1,X) ×
Maps(S1,X)

Maps(S2,X)

is an isomorphism. Then X admits deformation theory.

Proof. Let us first show that X admits pro-cotangent spaces. For (S,x) ∈

(Schaff
)/X and F ∈ QCoh(S)≤0, consider the push-out diagram

S ⊔
SF[1]

S → SF

7. DEFORMATION THEORY 55

(with both maps SF[1] → S being pr), and the resulting map

(7.1) MapsS/(SF ,X)→ Ω(MapsS/(SF[1],X)).

Since the map SF[1] → S is a nilpotent embedding, by assumption, the map
(7.1) is an isomorphism.

Let now F → F1 → F2 be a fiber sequence in QCoh(S) with all three terms in
QCoh(S)≤0. Consider the push-out diagrams

S ⊔
SF2

SF1 → SF

and

S ⊔
SF2[1]

SF1[1] → SF[1],

and the corresponding maps

(7.2) MapsS/(SF ,X)→ ∗ ×
MapsS/(SF2

,X)
MapsS/(SF1 ,X)

and

(7.3) MapsS/(SF[1],X)→ ∗ ×
MapsS/(SF2[1],X)

MapsS/(SF1[1],X).

Since the map SF2[1] → S is a nilpotent embedding, the map (7.3) is an isomor-
phism. Taking loops and using (7.1) we obtain that (7.2) is also an isomorphism.

Hence, X admits pro-cotangent spaces. The fact that X admits a pro-cotangent
complex follows from the fact that X takes push-outs of the form

(S1)F1 ⊔
S1

S2, F1 ∈ QCoh(S1)
≤0

to pullbacks; the latter because S1 → (S1)F1 is a nilpotent embedding.

Finally, X is infinitesimally cohesive because it takes push-outs of the form

S ⊔
SF[1]

S, F ∈ QCoh(S)≤0

to pullbacks; the latter because SF[1] → S is a nilpotent embedding.
�

Combining with Proposition 5.5.3, we obtain:

Corollary 7.2.6. Let X ∈ PreStk be convergent. Assume that whenever

S′1 ⊔
S1

S2

is a push-out diagram in Schaff , where the map S1 ↪ S′1 has a structure of square-
zero extension, the map

Maps(S′1 ⊔
S1

S2,X)→Maps(S′1,X) ×
Maps(S1,X)

Maps(S2,X)

is an isomorphism. Then X admits deformation theory.

56 1. DEFORMATION THEORY

7.2.7. It is easy to see that in the circumstances of Corollary 7.2.6, it is enough
to consider S1, S2, S

′
1 that belong to <∞Schaff . Furthermore, if X ∈ PreStklaft, it is

enough to take S1, S2, S
′
1 that belong to <∞Schaff

ft .

Hence, we obtain:

Corollary 7.2.8. The subcategory PreStkdef ⊂
convPreStk is closed under fil-

tered colimits, and the same is true for PreStklaft-def ⊂ PreStklaft.

Proof. Follows from the fact that filtered colimits commute with fiber prod-
ucts. �

7.3. Formal smoothness. In this subsection we discuss the notion of formal
smoothness of a prestack, and rewrite it for prestacks that admit deformation the-
ory.

7.3.1. Let X be an object of PreStk. We shall say that X is formally smooth, if
whenever S → S′ is a nilpotent embedding of affine schemes, the map

Maps(S′,X)→Maps(S,X)

is surjective on π0.

7.3.2. We have the following basic result:

Proposition 7.3.3. Assume that X admits deformation theory. Then the fol-
lowing conditions are equivalent:

(a) X is formally smooth.

(b) For any n ≥ 0, the restriction map

Maps(S,X)→Maps(≤nS,X), S ∈ Schaff

induces an isomorphism on πn (equivalently, on πn′ for n′ ≤ n).

(b’) The restriction map

Maps(S,X)→Maps(clS,X), S ∈ Schaff

induces an isomorphism on π0.

(c) For any (S,x) ∈ (Schaff
)/X and F ∈ QCoh(S)♡, we have

Maps(T ∗x (X),F) ∈ Vect≤0 .

(c’) Same as (c), but assuming that S is classical.

Proof. The implications (b) ⇒ (b’) and (c) ⇒ (c’) are tautological.

The implication (a) ⇒ (c) is immediate: apply the definition to the nilpotent
embedding SF[i] → S. Similarly, (b’) implies (c): use the fact that clS ≃

clSF[i] for
i > 0.

The implication (c) ⇒ (b) follows from Proposition 5.4.2(b). The implication
(c) ⇒ (a) follows from Proposition 5.5.3.

The implication (c’) ⇒ (c) follows from the fact that any object of QCoh(S)♡

is the direct image under clS → S.
�

7. DEFORMATION THEORY 57

7.3.4. Now, assume that X ∈ PreStklaft-def . In this case we have:

Proposition 7.3.5. Then the following conditions are equivalent:

(i) X is formally smooth.

(i’) The condition of formal smoothness is satisfied for nilpotent embeddings S → S′

with S,S′ ∈ <∞Schaff
ft .

(ii) For any n ≥ 0, the restriction map

Maps(S,X)→Maps(≤nS,X), S ∈
<∞Schaff

ft

induces an isomorphism on πn (equivalently, on πn′ for n′ ≤ n).

(ii’) The restriction map

Maps(S,X)→Maps(clS,X), S ∈
<∞Schaff

ft

induces an isomorphism on π0.

(iii) For any (S,x) ∈ (
clSchaff

ft)/X and F ∈ Coh(S)♡, we have

Maps(T ∗x (X),F) ∈ Vect≤0 .

(iii’) Same as (iii), but assuming that S is reduced.

Proof. The implications (i) ⇒ (i’), (ii) ⇒ (ii’) and (iii) ⇒ (iii’) are tautolog-
ical. The implications (i’) ⇒ (iii), (ii’) ⇒ (iii) and (iii) ⇒ (ii) follow in the same
way as in Proposition 7.3.3.

The fact that (iii’) implies (iii) follows from the fact that any object in QCoh(S)♡

is a finite extension of ones coming as direct image under redS → S.

It remains to show that (iii) implies (i). We will show that (iii) implies condition

(c’) from Proposition 7.3.3. Let (S′, x′) be an object of (
clSchaff

)/X and F ′ ∈
QCoh(S′)♡. Since X is locally almost of finite type, we can factor the map x′ ∶
S′ → X as

S′
f
→ S

x
→ X ,

where S ∈
clSchaff

ft . Set F ∶= f∗(F
′
). Since X admits a cotangent complex, we have

Maps(T ∗x′(X),F ′[i]) ≃ Maps(T ∗x (X),F[i]).

Write F as a filtered colimit

colim
α
Fα, Fα ∈ Coh(S)♡.

Now, since T ∗x (X) commutes with filtered colimits in QCoh(S)♡ (by Lemma 3.5.2),
we have:

Maps(T ∗x (X),Fα[i]) = 0 ⇒ Maps(T ∗x (X),F[i]) = 0,

as required.
�

7.3.6. The definition of formal smoothness and Proposition 7.3.3 can be easily
extended to a relative situation.

7.4. Artin stacks. In this subsection we show that Artin stacks, defined as in
Volume I, Chapter 3, Sect. 4, admit deformation theory.

58 1. DEFORMATION THEORY

7.4.1. We are going to prove:

Proposition 7.4.2.

(a) Let X be an n-Artin stack. Then X admits an (−n)-connective corepresentable
deformation theory.

(b) If X is smooth over a scheme Z, then for x ∶ S ∈ (
clSchaff

)/X , the relative

cotangent complex T ∗x (X /Z) lives in QCoh(S)≥0,≤n.

Arguing by induction on n, the proposition follows from the next lemma:

Lemma 7.4.3. Let f ∶ Y → X be a map in PreStk. Assume that:

● X satisfies étale descent;
● f is étale-locally surjective;
● Y admits deformation theory;
● Y admits deformation theory relative to X ;
● Y is formally smooth over X .

Then X admits deformation theory.

7.4.4. Proof of Lemma 7.4.3. We will show that if

S′1 ⊔
S1

S2 → S′2

is a push-out diagram in Schaff , where S1 → S′1 has a structure of a square-zero
extension, then, given a map S2 → X , the map

MapsS2/(S
′
2,X)→MapsS1/(S

′
1,X)

is an isomorphism. The other properties are proved similarly.

By étale descent for X , the statement is local in the étale topology on S2.
Hence, we can assume that the given map S2 → X admits a lift to a map S2 → Y.

Let Y●/X be the Čech nerve of f . We have a commutative diagram

∣MapsS2/(S
′
2,Y

●
/X)∣ ÐÐÐÐ→ MapsS2/(S

′
2,X)

×
×
×
Ö

×
×
×
Ö

∣MapsS1/(S
′
1,Y

●
/X)∣ ÐÐÐÐ→ MapsS1/(S

′
1,X),

where the horizontal arrows are monomorphisms.

We note that the terms of Y●/X admit deformation theory (by the deformation
theory analog of Lemma 2.4.5). Hence, the left vertical arrow is an isomorphism.

Hence, it remains to show that the horizontal arrows are surjective. We claim
that this follows from the last requirement on f . We claim that for any square-zero
extension

S ↪ S′,

a map x′ ∶ S′ → X and a lift of the composition

x ∶ S → S′ → X

to a map y ∶ S → Y, there exists a lift of x′ to a map y′ ∶ S′ → Y.

Indeed, if S ↪ S′ is given by a map T ∗(S) → F , the space of lifts as above is
the space of null-homotopies of the resulting map

T ∗y (Y/X)→ F .

8. CONSEQUENCES OF ADMITTING DEFORMATION THEORY 59

However, the above map admits a null-homotopy since F ∈ QCoh(S)≤−1 and the
assumption that Y → X is formally smooth.

�

8. Consequences of admitting deformation theory

In this section we discuss further properties of prestacks that admit deformation
theory.

8.1. Digression: properties of maps of prestacks. In this subsection we de-
fine several classes of morphisms of prestacks.

8.1.1. Let redSchaff denote the category of (classical) reduced affine schemes. For
a prestack

Y ∶ (Schaff
)
op
→ Spc,

or an object Y ∈
clPreStk, let red

Y denote its restriction to redSchaff , which we view
as a functor

(
redSchaff

)
op
→ Spc.

We give the following definitions:

Definition 8.1.2. Let f ∶ X1 → X2 be a map in clPreStk.

(a) We shall say that f is a closed embedding if its base change by a classical affine

scheme yields a closed embedding. I.e., if for S2 ∈ (
clSchaff

)/X2
, the fiber product

S1 ∶= S2 ×
X2

X1, taken in clPreStk, belongs to clSchaff , and the map S1 → S2 is a

closed embedding.

(b) We shall say that f is a nil-isomorphism if it induces an isomorphism red
X1 →

red
X2. Equivalently, if for every S2 ∈ (

redSchaff
)/X2

, the map

red
(S2 ×

X2

X1)→ S2

(the fiber product is taken in clPreStk) is an isomorphism.

(c) We shall say that f is nil-closed if for every S2 ∈ (
clSchaff

)/X2
, the map

red
(S2 ×

X2

X1)→
redS2

(the fiber product is taken in clPreStk) is a closed embedding.

(d) We shall say that f is a nilpotent embedding if its base change by a classical
affine scheme yields a nilpotent embedding. I.e., if in the situation of (a), the map
S1 → S2 is a nilpotent embedding of classical schemes.

(d’) We shall say that f is a pseudo-nilpotent embedding if it is a nil-isomorphism

and for every S2 ∈ (
clSchaff

)/X2
, there exists a commutative diagram

S1 ÐÐÐÐ→ X1

×
×
×
Ö

×
×
×
Ö

S2 ÐÐÐÐ→ X2

with S1 ∈
clSchaff and S1 → S2 a nilpotent embedding.

60 1. DEFORMATION THEORY

Definition 8.1.3. Let f ∶ X1 → X2 be a map in PreStk. We shall say that f is a
closed embedding (resp., nil-isomorphism, nil-closed, nilpotent embedding, pseudo-
nilpotent embedding), if the corresponding map cl

X1 →
cl
X2 has the corresponding

property in the classical setting.

Clearly:

‘closed embedding’ ⇒ ‘nil-closed’;

‘nilpotent embedding’ ⇒ ‘closed embedding’;

‘nilpotent embedding’ ⇒ ‘nil-isomorphism’ and ‘pseudo-nilpotent embedding’.

‘pseudo-nilpotent embedding’ ⇒ ‘nil-isomorphism’.

8.1.4. The condition of being a pseudo-nilpotent embedding may appear a little
obscure, but it turns out to be useful. We note, however, that due to the next propo-
sition, the difference between ‘nil-isomorphism’ and ‘pseudo-nilpotent embedding’
only exists when our stacks are not locally of finite type:

Lemma 8.1.5. Let f ∶ X1 → X2 be a nil-isomorphism in clPreStk. Assume that
X2 ∈

clPreStklft. Then f is a pseudo-nilpotent embedding.

Proof. Let S2 ∈
clSchaff , and let S2 → X2 be a map. We need to find an object

in the category of diagrams
S1 ÐÐÐÐ→ X1

×
×
×
Ö

×
×
×
Ö

S2 ÐÐÐÐ→ X2,

where S1 ∈
clSchaff and S1 → S2 is a nilpotent embedding.

By the assumption on X2, we can assume that S2 ∈
clSchaff

ft . In this case the
required data is supplied by taking S1 ∶=

redS2. �

8.2. Descent properties. In this subsection we will show that one can deduce
Zariski, Nisnevich or étale descent property of a prestack from the corresponding
property at the classical level.

8.2.1. We will prove:

Proposition 8.2.2. Let X ∈ PreStk admit defomation theory, and let X0,cl →
cl
X be a pseudo-nilpotent embedding of classical prestacks.

(a) Assume that X0,cl satisfies Zariski (resp., Nisnevich) descent. Then X also has
this property.

(b) Assume that X0,cl satisfies étale descent. Assume also that the pro-cotangent
spaces of X are locally eventually connective. Then X also satisfies étale descent.

8.2.3. Proof of Proposition 8.2.2. By convergence and Proposition 5.4.2, it is enough
to show that if

S ↪ S′

is a map of affine schemes that has a structure square-zero extension, x ∶ S → X is

a map and π ∶
○
S → S is a Zariski (resp., Nisnevich, étale) cover, then the map

MapsS/(S
′,X)→ Tot(Maps ○

S●/
(

○
S′●,X))

8. CONSEQUENCES OF ADMITTING DEFORMATION THEORY 61

is an isomorphism, where π′ ∶
○
S′ → S′ is the corresponding cover, and

○
S● (resp.,

○
S′●) is the Čech nerve of π, (resp., π′).

We rewrite MapsS/(S
′,X) and each Maps ○

S●/
(

○
S′●,X)) as in (6.2). So, MapsS/(S

′,X)

identifies with the space of null-homotopies of a certain map

T ∗x (X)→ F , F ∈ QCoh(S)>−∞

and Tot(Maps ○
S●/

(

○
S′●,X)) identifies with the totalization of the cosimplicial space

of null-homotopies of the corresponding maps

T ∗x (X)→ F
●,

where F● is the Čech resolution of F corresponding to π.

Note, however, that in the case of Zariski and Nisnevich covers, one can replace
the totalization by a limit over a finite category. Now, the required isomorphism
follows from the commutation of Maps(T ∗x (X),−) with finite limits.

For an étale cover, if T ∗x (X) belongs to Pro(QCoh(S)≤n) and F ∈ QCoh(S)≥−k,
we can replace the totalization by the limit over the (n + k)-skeleton. Hence, the
required isomorphism again follows from the commutation ofMaps(T ∗x (X),−) with
finite limits.

�

Remark 8.2.4. A recent result of Akhil Mathew shows that étale descent in
Proposition 8.2.2 holds without the assumption of eventual connectivity.

8.3. Isomorphism properties. The property of having deformation theory can
be used to show that certain maps between prestacks are isomorphisms.

8.3.1. We will prove:

Proposition 8.3.2. Let f ∶ X1 → X2 be a map between objects of PreStkdef .
Suppose that there exists a commutative diagram

X0,cl

X1 X2,

g1

��

g2

��f //

where g1 and g2 are pseudo-nilpotent embeddings, and X0,cl ∈
clPreStk. Suppose

also that for any S ∈
clSchaff and a map x0 ∶ S → X0,cl, for xi ∶= gi ○ x0, the induced

map

T ∗x2
(X2)→ T ∗x1

(X1)

is an isomorphism. Then f is an isomorphism.

Proof. By induction and Proposition 5.4.2, we have to show that given S ∈

Schaff and a map S ↪ S′ that has a structure of square-zero extension, for a map
x1 ∶ S → X1, the space of extensions of x1 to a map S′ → X1 maps isomorphically
to the space of extensions of x2 ∶= f ○ x1 to a map S′ → X2.

62 1. DEFORMATION THEORY

Deformation theory implies that the spaces in question are the spaces of null-
homotopies of the corresponding maps

T ∗x1
(X1)→ F and T ∗x2

(X2)→ F ,

respectively. Hence, it is enough to show that the map T ∗x2
(X2) → T ∗x1

(X1) is an
isomorphism in Pro(QCoh(S)−).

The assumption of the proposition implies that there exists a nilpotent embed-
ding g ∶ S̃ → S, such that for x̃i = xi ○ g, the map

T ∗x̃2
(X2)→ T ∗x̃1

(X1)

is an isomorphism in Pro(QCoh(S̃)−). Therefore, it suffices to prove the following:

Lemma 8.3.3. For a nilpotent embedding g ∶ S̃ → S, the functor

Pro(g∗) ∶ Pro(QCoh(S)−)→ Pro(QCoh(S̃)−)

is conservative when restricted to convPro(QCoh(S)−).

�

8.3.4. Proof of Lemma 8.3.3. First, we claim that if S̃ → S is a square-zero exten-
sion, then the functor

Pro(g∗) ∶ Pro(QCoh(S)−)→ Pro(QCoh(S̃)−)

is conservative on all of Pro(QCoh(S)−).

Indeed, we need to show that if T ∈ Pro(QCoh(S)−) is such that Maps(T , g∗(F̃)) =

0 for all F̃ ∈ QCoh(S̃)−, then Maps(T ,F) = 0 for all F ∈ QCoh(S)−. However, this
is obvious, since every object of QCoh(S)− is a two-step extension of objects in the
essential image of g∗.

Hence, the functor Pro(g∗) is conservative if S̃ → S can be written as a finite
succession of square-zero extensions.

Using Proposition 5.5.3, we can construct a sequence of schemes

S̃ → S0 → S1 → ...→ Sk → ...→ S,

such that for every k, the map S̃ → Sk is a finite succession of square-zero extensions
and the map gk ∶ Sk → S induces an isomorphism ≤kSk →

≤kS.

Let T ∈
conv Pro(QCoh(S)−) be in the kernel of Pro(g∗). By the above, it is

then in the kernel of each Pro(g∗k). Note that for F ∈ QCoh(S)≤n, the map

F → (gk)∗ ○ (gk)
∗
(F)

induces an isomorphism

τ≥n−k(F)→ τ≥n−k((gk)∗ ○ (gk)
∗
(F)).

Hence, by convergence, for F ∈ QCoh(S)−,

Maps(T ,F) ≃ lim
k

Maps(T , (gk)∗ ○ (gk)
∗
(F)),

while each Maps(T , (gk)∗ ○ (gk)
∗
(F)) vanishes.

�

9. A CRITERION FOR BEING LOCALLY ALMOST OF FINITE TYPE 63

8.3.5. From Proposition 8.3.2 we obtain:

Corollary 8.3.6. Let

X1
g1

ÐÐÐÐ→ Y1

fX
×
×
×
Ö

×
×
×
Ö

fY

X2
g2

ÐÐÐÐ→ Y2

be a Cartesian square of objects of PreStkdef , such that the horizontal maps are
pseudo-nilpotent embeddings. Suppose that fX is an isomorphism. Then fY is an
isomorphism.

9. A criterion for being locally almost of finite type

Deformation theory can be used to show that a prestack is locally almost of
finite type, see Theorem 9.1.2 below.

9.1. Statement of the result. In this subsection we state Theorem 9.1.2 and
make some initial observations.

9.1.1. The goal of this section is to prove the following:

Theorem 9.1.2. Let X be an object of PreStkdef . Suppose that there exists a
nilpotent embedding X0 →

cl
X , such that:

● X0 ∈
clPreStklft;

● For any S ∈
clSchaff

ft and x ∶ S → X0, we have T ∗x (X) ∈ Pro(QCoh(S)−)laft.

Then X ∈ PreStklaft-def .

As an immediate corollary, we obtain:

Corollary 9.1.3. Let X be an object of PreStkdef . Suppose that cl
X ∈

clPreStklft,
and that for any S ∈

clSchaff
ft and x ∶ S → X , we have

T ∗x (X) ∈ Pro(QCoh(S)−)laft.

Then X ∈ PreStklaft-def .

In addition, we will prove:

Theorem 9.1.4. Let X be an object of PreStklaft-def . Then the fully faithful
embedding functor

(Schaff
aft)/X → (Schaff

)/X

is cofinal.

Remark 9.1.5. The assertion of Theorem 9.1.4 would be a tautology from the
definition of PreStklaft if instead of Schaff

aft ⊂ Schaff we used ≤nSchaff
ft ⊂

≤nSchaff .

Remark 9.1.6. We note that the proof of Theorem 9.1.4 given in Sect. 9.6
will show that a prestack, satisfying the assumption of Corollary 9.1.3 satisfies the
conclusion of Theorem 9.1.4. So, one can use the proof of Theorem 9.1.4 as an
alternative (and quicker) way to prove Corollary 9.1.3.

64 1. DEFORMATION THEORY

Remark 9.1.7. The proof of Theorem 9.1.4 shows that for a not necessarily
affine (but quasi-compact) sscheme Z equipped with a map to X , the category of
factorizations of this map as

Z → Z ′
→ X , Z ′

∈ Schaft

is contractible (in fact, the opposite category is filtered). Moreover, cofinal in this
category is the subcategory consisting of those objects for which the map Z → Z ′

is affine.

9.1.8. From now until Sect. 9.6, we will be concerned with the proof of Theo-
rem 9.1.2. We begin with the following observation:

Let X be any prestack, and assume that it is convergent. The condition that
X belongs to PreStklaft says that given n ≥ 0 and an object (S,x) ∈ (

≤nSchaff
)/X ,

the category, denoted Factor(x, ft,≤ n), of factorizations of x as

S → U → X , U ∈
≤nSchaff

ft

is contractible.

Consider also the categories Factor(x, ft,< ∞), Factor(x,aft) of factorizations
of x as

S → U → X ,

where we instead require that U belong to <∞Schaff
ft and Schaff

aft, respectively.

We have the fully faithful functors

Factor(x, ft,≤ n)↪ Factor(x, ft,<∞)↪ Factor(x,aft),

and the map of Factor(x, ft,≤ n) into both Factor(x, ft,< ∞) and Factor(x,aft)
admits a right adjoint, given by S0 ↦

≤nS0.

Hence, Factor(x, ft,≤ n) is contractible if and only if Factor(x, ft,<∞) is con-
tractible and if and only if Factor(x,aft) is.

9.2. Step 1.
9.2.1. Suppose we have an object of (S,x) ∈ (

≤nSchaff
)/X . We need to show that

the category Factor(x, ft,≤ n) is contractible.

Set S0 ∶=
cl
(S ×
X
X0). Let x0 denote the resulting map S0 → X0. By assumption,

the category Factor(x0, ft, cl) is contractible.

We introduce the category C to be that of diagrams

S0 ÐÐÐÐ→ U0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ U ÐÐÐÐ→ X ,

where U ∈
≤nSchaff

ft and U0 ∈
clSchaff

ft , and U0 → U is an arbitrary map.

We have the natural forgetful functors

Factor(x, ft,≤ n)←C→ Factor(x0, ft, cl).

We will show that both these functors are homotopy equivalences. This would
imply that Factor(x, ft,≤ n) is contractible.

9. A CRITERION FOR BEING LOCALLY ALMOST OF FINITE TYPE 65

9.2.2. The functor C → Factor(x, ft,≤ n) is a co-Cartesian fibration. Hence, in
order to prove that it is a homotopy equivalence, it suffices to show that it has
contractible fibers.

However, the fiber in question over a given (S → U → X) ∈ Factor(x, ft,≤ n)
has a final object, namely, one with

U0 ∶=
cl
(U ×

X
X0).

9.2.3. The functor C → Factor(x0, ft, cl) is a Cartesian fibration. Hence, in order
to prove that it is a homotopy equivalence, it suffices to show that it has contractible
fibers.

We note that the fiber of the above functor over a given (S0 → U0 → X0) ∈

Factor(x0, ft, cl) can be described as follows.

Set S̃ ∶= S ⊔
S0

U0. Since X admits deformation theory, we have a canonical map

x̃ ∶ S̃ → X .

The fiber in question is the category Factor(x̃, ft,≤ n) of factorizations of x̃ as

S̃ → U → X , U ∈
≤nSchaff

ft .

9.3. Resetting the problem.
9.3.1. By Step 1, it suffices to prove the contractibility of the category Factor(x, ft,≤
n) under the additional assumption that there exists a nilpotent embedding

S0 → S,

where S0 ∈
clSchaff

ft .

By Proposition 5.4.2, there exists a finite sequence of affine schemes

S0 → S1 → . . .→ Sk−1 → Sk = S, Si ∈
≤nSchaff ,

such that for every i, the map Si ↪ Si+1 has a structure of square-zero extension.

9.3.2. Repeating the manipulation of Step 1, by induction, we obtain that it suf-
fices to prove the following: let S be an object of ≤nSchaff

ft , and let S ↪ S′ be a

square-zero extension, where S′ ∈ ≤nSchaff .

Suppose we have a map x ∶ S′ → X . We need to show that the category
Factor(x, ft,≤ n) is contractible.

9.4. Step 2. Let S ↪ S′ be as in Sect. 9.3.2.

9.4.1. Let Factor(x, ft,≤ n)SqZ be the category of factorizations of the map x ∶

S′ → X as

S′ → S̃′ → X ,

where the composition S ↪ S̃′ is equipped with a structure of square-zero extension,
S′ → S̃′ is equipped with a structure of map in SqZ(S), and where S̃′ ∈ ≤nSchaff

ft .

Consider also the category D of factorizations of the map x ∶ S′ → X as

S′ → S̃′ → U → X ,

where the composition S → S̃′ is given a structure of square-zero extension, S′ → S̃′

is given a structure of map in SqZ(S), and where S̃′, U ∈
≤nSchaff

ft .

66 1. DEFORMATION THEORY

We have the fogetful functors

Factor(x, ft,≤ n)SqZ ←D→ Factor(x, ft,≤ n).

We will show that both these functors are homotopy equivalences, whereas the
category Factor(x, ft,≤ n)SqZ is contractible. This will imply that Factor(x, ft,≤ n)
is contractible.

9.4.2. We note that the functor

D→ Factor(x, ft,≤ n)SqZ

is a Cartesian fibration. Hence, in order to prove that it is a homotopy equivalence,
it suffices to show that it has contractible fibers.

However, the fiber in question over a given (S′ → S̃′ → X) ∈ Factor(x, ft,≤ n)SqZ

has an initial point, namely, one with U = S̃′.

9.4.3. The functor

D→ Factor(x, ft,≤ n)

is a co-Cartesian fibration. Hence, in order to show that it is a homotopy equiva-
lence, it suffices to show that it has contractible fibers.

However, we note that the fiber of D over an object (S′ → U → X) ∈ Factor(x, ft,≤
n) is the category Factor(u, ft,≤ n)SqZ, where u denotes the map S′ → U . I.e., this
is a category of the same nature as Factor(x, ft,≤ n)SqZ, but with X replaced by U .

Thus, it remains to prove the contractibilty of the category Factor(x, ft,≤ n)SqZ.

9.5. Step 3.
9.5.1. Let the square-zero extension (S ↪ S′) be given by

T ∗(S/X)
γ
Ð→ F , F ∈ QCoh(S)≥−n−1,≤−1.

The category Factor(x′, ft,≤ n)SqZ is that of factorizations of γ as

T ∗(S/X)
γ̃
Ð→ F̃ → F ,

where F̃ ∈ Coh(S)≥−n−1,≤−1.

9.5.2. Note that F is isomorphic to the filtered colimit

colim
F̃∈(Coh(S)≥−n−1,≤−1)/F

F̃ .

Hence, in order to prove that Factor(x, ft,≤ n)SqZ is contractible, it suffices to show
that the functor

Maps(T ∗(S/X),−) ∶ QCoh(S)≥−n−1,≤−1
→ Vect

commutes with filtered colimits.

9. A CRITERION FOR BEING LOCALLY ALMOST OF FINITE TYPE 67

9.5.3. We have
T ∗(S/X) ≃ coFib(T ∗(S)→ T ∗(X)∣S).

Since S ∈ Schaff
aft, it suffices to show that

T ∗(X)∣S ∈ Pro(QCoh(S)−)laft.

This follows from the assumption on X and the next lemma:

Lemma 9.5.4. If i ∶ S0 → S is a nilpotent embedding of objects of Schaff
aft, and T

is an object of convPro(QCoh(S)−) is such that

(Pro(i∗))(T) ∈ Pro(QCoh(S0)
−
)laft,

then T ∈ Pro(QCoh(S)−)laft.

9.5.5. Proof of Lemma 9.5.4. We need to show that the functor

Maps(T ,−) ∶ QCoh(S)♡[n]→ Spc

commutes with filtered colimits for any n.

This allows to replace S and S0 by clS and clS0, respectively. I.e, we can assume
that S and S0 are classical. Furthermore, by induction, we can assume that S is a
classical square-zero extension of S0. Now the required assertion follows from the
fact that any F ∈ QCoh(S)♡ can be written as an extension

0→ i∗(F
′
)→ F → i∗(F

′′
)→ 0,

where F ′,F ′′ ∈ QCoh(S0)
♡ depend functorially on F (in fact, F ′′ ∶=H0

(i∗(F))).
�

9.6. Proof of Theorem 9.1.4.
9.6.1. Suppose we have an object (S,x) ∈ (Schaff

)/X . We need to show that the
category Factor(x,aft) (see Sect. 9.1.8) of factorizations

S → U → X , U ∈ (Schaff
aft)/X

is contractible.

For every n ≥ 0, consider the corresponding category Factor(x∣≤nS , ft,≤ n) of
factorizations

≤nS → Un → X , Un ∈
≤nSchaff .

We note that since X is convergent, we have

Factor(x,aft) ≃ lim
n

Factor(x∣≤nS , ft,≤ n).

We will use the following observation:

Lemma 9.6.2. Let
C0 ←C1 ←C2 ← ...

be a sequence of (∞,1)-categories. Assume that:

(i) The category C0 is filtered.

(ii) For every n, the category Cn+1 is filtered relative to Cn.

Then the category
C ∶= lim

n
Cn

is also filtered.

68 1. DEFORMATION THEORY

Let us recall that given a functor C′
→D, we say that C′ is filtered relative to

D if for every finite (∞,1)-category K and every diagram

K ÐÐÐÐ→ C′

×
×
×
Ö

×
×
×
Ö

Cone(K) ÐÐÐÐ→ D

has a lifting property. Here Cone(K) is obtained from K by adjoining to it a final
object. (For D = ∗, we obtain the usual notion of C′ being filtered.)

We apply the above lemma to

Cn ∶= (Factor(x∣≤nS , ft,≤ n))
op.

9.6.3. To prove that the category (Factor(x∣clS , ft, cl))op is filtered we use the fol-
lowing lemma:

Lemma 9.6.4. Let C′
→ D be a co-Cartesian fibration in groupoids. Suppose

that D is filtered and C′ is contractible. Then C′ is also filtered.

Proof. Let C′
→ D correspond to a functor F ∶ D → Spc. Then the assump-

tion that C′ is contractible means that

colim
D

F ≃ ∗.

This is easily seen to imply the assertion of the lemma.
�

We apply Lemma 9.6.4 to the functor

Factor(x∣clS , ft, cl)→ (
clSchaff

)clS/.

Indeed, the category Factor(x∣clS , ft, cl) is contractible because cl
X belongs to

clPreStklft. The category (opposite) to (
clSchaff

)/clS is filtered by Volume I, Chap-
ter 2, Theorem 1.5.3(b).

9.6.5. Let us now show that (Factor(x∣≤n+1S , ft,≤ n + 1))op is filtered relative with
respect to its projection (Factor(x∣≤nS , ft,≤ n))

op.

Suppose we have a functor

Fn+1 ∶ K→ (Factor(x∣≤n+1S , ft,≤ n + 1))op

and its extension to a functor

Fn ∶ Cone(K)→ (Factor(x∣≤nS , ft,≤ n))
op.

Let us denote by
≤nS → Un → X

the object of Factor(x∣≤nS , ft,≤ n) corresponding to the value of Fn on the final
object ∗ ∈ Cone(K). For k ∈ K denote also

Uk
n+1 = Fn+1(k) and Uk

n = Fn(k).

Set

U ′
n+1 ∶=

≤n+1S ⊔
≤nS

Un.

10. SQUARE-ZERO EXTENSIONS OF PRESTACKS 69

We have ≤nU ′
n+1 = Un and a K-diagram of maps

(9.1) U ′
n+1 → Uk

n+1 → X .

We need to show that there exists Un+1 ∈
≤n+1 Schaff

ft equipped with a map

U ′
n+1 → Un+1

that induces an isomorphism on n-truncations, such that the K-diagram (9.1) ex-
tends to a diagram

(9.2) U ′
n+1 → Un+1 → Uk

n+1 → X

that induces at the level of n-truncations the diagram

Un = Un → Uk
n → X

9.6.6. Let fk denote the map ≤nS → Uk
n . By Proposition 5.4.2(b), the map Uk

n →

Uk
n+1 has a canonical structure of square-zero extension by means of some J k

∈

QCoh(Uk
n)

♡
[n + 1]. Similarly, Un → U ′

n+1 has a canonical structure of square-zero
extension by means of some I ′ ∈ QCoh(Un)

♡
[n + 1].

Then the datum of the diagram (9.1) is equivalent to that of the commutative
diagram

Pro(f∗k)(T
∗
(Uk

n /X)) ÐÐÐÐ→ T ∗(Un/X)

×
×
×
Ö

×
×
×
Ö

f∗k(J
k
) ÐÐÐÐ→ I

′

and its extension to a diagram (9.2) is equivalent to factoring the above commuta-
tive diagram as

Pro(f∗k)(T
∗
(Uk

n /X)) ÐÐÐÐ→ T ∗(Un/X)

×
×
×
Ö

×
×
×
Ö

f∗k(J
k
) ÐÐÐÐ→ I ÐÐÐÐ→ I

′,

where I ∈ Coh(Un)
♡
[n + 1].

The existence of such an extension follows from the combination of the following
facts:

(i) The category K is finite;

(ii) The objects Pro(f∗k)(T
∗
(Uk

n /X)) belong to Pro(S−)laft;

(iii) I ′ can be written as filtered colimit of I with I ∈ Coh(Un)
♡
[n + 1].

10. Square-zero extensions of prestacks

This section is auxilliary (it will be needed in Chapter 6, Sect. 2.5), and can be
skipped on first pass. We define and (attempt to) classify square-zero extensions of
a given prestack X by an object F ∈ QCoh(X)

≤0.

10.1. The notion of square-zero extension of a prestack. We define the
notion of square-zero extension of a prestack via pullback to affine schemes.

70 1. DEFORMATION THEORY

10.1.1. Let X be a prestack and let I be an object of QCoh(X)
≤0 (i.e., I is an

object of QCoh(X), whose pullback to every affine scheme is connective.)

We define the notion of square-zero extension of X by means of I to be the
datum of a schematic affine map of prestacks X ↪ X ′, and an assignment for every
(S′, x′) ∈ (Schaff

)/X ′ of a structure on the map

S′ ×
X ′
X =∶ S ↪ S′

of square-zero extension of S by means of x∗(I) (where x is the resulting map
S → X), which is functorial in (S′, x′) in the sense of Proposition 5.3.2.

Square-zero extensions of X by means of I form a space that we denote by
SqZ(X ,I).

10.1.2. Let

(PreStk,QCoh≤0
)→ PreStk

denote the Cartesian fibration corresponding to the functor

(QCoh≤0
)
∗
PreStk ∶ (PreStk)op

→ 1 -Cat .

The construction of Proposition 5.3.2 defines a Cartesian fibration in spaces

SqZ(PreStk)→ (PreStk,QCoh≤0
),

whose fiber over a given (X ,I) ∈ (PreStk,QCoh≤0
) is SqZ(X ,I).

In particular, given an index category I, and an I-family

(10.1) i↦ (Xi,Ii), I → (PreStk,QCoh≤0
),

we have a well-defined notion of an I-family of maps Xi ↪ X
′
i , equipped with a

structure of square-zero extension by means of Ii, covering (10.1).

10.2. From square-zero extensions to maps in QCoh. In this subsection we
will assume that X admits a pro-cotangent complex. We will show that a square-
zero extension of X gives rise to a map in QCoh(X).

10.2.1. We claim that there is a natural map of spaces

(10.2) SqZ(X ,I)→Maps(T ∗(X),I[1]),

where we regard T ∗(X) and I as objects of Pro(QCoh(X)
−
)
fake, see Sect. 4.3.1.

To construct (10.2), given a map X ↪ X ′, equipped with a structure of square-

zero extension, and (S,x) ∈ (Schaff
)/X we need to construct the corresponding map

T ∗x (X)→ x∗(I)[1]

in Pro(QCoh(S)−), functorially in (S,x).

10. SQUARE-ZERO EXTENSIONS OF PRESTACKS 71

10.2.2. We will use the following lemma:

Lemma 10.2.3. For a schematic affine map of prestacks X → X ′, the functor

(Schaff
)/X ′ → (Schaff

)/X , S′ ↦ S′ ×
X ′
X

is cofinal.

Proof. The functor in question admits a left adjoint, given by

(S → X)↦ (S → X → X ′
).

�

10.2.4. Using the lemma, it suffices to construct the map

T ∗x (X)→ x∗(I)[1],

for every (S′, x′) ∈ (Schaff
)/X ′ , where

x ∶ S = S′ ×
X
X → X .

The latter is given as the composition

T ∗x (X)

(dx)∗
Ð→ T ∗(S)→ x∗(I)[1],

where the second arrow represents the structure of square-zero extension on S ↪ S′.

10.2.5. The following assertion results from the definitions:

Lemma 10.2.6. Let Z be a prestack that admits deformation theory, and let
z ∶ X → Z be a map. Then for a map X ↪ X ′ equipped with a structure of square-
zero extension by means of I ∈ QCoh(X)

≤0, the space of extensions of z to a map
z′ ∶ X ′

→ Z is canonically equivalent to that of null-homotopies of the composed
map

z∗(T ∗(Z))

(dz)∗
Ð→ T ∗(X)→ I[1].

10.3. Classifying square-zero extensions. In this subsection we keep the as-
sumption that X admits deformation theory. We will (try to) classify square-zero
extensions of X .

10.3.1. We would like to address the following general question:

Question 10.3.2. Is it true that the functor SqZ(X ,I)→MapsQCoh(X)(T
∗
(X),I[1])

of (10.2) is an isomorphism of spaces?

Unfortunately, we can’t answer this question in general. In this subsection we
will consider a certain particular case.

Remark 10.3.3. In Chapter 8, Sect. 5.5 we will provide a far more satisfying
answer under the assumption that X be locally almost of finite type.

72 1. DEFORMATION THEORY

10.3.4. Let Y be an object of Schaff , and let Y ↪ Y ′ be given a structure of
square-zero extension by means of IY ∈ QCoh(Y)

≤0. Let

γY ∶ T ∗(Y)→ IY [1]

be the corresponding map.

Fix a map f ∶ X → Y , and denote IX ∶= f∗(IY). Consider the space

SqZ(X ,IX)/SqZ(Y,IY)

that classifies maps X ↪ X ′ equipped with a structure of square-zero extension by
means of IX , and a commutative diagram

(10.3)

X ÐÐÐÐ→ X
′

f
×
×
×
Ö

×
×
×
Ö

f ′

Y ÐÐÐÐ→ Y ′

equipped with a structure of map of square-zero extensions that corresponds to the
tautological map f∗(IY)→ IX .

Consider the space

MapsQCoh(X)(T
∗
(X),IX [1])/γY

that classifies maps
γX ∶ T ∗(X)→ IX [1],

together with the data of commutativity of the diagram

T ∗(X)
γX

ÐÐÐÐ→ IX [1],

(df)∗
Õ
×
×
×

Õ
×
×
×

∼

f∗(T ∗(Y))
γY

ÐÐÐÐ→ f∗(IY)[1].

As in Sect. 10.2, we have a canonically defined functor

(10.4) SqZ(X ,IX)/SqZ(Y,IY) →MapsQCoh(X)(T
∗
(X),IX [1])/γY .

We claim:

Proposition 10.3.5. The functor (10.4) is an isomorphism of spaces. Further-
more, for every object of SqZ(X ,IX)/SqZ(Y,IY) the diagram (10.3) is Cartesian.

The rest of the subsection is devoted to the proof of this proposition.

10.3.6. We construct the map

(10.5) MapsQCoh(X)(T
∗
(X),IX [1])/γY → SqZ(X ,IX)/SqZ(Y,IY)

as follows.

Given γ ∶ T ∗(X)→ IX [1], we construct the prestack X ′ by letting for S′ ∈ Schaff

the space Maps(S′,X ′
) consist of the data of:

● (S,x) ∈ (Schaff
)/X ;

● A map S → S′;

● A factorization of the map x∗(γ) ∶ T ∗x (X)→ x∗(IX)[1] as

T ∗x (X)

(dx)∗
Ð→ T ∗(S)

γS
Ð→ x∗(IX)[1],

10. SQUARE-ZERO EXTENSIONS OF PRESTACKS 73

● An isomorphism RealSqZ(x∗(IX)[1], γS) ≃ (S ↪ S′) in Schaff
S/ .

Note that the construction of X ′ does not appeal to the datum of the map
Y ↪ Y ′ or a structure on it of square-zero extension.

10.3.7. That above the datum of Maps(S′,X ′
) can be rewritten as follows:

● A map y′ ∶ S′ → Y ′ (denote S ∶= S′ ×
Y ′
Y , y ∶ S → Y and γS ∶ T ∗(S) →

y∗(IY)[1]);

● A factorization of y as S
x
Ð→ X

f
Ð→ Y ;

● A datum of homotopy between

x∗(T ∗(X)) = T ∗x (X)

(dx)∗
Ð→ T ∗(S)

γS
Ð→ y∗(IY)[1] ≃ x∗(IX)[1]

and x∗(γX).

10.3.8. The latter description implies that the space consisting of a data of a map
x′ ∶ S′ → X ′ and a map S′ → S, which is the left inverse of the map S → S′ identifies
canonically with the space Maps(S′,X). Indeed, given a map S′ → X ′, both pieces
of additional data amount to that of null-homotopy of the map x∗(γX).

This gives rise to a canonical map X → X ′, such that for every x′ ∶ S′ → X , the
corresponding diagram

S ÐÐÐÐ→ S′

x
×
×
×
Ö

×
×
×
Ö

x′

X ÐÐÐÐ→ X
′

is Cartesian.

This gives the map X ↪ X ′ a structure of square-zero extension by means of IX ,
thereby providing a map in (10.5). Furthermore, the diagram (10.3) is Cartesian
also by construction.

�

10.4. Deformation theory property of square-zero extensions. In this sub-
section we let X and Y ↪ Y ′ be as in Proposition 10.3.5. We will show that pretacks
X
′ as in Proposition 10.3.5 themselves admit deformation theory.

10.4.1. Our goal is to show:

Proposition 10.4.2. For every object of SqZ(X ,IX)/SqZ(Y,IY) we have:

(a) The prestack X ′ admits deformation theory.

(b) If Y,Y ′
∈ Schaff

aft and X ∈ PreStklaft, then X ′
∈ PreStklaft.

The rest of this subsection is devoted to the proof of this proposition.

10.4.3. First, we note that point (a) implies point (b):

We apply Theorem 9.1.2 to the nilpotent embedding X ↪ X ′. It suffices to
show that for any (S,x) ∈ (Schaff

aft)/X , the pullback of T ∗(X /X
′
) under x belongs

to Pro(QCoh(S)−)laft.

However, this pullback identifies with the pullback of T ∗(X /X
′
) under y ∶= f ○x

of T ∗(Y /Y ′
), and the assertion follows.

74 1. DEFORMATION THEORY

10.4.4. Convergence.

Using the interpretation of the space Maps(S′,X ′
) given in Sect. 10.3.7, in

order to prove that X ′ is convergent, we need to show that the space of homotopies
between two fixed maps

x∗(T ∗(X))⇉ y∗(IY)[1]

is mapped isomorphically to the inverse limit over n over similar spaces for

Sn ∶= (
≤nS′) ×

Y ′
Y.

Note that for any n, we have:
≤n

(Sn) ≃
≤nS.

Hence, the required assertion follows from the fact that

x∗(T ∗(X)) = T ∗x (X) ∈
convPro(QCoh(S)−)

(see Lemma 3.3.3).

10.4.5. Compatibility with push-outs. Let S̃′2 ∶= S̃′1 ⊔
S′1

S′2 be a push-out in Schaff ,

where S′1 → S̃′1 is a nilpotent embedding. Let us show that the map

Maps(S̃′2,X
′
)→Maps(S̃′1,X

′
) ×

Maps(S′1,X ′)
Maps(S′2,X

′
)

is an isomorphism.

It suffices to show that the map in question is an isomorphism over a given
point of

Maps(S̃′2, Y
′
) ≃ Maps(S̃′1, Y

′
) ×

Maps(S′1,Y ′)
Maps(S′2, Y

′
).

Set
S1 ∶= S

′
1 ×
Y ′
Y, S2 ∶= S

′
2 ×
Y ′
Y, S̃1 ∶= S̃

′
1 ×
Y ′
Y, S̃2 ∶= S̃

′
2 ×
Y ′
Y.

It is easy to see that the map

S̃1 ⊔
S1

S2 → S̃2

is an isomorphism.

Using the interpretation of the space Maps(−,X ′
) given in Sect. 10.3.7, we

obtain that it suffices to show that, given a map x ∶ S̃2 → X , the space of homotopies
between two given maps

x∗(T ∗(X))→ y∗(IY)[1]

maps isomorphically to the fiber product of the corresponding spaces on S̃1 and S2

over that on S1.

However, this follows from Proposition 1.4.2. �

CHAPTER 2

Ind-schemes and inf-schemes

Introduction

0.1. Inf-schemes. As was explained in the Introduction to Part I, inf-schemes are
our primary object of interest. In this Chapter we will finally define what they are.

By definition, an inf-scheme is a laft prestack X such that:

(a) X admits deformation theory;

(b) red
X is a (reduced) scheme.

It is quite remarkable that so general a definition produces a very reasonable
object. Let us list some of the properties enjoyed by inf-schemes:

(i) Inf-schemes are well-adapted to the category IndCoh, i.e., the latter will extend
to a functor of the (∞,2)-category of correspondences on inf-schemes. This will be
realized in Chapter 3.

(ii) Inf-schemes provide a unified language to talk about O-modules and D-modules;
in particular, one can talk about relative D-modules along the fibers of a morphism
between schemes. This will be realized in Chapter 4.

(iii) Inf-schemes are an adequate framework for formal moduli problems and the
correspondence between group-objects and their Lie algebras. This will be realized
in Chapters 6 and 7.

0.1.1. In this Chapter we will only initiate the study of inf-schemes. The main
outcome of this Chapter is the following structural result that comes in two parts,
Corollary 4.4.6:

Let X be an in inf-scheme such that red
X = X0 is a (reduced) affine scheme.

Inside the category (Schaff
)/X one can single out a subcategory of those

S
x
→ X ,

for which S ∈ Schaff
aft and the map

redx ∶ redS → red
X =X0

is an isomorphism. The first assertion of Corollary 4.4.6 is that this subcategory is
cofinal.

This means that the datum of X , viewed as a functor from the category (op-
posite to that) of all affine schemes, is completely determined (i.e., is the left Kan

extension) from its restriction to the category of pairs (S,x0), where S ∈ Schaff
aft and

x0 is an isomorphism redS →X0.

In other words, in order to ‘know’ X we only need to know what the functor
X gives in nilpotent thickenings of X0.

75

76 2. IND-SCHEMES AND INF-SCHEMES

0.1.2. The second part of Corollary 4.4.6 provides a converse to the above restric-
tion process.

Namely, let Xnil-isom be an arbitrary functor from the category of affine eventu-
ally coconnective schemes almost of finite type, whose reduced subscheme is iden-
tified with a given (reduced) affine scheme X0 of finite type. I.e.,

Xnil-isom ∶ (
<∞Schaff

aft ×
redSchaff

{X0})
op
→ Spc .

We impose the condition that the value of Xnil-isom on X0 itself be ∗ ∈ Spc. Let
X be the left Kan extension of Xnil-isom under the forgetful functor

<∞Schaff
aft ×

redSchaff
{X0}→

<∞Schaff .

I.e., the value of X on an (eventually coconnective) scheme affine scheme S is
the category of

S → Z → Xnil-isom, Z ∈
<∞Schaff

aft,
redZ =X0.

Thus, we can view X as an object of PreStklaft, and red
X =X0. We would like

X to be an inf-scheme, but we cannot expect that because there is no reason that
for an arbitrary Xnil-isom, the prestack X will admit deformation theory.

However, there is an obvious necessary condition on Xnil-isom for X to have a
chance to admit deformation theory. Namely, recall that one of the conditions in
admitting deformation theory is that it should take pushout diagrams of the form

(0.1)

S1 ÐÐÐÐ→ S2

×
×
×
Ö

×
×
×
Ö

S′1 ÐÐÐÐ→ S′2.

where S1 → S′1 has a structure of square-zero extension, to pullback diagrams in
Spc. Thus, a necessary condition on Xnil-isom in order for X to admit deformation
theory is that Xnil-isom have the same property with respect to the above push-outs
when

S1, S2 ∈
<∞Schaff

aft ×
redSchaff

{X0}.

Now, the second part of Corollary 4.4.6 says that the above condition is also
sufficient.

0.1.3. To summarize, Corollary 4.4.6 says that the operation of restriction under

<∞Schaff
aft ×

redSchaff
{X0}→

<∞Schaff

defines a fully faithful functor from the category of inf-schemes X , whose underling
reduced scheme is identified with X0 and the full subcategory of the category of
functors

Xnil-isom ∶ (
<∞Schaff

aft ×
redSchaff

{X0})
op
→ Spc, Xnil-isom(X0) = ∗,

that take push-out (0.1) squares to pullback squares.

0.2. Ind-schemes. Prior to introducing inf-schemes, in Sects. 1 and 2, we study
another type of algebro-geometric objects that often comes up in practice: ind-
schemes.

INTRODUCTION 77

0.2.1. Ind-schemes can be defined in any of the following three equivalent ways
(but the equivalence is not altogether trivial):

A prestack X is said to be an ind-scheme if it is convergent and:

Definition (a): X can be written as a filtered colimit (in PreStk) of quasi-compact
schemes, where the transition maps are closed embeddings.

Definition (a’): Same as (a) with X replaced by ≤n
X for any n.

Definition (b): The subcategory of (Schqc)/X consisting of closed embeddings is
cofinal and filtered.

Definition (b’): Same as (a) with X replaced by ≤n
X for any n.

Definition (c): X admits connective deformation theory and cl
X is a classical ind-

scheme.

0.2.2. Beyond the equivalence of the above definitions, here is a summary of main
results pertaining to ind-schemes:

(i) Ind-schemes satisfy flat descent;

(ii) If an ind-scheme X is laft as a prestack, then the subcategory of (Schqc)/X
consisting of closed embeddings Z → X with S ∈ Schaft is cofinal and filtered.

(iii) Let X be a laft prestack that admits connective deformation theory, and such
that red

X is a (reduced) indscheme. Then X is an ind-scheme if and only if the
following conditions hold:

(a) For any reduced affine scheme S and x ∶ S → X , the object H0
(T ∗x (X)) ∈

Pro(QCoh(S)♡) can be written as a projective system with surjective transition
maps;

(b) Either of the following equivalent conditions holds:

● The map red
X →

cl
X is a monomorphism; or

● For any reduced affine scheme S and x ∶ S → red
X , the object

T ∗x (
red
X /X) ∈ Pro(QCoh(S)−)

belongs to Pro(QCoh(S)−)≤0.

0.2.3. Formal schemes. Normally, in the literature by a formal scheme one means
an ind-scheme X such that red

X is a (reduced) scheme. Since there many other
usages of the word ‘formal’, in this book, we call these objects nil-schematic ind-
schemes1.

We show that if X is nil-schematic ind-scheme with red
X =X0, then the subcat-

egory of (Schqc)/X consisting of nilpotent embeddings embeddings S → X is cofinal
and filtered.

Moreover, we show that if X is laft as a prestack, the subcategory of (Schqc)/X
consisting of nilpotent embeddings embeddings Z → X with Z ∈ Schaft is cofinal and
filtered.

1This is in line with our policy that the adjective ‘nil-?’ for a morphism f ∶ X1 → X2 means

that the corresponding morphism
redf ∶ red

X1 →
red
X2

has the property ?.

78 2. IND-SCHEMES AND INF-SCHEMES

0.2.4. Let us emphasize the difference between inf-schemes and nil-schematic ind-
schemes.

Namely, in Corollary 4.3.3 (from which we deduce the first direction in Corol-
lary 4.4.6 mentioned above) we show that if X is an inf-scheme, the map

colim
Z∈(Schaft)nil-isom to X

Z → X ,

where the colimit is taken in PreStk, is an isomorphism. Moreover, we will show
(see Proposition 4.3.6) that the category (Schaft)nil-isom to X is sifted. In particular,
X can be written as a colimit

colim
α∈A

Zα → X ,

for some sifted index category A, where Zα ∈ Schaft and the transition maps in this
family are nil-isomorphisms.

However, if X is a laft nil-schematic ind-scheme, the map

colim
Z∈(Schaft)nilp-emb into X

Z → X ,

where the colimit is taken in PreStk, is an isomorphism, and the category (Schaft)nilp-emb into X
is filtered. In particular, X can be written as a colimit

colim
α∈A

Zα → X ,

where Zα ∈ Schaft and the transition maps in this family are nilpotent embeddings,
and where the index category A is filtered.

So, there are two points of difference: one is the ‘filtered’ vs. ‘sifted’ con-
dition on the index category A, and the other is ‘nilpotent embeddings’ vs ‘nil-
isomorphisms’.

In addition, given x ∶ Z → X with Z not necessarily affine, if X is a laft nil-
schematic ind-scheme, the category of factorizations of x as

Z → Z ′ x
′

→ X , x′ is a nilpotent embedding

is contractible. If, however, Z is an inf-scheme, the category of factorizations of x
as

Z → Z ′ x
′

→ X , x′ is a nil-isomorphism

need not be contractible (it may be empty).

0.3. Other definitions and results.
0.3.1. In Sect. 3 we define a notion slightly more general than inf-scheme, namely,
that of ind-inf-scheme. Namely, a laft prestack X is said to be an ind-inf-scheme if

(a) X admits deformation theory;

(b) red
X is a (reduced) ind-scheme.

Thus, the class of ind-inf-schemes contains both inf-schemes and ind-schemes.
We give some infinitesimal criteria that allow to determine when an ind-inf-scheme
is an ind-scheme.

1. IND-SCHEMES 79

0.3.2. In turns that the good behavior of IndCoh on inf-schemes extends at no
cost to ind-inf-schemes; this will be done in Chapter 3.

We show that ind-inf-schemes satisfy Nisnevich (and with a little more work,
also étale) descent.

0.3.3. Finally, we establish an extension of Corollaries 4.4.6 and Corollary 4.3.3
mentioned above, to the case of ind-inf-schemes; this is done in Sect. 4.

1. Ind-schemes

Ind-schemes are an approximation to our main object of interest (the latter be-
ing ind-inf-schemes). In this section we will mainly review various facts established
in [GaRo1].

1.1. The notion of ind-scheme. Ind-schemes are defined in a very simple way:
prestacks that can be presented as filtered colimits of schemes under closed embed-
dings. It is not altogether tautological that this is ‘the right notion’, but we will
see that it is in the course of this section.

1.1.1. Let X be an object of PreStk.

Definition 1.1.2. We shall say that X is an ind-scheme if:

● X is convergent;
● As an object of PreStk, we can write X as a filtered colimit

(1.1) colim
α

Xα,

where Xα ∈ Schqc and the maps Xα1 →Xα2 are closed embeddings.

1.1.3. We let
indSch ⊂ PreStk

denote the full subcategory spanned by ind-schemes. We also denote

indSchlaft ∶= indSch∩PreStklaft .

It is clear that the above subcategories are closed under finite limits taken in
PreStk.

1.1.4. In addition:

Definition 1.1.5. Let X be an object of ≤nPreStk (resp., clPreStk, redPreStk).
We shall say that X is an n-coconnective (resp., classical, reduced) ind-scheme if
as an object of ≤nPreStk (resp., clPreStk, redPreStk), we can write X as a filtered
colimit

(1.2) colim
α

Xα,

where Xα ∈
≤nSchqc (resp., Xα ∈

clSchqc, Xα ∈
redSchqc) and the maps Xα1 → Xα2

are closed embeddings.

We let
≤nindSch ⊂

≤nPreStk, ≤nindSchlft ⊂
≤nPreStklft,

clindSch ⊂
clPreStk, clindSchlft ⊂

clPreStklft

and
redindSch ⊂

redPreStk, redindSchlft ⊂
redPreStklft,

80 2. IND-SCHEMES AND INF-SCHEMES

denote the corresponding subcategories.

These subcategories are closed under finite limits in ≤nPreStk (resp., clPreStk,
redPreStk).

1.2. Descent for ind-schemes. In this subsection we show that ind-schemes
satisfy flat descent.

1.2.1. We are going to prove:

Proposition 1.2.2. Let X ∈ indSch. Then X satisfies flat descent.

For the proof of the proposition we will need the following assertion of inde-
pendent interest:

Lemma 1.2.3. Let X be an ind-scheme. Then for S ∈
≤nSchqc, the ∞-groupoid

Maps(S,X) is n-truncated.

Proof. First we take n = 0. In this case the assertion follows from the fact
that filtered colimits of discrete objects of Spc are discrete. For general n, the
assertion follows from Chapter 1, Lemma 6.3.2 and Proposition 1.3.2 below (which
is proved independently). �

1.2.4. Proof of Proposition 1.2.2, Step 1. Let X be written as colim
α∈A

Xα, where

Xα ∈ Schqc, and the category A is filtered.

Let
○
S → S be a faithfully flat map in Schaff , and let

○
S●/S be its Čech nerve.

We need to show that the map

(1.3) Maps(S,X)→ Tot(Maps(
○
S●/S,X))

is an isomorphism.

Let us first assume that S is n-coconnective for some n. Since
○
S → S is flat,

then
○
S is also n-coconnective, and so are the terms of

○
S●/S.

We have a commutative diagram in Spc:

colim
α

Maps(S,Xα)
∼

ÐÐÐÐ→ Maps(S,X)

×
×
×
Ö

×
×
×
Ö

colim
α

Tot(Maps(
○
S●/S,Xα)) ÐÐÐÐ→ Tot(Maps(

○
S●/S,X))

×
×
×
Ö

×
×
×
Ö

colim
α

Tot≤n(Maps(
○
S●/S,Xα)) ÐÐÐÐ→ Tot≤n(Maps(

○
S●/S,X))

×
×
×
Ö

×
×
×
Ö

id

Tot≤n (colim
α

Maps(
○
S●/S,Xα)))

∼
ÐÐÐÐ→ Tot≤n(Maps(

○
S●/S,X)),

where Tot≤n denote the limit over the n-skeleton.

1. IND-SCHEMES 81

We note that the map

colim
α

Maps(S,Xα)→ colim
α

Tot(Maps(
○
S●/S,Xα))

is an isomorphism since maps of schemes satisfy flat descent.

Now, Lemma 1.2.3, implies that

Tot(Maps(
○
S●/S,X))→ Tot≤n(Maps(

○
S●/S,X))

and

Tot(Maps(
○
S●/S,Xα))→ Tot≤n(Maps(

○
S●/S,Xα).

are isomorphisms.

Furthermore, the map

colim
α

Tot≤n(Maps(
○
S●/S,Xα))→ Tot≤n (colim

α
Maps(

○
S●/S,Xα)))

is an isomorphism, since finite limits commute with filtered colimits.

This implies that the map (1.3) is an isomorphism as well.

1.2.5. Proof of Proposition 1.2.2, Step 2. For an integer n, we consider the n-

coconnective truncation ≤nS of S. Note that since
○
S → S is flat, the map ≤n

○
S → ≤nS

is flat, and the simplicial n-coconnective DG scheme ≤n
(

○
S●/S) is the Čech nerve of

≤n
○
S → ≤nS.

We have a commutative diagram

Maps(S,X) ÐÐÐÐ→ Tot(Maps(
○
S●/S,X))

×
×
×
Ö

×
×
×
Ö

lim
n∈Nop

Maps(≤nS,X) ÐÐÐÐ→ lim
n∈Nop

Tot(Maps(≤n(
○
S●/S),X))

.

In this diagram the vertical arrows are isomorphisms, since X is convergent. The
bottom horizontal arrow is an isomorphism by Step 1. Hence, the top horizontal
arrow is an isomorphism as well, as desired.

�

1.2.6. As a corollary we obtain:

Corollary 1.2.7. Let X ∈ indSch be written as in (1.1). Then for Z ∈ Schqc,
the map

colim
α

Maps(Z,Xα)→Maps(Z,X)

is an isomorphism.

Proof. Follows from the Zariski descent property of X and the fact that finite
limits commute with filtered colimits. �

1.3. Deformation theory of ind-schemes. In this subsection we show that
ind-schemes admit (connective) deformation theory, and that, moreover, they can
essentially be characterized by this property.

82 2. IND-SCHEMES AND INF-SCHEMES

1.3.1. We observe:

Proposition 1.3.2. Let X be an ind-scheme. Then X admits a connective
deformation theory.

Proof. Follows from the fact that the formation of finite limits (involved in
the definition of admitting connective deformation theory, see Chapter 1, Lemma
3.1.8) commutes with filtered colimits. �

1.3.3. Note that Chapter 1, Lemma 2.5.5 gives an explicit expression to the value
of pro-cotangent spaces of an ind-scheme:

Lemma 1.3.4. For X ∈ indSch written as in (1.1), and (Z,x) ∈ (Schqc)/X we
have:

T ∗x (X) ≃ lim
(α,xα)∈(Ax/)op

T ∗xα(Xα),

where Ax/ is the category of factorizations of x as

Z →Xα → X , α ∈ A.

In the above lemma, the limit is taken in Pro(QCoh(Z)
−
), or equivalently

Pro(QCoh(Z)
≤0

), as Ax/ is filtered.

1.3.5. We note the following feature of the pro-cotangent spaces of an ind-scheme.

Definition 1.3.6. Let Z be a scheme and T an object of Pro(QCoh(Z)
♡
). We

shall say that T can be given by a surjective system if T can be written as a limit

lim
α∈Aop

Fα,

where A is a filtered category, Fα ∈ QCoh(Z)
♡ and for α1 → α2, the corresponding

map Fα2 → Fα1 is surjective.

We have:

Lemma 1.3.7. An object T ∈ Pro(QCoh(Z)
♡
) is given by a surjective system if

and only if in the category

((QCoh(Z)
♡
)T /))

op

the full subcategory, spanned by surjections T ↠ F , is cofinal.

For future reference, we note that

Lemma 1.3.8. If i ∶ Z̃ ↪ Z is a nilpotent embedding, and T ∈ Pro(QCoh(Z)
♡
) is

such that T̃ ∶=H0
((Pro(i∗))(T)) ∈ Pro(QCoh(Z̃)

♡
) is given by a surjective system,

then T is also given by a surjective system.

1.3.9. From Lemma 1.3.4 we obtain:

Lemma 1.3.10. Let X be an ind-scheme and x ∶ Z → X a point, where Z ∈ Schqc.
Then H0

(T ∗x (X)) ∈ Pro(QCoh(Z)
♡
) is given by a surjective system.

1. IND-SCHEMES 83

1.3.11. The next assertion provides a partial converse to Proposition 1.3.2:

Theorem 1.3.12. Let X be an object of PreStk that admits connective defor-
mation theory and that for any (S,x ∶ S → X) ∈

clSchaff
/X , the object H0

(T ∗x (X)) ∈

Pro(QCoh(S)♡) is given by a surjective system. Assume that there exists a map
f ∶ X0 → X such that:

● X0 is a classical ind-scheme;
● The map f ∶ X0 → X is a monomorphism when evaluated on classical

schemes;
● The map f is a pseudo-nilpotent embedding2.

Then X is an ind-scheme.

The proof will be given in Sect. 2.

Corollary 1.3.13. Let X be an object of PreStk that admits connective de-
formation theory, and such that cl

X is a classical ind-scheme. Then X is an ind-
scheme.

1.4. Indschemes and truncations. In this subsection we compare our present
definition of ind-schemes with that of [GaRo1].

1.4.1. We have:

Proposition 1.4.2. Let X be an object of convPreStk. Then X ∈ indSch if and
only if for every n, we have ≤n

X ∈
≤nindSch.

Proof. The ‘only if’ part is evident. Conversely, let X be convergent and
such that for every n, we have ≤n

X ∈
≤nindSch. By repeating the argument of

Proposition 1.3.2, it follows from Chapter 1, Sect. 6.1.3 that X admits a connective
deformation theory.

Hence, such X satisfies the conditions of Corollary 1.3.13, namely, we take
X0 =

cl
X .

�

1.4.3. From Proposition 1.4.2 we obtain:

Corollary 1.4.4. Let α ↦ Xα be a filtered diagram of objects of Schqc with
the maps being closed embeddings. Set X ′

∶= colim
α

Xα. Then conv
(X

′
) is an ind-

scheme.

Finally, from Corollary 1.4.4, we deduce:

Corollary 1.4.5. Let Xn (resp., Xcl, Xred) be an n-coconnective (resp., clas-
sical, reduced) ind-scheme. Set

X
′
∶= LKE?Schaff↪Schaff (X?),

where ? =≤ n (resp., ? = cl, ? = red). Then conv
(X

′
) is an ind-scheme.

1.5. Closed embeddings into an ind-scheme. In this subsection we show that
an ind-scheme X can be recovered from the category of schemes equipped with a
closed embedding into X .

2See Chapter 1, Definition 8.1.2(d’) for what this means.

84 2. IND-SCHEMES AND INF-SCHEMES

1.5.1. We recall (see Chapter 1, Definition 8.1.2) that a map of prestacks X1 → X2

is a closed embedding if for S2 ∈ Schaff
/X2

, the map

cl
(S2 ×

X2

X1)→
clS2

is a closed embedding of classical affine schemes (in particular, the left hand side is
a classical affine scheme).

It is easy to see that if X1 → X2 → X3 are such that X1 → X3 and X2 → X3 are
closed embeddings, then so is X1 → X2.

In what follows, for X ∈ PreStk we let

PreStkclosed in X ⊂ PreStk/X

denote the full subcategory, consisting of those (X
′, f ∶ X ′

→ X), for which f is a
closed embedding. We will use a similar notation for any category that maps to
PreStk, e.g.,

Schclosed in X .

1.5.2. Let X be an ind-scheme, written as in (1.1). It is clear that for Z ∈ Schqc,
a map Z → X is a closed embedding if and only if for some/any α, for which the
above map factors through a map Z →Xα, the latter is a closed embedding.

1.5.3. We claim:

Proposition 1.5.4. An object X ∈
convPreStk is an ind-scheme if and only if

the following two conditions are satisfied:

● The functor Schclosed in X → (Schqc)/X is cofinal.
● The category Schclosed in X is filtered.

Proof. Clearly, the conditions of the proposition are sufficient for X to be an
ind-scheme.

Assume now that X is an ind-scheme. The fact that

Schclosed in X → (Schqc)/X

is cofinal follows from Corollary 1.2.7.

To prove that the category Schclosed in X is filtered, it is enough to show that it
contains finite colimits. Let

(1.4) i↦ Zi, i ∈ I

be a finite diagram in Schclosed in X . Write X as in (1.1). Then by Corollary 1.2.7,
and since the category of indices A is filtered, there exists an index α ∈ A such that
(1.4) factors through a diagram in Schclosed in Xα .

By Volume I, Chapter 5, Proposition 1.1.3, the resulting diagram admits a
colimit, denote it

Zα ∈ Schclosed in Xα .

Furthermore, by Volume I, Chapter 5, Lemma 1.1.5, for an arrow α → α′ in
A, the resulting map Zα → Zα′ is an isomorphism. Since A is filtered, this implies
that Zα maps isomorphically to the sought-for colimit in Schclosed in X .

�

1. IND-SCHEMES 85

1.6. Topological conditions. In this subsection we introduce several classes of
maps between prestacks, imposing the condition that they behave as ‘relative ind-
schemes’.

1.6.1. We give the following definitions:

Definition 1.6.2. We shall say that a reduced ind-scheme X is ind-affine if it
can be written as in (1.2) with Xα ∈

redSchqc being affine.

It is easy to see that X is ind-affine if and only if for any closed embedding
X → X with X ∈

redSchqc, the scheme X is affine.

Definition 1.6.3. We shall say that an ind-scheme (resp., n-coconnective ind-
scheme) X is ind-affine if red

X has this property.

Again, it is easy to see that X is ind-affine if and only if for any closed embedding
X → X with X ∈ Schqc (resp., ≤nSchqc), the scheme X is affine3.

It is easy to see that X is ind-affine if for any/some presentation (1.1) (resp.,
(1.2)), the schemes Xα are affine.

1.6.4. We give the following definition:

Definition 1.6.5.

(a) We shall say that a morphism X1 → X2 of prestacks (resp., n-coconnective
prestacks, classical prestacks, reduced prestacks) is ind-schematic if its base change
by an affine scheme (resp., n-connective affine scheme, classical scheme, reduced
scheme) yields an ind-scheme (resp., n-coconnective, classical, reduced ind-scheme).

(b) We shall say that a morphism X1 → X2 of prestacks (resp., n-coconnective
prestacks, classical prestacks, reduced prestacks) is ind-affine if its base change by an
affine scheme (resp., n-connective affine scheme, classical scheme, reduced scheme)
yields an ind-affine ind-scheme (resp., n-coconnective, classical, reduced ind-affine
ind-scheme).

1.6.6. We also give the following definitions:

Definition 1.6.7.

(a) We shall say that a map from a classical prestack X to a classical affine scheme
S is an ind-closed embedding if X is a classical ind-scheme and for any closed
embedding X → X , where X ∈

clSchqc, the composed map X → S is a closed embed-
ding.

(b) We shall say that a map of classical prestacks X1 → X2 is an ind-closed em-
bedding if its base change by a classical affine scheme yields a map which is an
ind-closed embedding.

(c) We shall say that a map of prestacks X1 → X2 is is an ind-closed embedding if
the corresponding map cl

X1 →
cl
X2 is.

Remark 1.6.8. Note that ‘closed embedding’ is stronger than ‘ind-closed em-
bedding’. E.g.,

Spf(k[[t]])→ Spec(k[t])

3Here we use the fact that if a classical scheme X is such that redX is affine, then X itself is
affine.

86 2. IND-SCHEMES AND INF-SCHEMES

is an an ind-closed embedding, but not a closed embedding. And similarly, for

⊔
I

pt→ A1,

where I is an arbitrary infinite set of distinct k-points in A1.

1.6.9. Let f ∶ X1 → X2 be a map of (classical) ind-schemes. It is easy to see that it
is an ind-closed embedding (resp., ind-affine) if and only if the following is satisfied:

If

X1 ∶= colim
α∈A

X1,α and X2 ∶= colim
β∈A

X2,β ,

then for every index α, and every/some index β for which X1,α → X1 → X2 factors
as

X1,α →X2,β → X2,

the map X1,α → X2,β is a closed embedding (resp., an affine morphism between
schemes).

In addition, f is an ind-closed embedding if and only if for every closed embed-
ding X1 → X1, the composition X1 → X1 → X2 is a closed embedding.

1.6.10. For future reference we also give the following definitions:

Definition 1.6.11.

(a) We shall say that a map from a reduced prestack X to a reduced affine scheme
S is ind-proper (resp., ind-finite) if X is a reduced ind-scheme and for any closed
embedding X → X , where X ∈

redSchqc, the composite map X → S is proper (resp.,
finite).

(b) We shall say that a map of reduced prestacks X1 → X2 is (ind)-proper (resp.,
(ind)-finite) if its base change by a reduced affine scheme yields a map which is
(ind)-proper (resp., (ind)-finite).

(c) We shall say that a map of prestacks X1 → X2 is (ind)-proper (resp., (ind)-
finite) if the corresponding map red

X1 →
red
X2 is (ind)-proper (resp., (ind)-finite).

1.6.12. Let f ∶ X1 → X2 be a map of reduced ind-schemes. It is easy to see that it
is ind-proper (resp., ind-finite) if and only if the following is satisfied:

If

X1 ∶= colim
α∈A

X1,α and X2 ∶= colim
β∈A

X2,β ,

then for every index α, and every/some index β for which X1,α → X1 → X2 factors
as

X1,α →X2,β → X2,

the map X1,α →X2,β is proper (resp., finite).

1.7. Indschemes and the finite type condition. In this subsection we show
that ind-schemes are nicely compatible with the ‘locally almost of finite type’ con-
dition.

1. IND-SCHEMES 87

1.7.1. We have the following assertion:

Proposition 1.7.2. Let X be an object of indSchlaft. Then the category (Schaft)closed in X
is filtered and the functor

(Schaft)closed in X → Schclosed in X

is cofinal.

The proof will be given in Sect. 2.7.

1.7.3. From Proposition 1.7.2 we obtain:

Corollary 1.7.4. An object X ∈ PreStklaft is an ind-scheme if and only if the
following two conditions are satisfied:

● The functor (Schaft)closed in X → (Schqc)/X is cofinal.
● The category (Schaft)closed in X is filtered.

Proof. It is clear that the conditions of the proposition are sufficient for X
to be an ind-scheme. The converse implication follows by combining Propositions
1.5.4 and 1.7.2, and the fact that a category cofinal in a filtered category is filtered.

�

Now, from Corollary 1.7.4 we obtain:

Corollary 1.7.5. Let X be an object of indSchlaft.

(a) As an object of PreStk, it can be written as a filtered colimit

(1.5) X ≃ colim
α

Xα,

where Xα ∈ Schaft and the maps Xα1 →Xα2 are closed embeddings.

(a’) The map
colim

Z∈(Schaft)closed in X

Z → X ,

where the colimit is taken in PreStk, is an isomorphism.

(b) The functors
(Schaft)closed in X → (Schaft)/X

and
(Schaft)/X → (Schqc)/X

are cofinal.

1.7.6. The following theorem is a variant of Theorem 1.3.12 in the locally of finite
type case.

Theorem 1.7.7. Let X be an object of PreStklaft, which admits a connective
deformation theory, and such that:

● For any (S,x ∶ S → X) ∈ (
redSchaff

ft)/X , the object H0
(T ∗x (X)) ∈ Pro(QCoh(S)♡)

is given by a surjective system.
●

red
X is a reduced ind-scheme.

Then the following conditions are equivalent:

(a) X is an ind-scheme;

(b) cl
X is a classical ind-scheme;

(c) The map LKE(redSchaff)op↪(clSchaff)op(
red
X)→

cl
X , is a monomorphism.

88 2. IND-SCHEMES AND INF-SCHEMES

(d) For any S ∈
redSchaff and a map x ∶ S → X , the object

T ∗x (
red
X /X) ∈ Pro(QCoh(S)−)

belongs to Pro(QCoh(S)≤−1
). (Here by a slight abuse of notation, we denote by

red
X the ind-scheme obtained by the procedure of Corollary 1.4.5.)

The proof will be given in Sect. 2.6.

1.8. Nil-schematic ind-schemes. In this subsection we study ind-schemes, whose
underlying reduced ind-scheme is a scheme4.

1.8.1. We give the following definition:

Definition 1.8.2. We shall say that an ind-scheme X is nil-schematic if the
reduced ind-scheme red

X is a scheme.

1.8.3. For X ∈ PreStk let

PreStknilp-emb into X ⊂ PreStk/X

be the full subcategory spanned by objects f ∶ X ′
→ X for which f is a nilpotent

embedding.

We will use a similar notation for full subcategories of PreStk, e.g.,

Schnilp-emb to X ⊂ Sch/X ,

etc.

1.8.4. In this subsection we will prove the following:

Proposition 1.8.5. Let X be a nil-schematic ind-scheme locally almost of finite
type. Then the category (Schaft)nilp-emb into X is filtered, and the functor

(Schaft)nilp-emb into X → (Schaft)closed in X

is cofinal.

As a formal consequence we obtain:

Corollary 1.8.6. Let X be a nil-schematic ind-scheme locally almost of finite
type.

(a) As an object of PreStk, it can be written as a filtered colimit

(1.6) X ≃ colim
α

Xα,

where Xα ∈ Schaft and the maps Xα1 →Xα2 are nilpotent embeddings.

(a’) The map
colim

Z∈(Schaft)nilp-emb into X

Z → X ,

where the colimit is taken in PreStk, is an isomorphism.

(a”) The category (Schaft)nilp-emb into X is filtered.

(b) The functor
(Schaft)nilp-emb into X → (Schqc)/X

is cofinal.

4Elsewhere in the literature, such ind-schemes are called ‘formal schemes’. We do not use
this terminology to avoid clashing with other usages of the word ‘formal’.

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 89

1.8.7. Proof of Proposition 1.8.5. Since the category (Schaft)closed in X is filtered, it
suffices to show that for any object

(Z → X) ∈ (Schaft)closed in X ,

there exists a factorization

Z →W → X ,

where (W → X) ∈ (Schaft)nilp-emb into X .

Note that since Z is almost of finite type, the map redZ → Z is a nilpotent
embedding. The sought-for scheme W is constructed as

Z ⊔
redZ

red
X ,

using Chapter 1, Corollary 7.2.3.
�

2. Proofs of results concerning ind-schemes

2.1. Proof of Theorem 1.3.12, Plan. Let X and X0 be as in Theorem 1.3.12.

2.1.1. We consider the following full subcategory of (Schqc)/X , to be denoted A.
Its objects are those

Z → X ,

for which there exists a commutative diagram

Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z ÐÐÐÐ→ X ,

where Z0 ∈
clSchqc, the map Z0 → Z is a nilpotent embedding, and Z0 → X0 is a

closed embedding.

Note that this condition implies that the map Z → X is nil-closed. In particular,
any map Z1 → Z2 in A is nil-closed, and hence affine.

2.1.2. Let B be a full subcategory of A, consisting of those

x ∶ Z → X

that satisfy the following condition:

The map (dx)∗ ∶ T ∗x (X)→ T ∗(Z) induces a surjection H0
(T ∗x (X))↠H0

(T ∗(Z)).

2.1.3. We will prove Theorem 1.3.12 by establishing the following facts:

(1) Any map Z1 → Z2 in B is a closed embedding;
(2) The category B is filtered;
(3) The map colim

(Z→X)∈B
Z → X is an isomorphism.

2.2. Step 1: proof that the maps are closed embeddings. We will prove a
slightly stronger assertion: any map Z1 → Z2, where Z1 ∈ B and Z2 ∈ A, is a closed
embedding.

90 2. IND-SCHEMES AND INF-SCHEMES

2.2.1. Let Z1 → Z2 be a map in A. Consider the corresponding nilpotent embed-
dings Z0,i ↪ Zi, Z0,i ∈

clSchqc, i = 1,2.

Let Z0 be the intersection of the closed subschemes Z0,1 and clZ1 ×
clZ2

Z0,2 in

clZ1.

The map Z0 → Z0,1 is a nilpotent embedding. The map Z0 → Z0,2 is a closed
embedding, because the composition Z0 → Z0,2 → X0 is.

2.2.2. The assertion of Step 1 follows now from the following general statement:

Let

Z0

Z1 Z2,

g1

��

g2

��f //

be a diagram in Schqc, where g2 is a closed embedding, and g1 a nilpotent embed-
ding. We have:

Proposition 2.2.3. The following conditions are equivalent:

(a) f is a closed embedding;

(b) f is a monomorphism when evaluated on classical affine schemes;

(c) The map T ∗g2
(Z2)→ T ∗g1

(Z1), induced by (df)∗, gives rise to a surjection

H0
(T ∗g2

(Z2))→H0
(T ∗g1

(Z1)).

The rest of this subsection is devoted to the proof of Proposition 2.2.3.

2.2.4. Clearly, (a) implies (b) and (b) implies (c). Let us show that (c) implies (a).
Clearly, the statement reduces to one about classical schemes. So, we can assume
that Z0, Z1 and Z2 are classical.

Let Z0 be given in Z1 by an ideal that vanishes to the power n. We will argue
by induction on n, starting with n = 2.

2.2.5. For n = 2, the map Z0 → Z1 is a square-zero extension, say by I1 ∈

QCoh(Z0)
♡. Replacing Z2 by the classical 1st infinitesimal neighborhood of Z0, we

can assume that Z0 → Z2 is also a square-zero extension, say by I2 ∈ QCoh(Z0)
♡.

We have:

H−1
(T ∗(Z0/Zi)) ≃ Ii.

We have a map of exact sequences

H−1
(T ∗(Z0)) ÐÐÐÐ→ H−1

(T ∗(Z0/Z2)) ÐÐÐÐ→ H0
(T ∗g2

(Z2)) ÐÐÐÐ→ H0
(T ∗(Z0))

id
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

id
×
×
×
Ö

H−1
(T ∗(Z0)) ÐÐÐÐ→ H−1

(T ∗(Z0/Z1)) ÐÐÐÐ→ H0
(T ∗g1

(Z1)) ÐÐÐÐ→ H0
(T ∗(Z0)),

hence assumption (c) implies that I2 → I1 is surjective, as required.

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 91

2.2.6. To carry out the induction step, let Z1/2 be a closed subscheme of Z1 such
that

Z0 ⊂ Z1/2 ⊂ Z1,

and such that the ideal of Z0 in Z1/2 and the ideal of Z1/2 in Z1 vanish to a smaller
power.

Note that the assumption of (c) holds for the map Z1/2 → Z2. Hence, by
induction hypothesis applied to

Z0

Z1/2 Z2,
�� ��

//

the map Z1/2 → Z2 is a closed embedding.

We now apply the induction hypothesis to

Z1/2

Z1 Z2,
�� ��

//

and deduce that Z1 → Z2 is a closed embedding.
�

2.3. Step 2: construction of a left adjoint. In order to proceed with the proof
of Theorem 1.3.12 we will now show that the inclusion

B ↪ A

admits a left adjoint.

2.3.1. Thus, given an object Z → X of A, we need to show that the category D(Z)

of factorizations

Z → Z ′
→ X ,

where (Z ′
→ X) ∈ B, admits an initial object.

2.3.2. We first reduce to the case of classical schemes. Indeed, let

clZ → Z ′
cl → X

be the initial object in the category D(
clZ) (in this case Z ′

cl is automatically clas-
sical). Then the object

Z ⊔
clZ

Z ′
cl

is initial in D(Z).

92 2. IND-SCHEMES AND INF-SCHEMES

2.3.3. From now, until the end of Step 2, all schemes will be classical, and we shall
sometimes omit “cl” from the notation.

By assumption, there exists a diagram

Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z
x

ÐÐÐÐ→ X ,

where Z0 → Z is a nilpotent embedding, and Z0 → X0 is a closed embedding (and
in particular, a monomorphism when evaluated on classical schemes).

Note that for any (Z → Z ′
→ X) ∈ D(Z), the composed map Z0 → Z ′ is a

closed embedding (e.g., by Step 1).

Let Z0 ↪ Z be given by the ideal that vanishes to the power n. We will argue
by induction on n, starting with n = 2.

2.3.4. Thus, we first assume that Z0 ↪ Z is a square-zero extension. Let

D(Z)SqZ ⊂ D(Z)

be the full subcategory spanned by those objects, for which Z0 → Z ′ is a square-
zero extension. (Note that since we are working with classical schemes, being a
square-zero extension is a property and not an extra structure.)

Note that the embedding D(Z)SqZ ↪D(Z) admits a right adjoint, which sends
Z ′ to the classical 1st infinitesimal neighborhood of Z0 in Z ′. Hence, it is enough
to show that D(Z)SqZ admits an initial object.

2.3.5. Denote x0 = x∣Z0 . The data of a square-zero extension Z0 ↪ Z and a map
x, extending x0 is given by the data of I ∈ QCoh(Z0)

♡ and a map

(2.1) coFib(T ∗x0
(X)→ T ∗(Z0))[−1]→ I.

By assumption, x0 is a monomorphism. This implies that

(dx0)
∗
∶ T ∗x0

(X)→ T ∗(Z0)

induces a surjection

(2.2) H0
(T ∗x0

(X))↠H0
(T ∗(Z0)).

Hence,

T ∗(Z0/X)[−1] = coFib(T ∗x0
(X)→ T ∗(Z0))[−1] ∈ Pro(QCoh(Z0)

≥0
).

Now, the assumption on T ∗(X) implies that

H0
(coFib(T ∗x0

(X)→ T ∗(Z0))[−1])

is also given by a surjective family.

Hence, the map (2.1) canonically factors as

coFib(T ∗x0
(X)→ T ∗(Z0))[−1]→ I ′ → I,

where

H0
(T ∗(Z0/X)[−1]) =H0

(coFib(T ∗x0
(X)→ T ∗(Z0))[−1])→ I ′

is surjective.

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 93

Let Z ′ be the square-zero extension of Z0 that corresponds to

coFib(T ∗x0
(X)→ T ∗(Z0))[−1]→ I ′.

It is easy to see that Z ′ is the initial object in D(Z)SqZ.

2.3.6. We are now ready to carry out the induction step. Choose a classical sub-
scheme Z1/2

Z0 ↪ Z1/2 ↪ Z,

such that

Z1/2 ↪ Z

is a square-zero extension, and the ideal of Z0 in Z1/2 vanishes to a smaller power.

By the induction hypothesis, the category D(Z1/2) admits an initial object,
denote it by Z ′

1/2. Denote

Z̃ ∶= Z ⊔
Z1/2

Z ′
1/2,

and let

x̃ ∶ Z̃ → X

denote the resulting map.

Note that

Z ′
1/2 ↪ Z̃

is a square-zero extension. Hence, by Sects. 2.3.4 and 2.3.5, the category D(Z̃) ad-
mits an initial object. Indeed, the proof only used the fact that (2.2) was surjective,
which is satisfied for the map Z ′

1/2 → X by construction.

Let

Z̃ → Z ′
→ X

an initial object of D(Z̃). It is easy to see that the resulting object

Z → Z ′
→ X

is the initial one in D(Z).

2.4. Step 3: proof of filteredness.
2.4.1. We consider two auxilliary categories. We let B′ be the category

(
clSchqc)closed in X0 .

We let B′′ be the category of commutative diagrams

Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z ÐÐÐÐ→ X ,

where (Z → X) ∈ B, (Z0 → X0) ∈ B
′, and Z0 → Z is a nilpotent embedding.

We have the naturally defined forgetful functors:

B ← B′′
→ B′.

94 2. IND-SCHEMES AND INF-SCHEMES

2.4.2. Note that the category B′ is filtered by the assumption on X0. We will now
show that the category B′′ is filtered as well.

We will use the following general assertion:

Lemma 2.4.3. Let F ∶ C → D be a co-Cartesian fibration. Assume that D is
filtered and that the fibers of F are also filtered. Then C is filtered.

We claim that the above lemma is applicable to the above functor

B′′
→ B′.

This would imply that B′′ is filtered.

2.4.4. Let us show that B′′
→ B′ is a co-Cartesian fibration. Given a diagram

Z1
0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z1
ÐÐÐÐ→ X ,

and a map Z1
0 → Z2

0 we construct the sought-for object

Z2
0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z2
ÐÐÐÐ→ X

as follows. First, we set

Z̃2 ∶= Z
1
⊔

Z1
0

Z2
0 ,

which is equipped with a canonical map to X .

We have (Z̃2 → X) ∈ A and the required object (Z2 → X) ∈ B is obtained by
applying the left adjoint A→ B constructed in Step 2.

2.4.5. Let us now show that the fiber of B′′ over a given object (Z0 → X0) ∈ B
′ is

filtered. We claim that the fiber in question admits coproducts and push-outs.

For products, given two objects Z1 and Z2, we take

Z̃ ∶= Z1
⊔
Z0

Z2,

which is equipped with a canonical map to X .

We have (Z̃ → X) ∈ A and the sought-for coproduct in B is obtained by
applying the left adjoint A→ B.

The proof for push-outs is similar (using the fact that all maps in B are closed
embeddings).

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 95

2.4.6. Thus, we have shown that B′′ is filtered. To prove that B is filtered, we
will use the following general statement:

Lemma 2.4.7. Let F ∶ C → D be a functor between (∞,1)-categories. Assume
that F is cofinal and C is filtered. Then D is filtered.

We claim that the above lemma is applicable to the functor B′′
→ B. This

would imply that B is filtered.

We have the following general statement:

Lemma 2.4.8. Let F ∶ C → D be a Cartesian fibration. Then F is cofinal if
and only if it has contractible fibers.

Hence, it is enough to show that B′′
→ B is a Cartesian fibration and that it

has contractible fibers.

The fact that B′′
→ B is a Cartesian fibration is obvious via the formation of

fiber products (again, using the fact that any map in B is a closed embedding).

The fact that the fibers of B′′
→ B are contractible is proved in Sect. 2.5.4

below.

2.5. Step 4: proof of the isomorphism. We will now show that the map

colim
(Z→X)∈B

Z → X

is an isomorphism, thereby proving Theorem 1.3.12.

2.5.1. We need to show that for S ∈ Schaff and a map S → X , the category C of
factorizations

S → Z → X ,

with (Z → X) ∈ B is contractible.

We introduce several auxilliary categories.

2.5.2. We let C′ be the category of diagrams

(2.3)

Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ Z ÐÐÐÐ→ X ,

where (Z → X) ∈ B, Z0 ∈
clSchqc, the map Z0 → Z is a nilpotent embedding, and

Z0 → X0 is a closed embedding.

We let C′′ be the category of diagrams

S0 ÐÐÐÐ→ Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ Z ÐÐÐÐ→ X ,

where Z → X , Z0 → Z, Z0 → X0 are as above, S0 ∈
clSchqc, and S0 → S is a nilpotent

embedding.

96 2. IND-SCHEMES AND INF-SCHEMES

We let C′′′ denote the category of diagrams

(2.4) S0
//

��

Z0
// X0

��
S // X

where S0 → S and Z0 → X0 are as above.

We let C′′′′ denote the category of diagrams

(2.5)

S0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ X ,

where S0 → S is as above.

2.5.3. We have the forgetful functors

C←C′
←C′′

→C′′′
→C′′′′.

We claim that all of the above functors are homotopy equivalences and that
C′′′′ is contractible. This will imply that that C is contracible.

2.5.4. The functor C′
→ C is a Cartesian fibration (via the formation of fiber

products). Hence, in order to show that it is a homotopy equivalence, it suffices to
show that it has contractible fibers.

The fiber of C′
→ C over an object (S → Z → X) ∈ C is the category of ways

to complete

X0

×
×
×
Ö

Z ÐÐÐÐ→ X

to a commutative diagram

Z0 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

Z ÐÐÐÐ→ X ,

where Z0 → Z is a nilpotent embedding, and Z0 → X0 is a closed embedding.

The assumption that (Z → X) belongs to A means that the above category
is non-empty. To prove that this category is contractible, it is sufficient to show
that it contains products. These are given by intersecting the corresponding closed
subschemes inside clZ (here we use the fact that X0 → X is a monomorphism of
classical prestacks).

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 97

2.5.5. The functor C′′
→C′ is a Cartesian fibration. Hence, in order to show that

it is a homotopy equivalence, it suffices to show that it has contractible fibers.

The fiber of C′′
→C′ over an object (2.3) is the category of fillings of

Z0

×
×
×
Ö

S ÐÐÐÐ→ Z

to a commutative diagram

S0 ÐÐÐÐ→ Z0

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ Z,

where S0 → S is a nilpotent embedding. This category is contractible, because it
contains the final object, namely, S0 ∶= S ×

Z
Z0.

2.5.6. Coniser the functor C′′
→C′′′. We claim that it is a co-Cartesian fibration.

Indeed, given a map from a diagram

S0,1
//

��

Z0,1
// X0

��
S // X

to a diagram

S0,2
//

��

Z0,2
// X0

��
S // X ,

and a diagram

S0,1 ÐÐÐÐ→ Z0,1 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ Z1 ÐÐÐÐ→ X ,

we construct the corresponding diagram

S0,2 ÐÐÐÐ→ Z0,2 ÐÐÐÐ→ X0

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

S ÐÐÐÐ→ Z2 ÐÐÐÐ→ X

as follows.

Set Z̃2 ∶= Z1 ⊔
Z0,1

Z0,2. We have (Z0,2 → Z̃2) ∈ A. The sought-for object

(Z0,2 → Z2) ∈ B is obtained from Z0,2 → Z̃2 by applying the left adjoint functor to
B ↪ A from Step 2.

98 2. IND-SCHEMES AND INF-SCHEMES

2.5.7. Hence, in order to show that C′′
→C′′′ is a homotopy equivalence, it suffices

to show that it has contractible fibers.

The fiber of C′′
→ C′′′ over an object (2.4) is the category of factorizations of

the map

S ⊔
S0

Z0 → X

as

S ⊔
S0

Z0 → Z → X ,

where the composition

Z0 → S ⊔
S0

Z0 → Z

is a nilpotent embedding, and (Z → X) ∈ B.

We claim that the above category of factorizations contains an initial object.
Indeed, set Z̃ ∶= S ⊔

S0

Z0, where the formation of the push-out is well-behaved because

the map S0 → Z0 is affine (recall that all our schemes were assumed separated).

We have (Z̃ → X) ∈ A. Now, the sought-for initial object is obtained by

applying to Z̃ the left adjoint to B ↪ A.

2.5.8. The functor C′′′
→ C′′′′ is a Cartesian fibration. Hence, in order to show

that it is a homotopy equivalence, it suffices to show that it has contractible fibers.

The fiber of C′′′
→C′′′′ over an object (2.5) is the category of factorizations of

S0 → X0 via a closed embedding

S0 → Z0 → X .

The latter category contractible by the assumption that X0 is a classical ind-
scheme.

2.5.9. Finally, we claim that C′′′′ is contractible. Indeed, it is non-empty by
the assumption that X0 → X is a pseudo-nilpotent embedding. Furthermore, it
contains finite products: these are obtained by intersecting the corresponding closed
subschemes in clS as in Sect. 2.5.4.

�(Theorem 1.3.12)

2.6. Proof of Theorem 1.7.7.
2.6.1. The implication (a) ⇒ (b) is tautological.

Note also that at this point we also know that (b) implies (a): this follows from
Corollary 1.3.13.

2.6.2. The implication (b) ⇒ (c) is easy: we need to show that for S ∈
clSchaff ,

the map

Maps(S, red
X)→Maps(S, cl

X)

is a monomorphism of groupoids.

Writing cl
X = colim

α∈A
Xα with Xα ∈

clSchqc and A filtered, the above map be-

comes

colim
α∈A

Maps(S, redXα)→Maps(S,Xα),

which is an injection (of sets), since A is filtered.

2. PROOFS OF RESULTS CONCERNING IND-SCHEMES 99

2.6.3. We now claim that (c) implies (a). Indeed, we apply Theorem 1.3.12 to
X0 =

red
X . Thus, we only have to show that red

X → X is a pseudo-nilpotent
embedding. However, this follows from Chapter 1, Lemma 8.1.5.

2.6.4. The implication (c)⇒ (d) is tautological from the definition of pro-cotangent
spaces. Hence, it remains to show that (d) implies (c).

By Volume I, Chapter 2, Lemma 1.6.8, the functor

LKE(clSchaff
ft)op↪(clSchaff)op

commutes with finite limits, and in particular, preserves monomorphisms. Hence,
it is sufficient to show that for S ∈

clSchaff
ft , the map

Maps(S, red
X)→Maps(S,X)

is a monomorphism of groupoids.

The map

Maps(S0,
red
X)→Maps(S0,X)

is a monomorphism (in fact, an isomorphism) for S0 =
redS.

Since S is of finite type, there exists a finite sequence of square-zero extensions

redS = S0 ↪ S1 ↪ ...↪ Sn = S.

We will show by induction that the maps

Maps(Si,
red
X)→Maps(Si,X)

are monomorphisms.

2.6.5. The case i = 0 has been considered above. To carry out the induction step,
we need to show that for any xi ∶ Si →

red
X , the map

{xi} ×

Maps(Si,redX)
Maps(Si+1,

red
X)→ {xi} ×

Maps(Si,X)
Maps(Si+1,X)

is a monomorphism.

Let the square-zero extension Si ↪ Si+1 be given by an object

I ∈ QCoh(Si)
♡
T ∗(Si)[−1]/.

Then the groupoid

{xi} ×

Maps(Si,redX)
Maps(Si+1,

red
X)

identifies with that of null-homotopies of the composition

T ∗xi(
red
X)→ T ∗(Si)→ I[1],

while the groupoid

{xi} ×
Maps(Si,X)

Maps(Si+1,X)

identifies with that of null-homotopies of the composition

T ∗xi(X)→ T ∗(Si)→ I[1].

Hence, the required monomorphism property follows from the fact that

T ∗xi(
red
X /X) ∈ Pro(QCoh(Si)

≤−1
),

100 2. IND-SCHEMES AND INF-SCHEMES

which in turn follows from condition (d) and the fact that S0 → Si is a nilpotent
embedding.

�(Theorem 1.7.7)

2.7. Proof of Proposition 1.7.2.
2.7.1. Step 0. Since the category Schclosed in X is filtered, in order to prove the
proposition, it is sufficient to show that every closed embedding Z → X can be
factored as

Z → Z̃ → X ,

where Z̃ ∈ Schaft and Z̃ → X is a closed embedding.

Given a closed embedding Z → X , we will construct a compatible system of
factorizations

≤nZ → Z̃n → X , Z̃n ∈ (
≤nSchft)closed in X ,

≤n−1Z̃n ≃ Z̃n−1.

We shall proceed by induction on n, starting from n = 0.

2.7.2. Step 1. We claim that clZ is already of finite type. I.e., we claim that the
functor

(
clSchaft)closed in X → (

clSchqc)closed in X

is an equivalence. Indeed, write

cl
X ≃ colim

α
Xα, Xα ∈

clSchqc .

Since a closed classical subscheme of a classical scheme of finite type is itself of
finite type, it suffices to show that all Xα are of finite type.

Recall the following characterization of classical schemes of finite type: X ∈

clSchqc is of finite type if and only of for a classical commutative k-algebra R and
a filtered family of subalgebras Ri with ∪

i
Ri = R, the map

colim
i

Maps(Spec(Ri),X)→Maps(Spec(R),X)

is an equivalence.

For a R and Ri as above, and any index α, the diagram

colim
i

Maps(Spec(Ri),Xα) ÐÐÐÐ→ colim
i

Maps(Spec(Ri),X)

×
×
×
Ö

×
×
×
Ö

Maps(Spec(R),Xα) ÐÐÐÐ→ Maps(Spec(R),X)

is a pullback square. Hence, the fact that the right vertical arrow is an isomorphism
implies that the right vertical arrow is an isomorphism, as required.

3. (IND)-INF-SCHEMES 101

2.7.3. Step 2. We shall now carry out the induction step. Assume that

≤nZ → Z̃n → X

has been constructed.

Set

Z̃ ′
n+1 ∶= Z̃n ⊔

≤nZ

≤n+1Z.

By Chapter 1, Proposition 5.4.2, the morphism ≤nZ →
≤n+1Z has a (canonical)

structure of square-zero extension. Hence, the morphism

Z̃n → Z̃ ′
n+1

also has a structure of square-zero extension, by an ideal I ′ ∈ QCoh(Z̃n)
♡
[n + 1].

Since the morphism ≤nZ → Z̃n is affine, we have a canonical map

Z̃ ′
n+1 → X .

We need to factor the latter morphism as

Z̃ ′
n+1 → Z̃n+1 → X ,

where Z̃n+1 ∈
≤n+1Schft, and Z̃n →

≤nZ̃n+1 is an isomorphism.

We claim that we can find such a Z̃n+1 so that Z̃n →
≤nZ̃n+1 is a square-zero

extension by an ideal I ∈ Coh(Z̃n)
♡
[n + 1].

This follows by the argument in Step 3 of the proof of Chapter 1, Theorem
9.1.2

�(Proposition 1.7.2)

3. (Ind)-inf-schemes

Ind-inf-schemes are our primary object of study. These are the algebro-geometric
spaces on which the category IndCoh is defined along with the operations of !-
pullback and *-pushforward; in this respect they behave much in the same way as
schemes (the main difference is the absense of t-structure); we will develop this in
Chapter 3. In addition, it turns out that ind-inf-schemes are well-adapted to a lot
of formal differential geometry, as we shall see in Chapter 8 and Chapter 9.

What is surprising is that the class of ind-inf-schemes is quite large. In this
section we define ind-inf-schemes and discuss some basic properties.

3.1. The notion of (ind)-inf-scheme. We will only define the notion of (ind)-
inf-scheme, under the ‘laft’ hypothesis. One can give a definition in general, but it
is more technical and currently we do not see sufficient applications for it.

3.1.1. Let X be an object of PreStklaft.

Definition 3.1.2. We shall say that X is an inf-scheme (resp., ind-inf-scheme)
if:

● X admits deformation theory;
● The reduced prestack red

X is a reduced quasi-compact scheme (resp., ind-
scheme).

102 2. IND-SCHEMES AND INF-SCHEMES

We let indinfSchlaft (resp., infSchlaft) denote the full subcategory of PreStklaft

spanned by ind-inf-schemes (resp., inf-schemes). It is clear that both subcategories
are closed under finite limits.

3.1.3. Examples.

(i) By Proposition 1.3.2, any object of indSch is an ind-inf-scheme.

(ii) Let Z be an object of PreStklaft. Consider the de Rham prestack ZdR:

Maps(S,ZdR) ∶= Maps(redS,Z).

If red
Z is a reduced ind-scheme (resp., scheme), then ZdR is an ind-inf-scheme

(resp., inf-scheme). Indeed,
red
ZdR =

red
Z,

while the cotangent complex of ZdR is zero.

However, ZdR is not an ind-scheme. For example, it violates condition (d) of
Theorem 1.7.7.

(iii) Let Y → X be a map in PreStklaft. We definite the formal completion of X
along Y (or of Y in X), denoted X ∧

Y to be the prestack

X ×
XdR

YdR.

Note that red
X
∧
Y ≃

red
Y.

Hence, if red
Y is a reduced ind-scheme (resp., scheme), and X admits deforma-

tion theory, then X ∧
Y is an ind-inf-scheme (resp., inf-scheme).

3.1.4. We give the following definition:

Definition 3.1.5. Let f ∶ X1 → X2 be a morphism in PreStklaft. We shall say
that f is (ind)-inf-schematic if its base change by an affine scheme (almost of finite
type) yields an (ind)-inf-scheme.

3.2. Properties of (ind)-inf-schemes.
3.2.1. By Chapter 1, Proposition 8.2.2(a) we have:

Corollary 3.2.2. Let X ∈ indinfSch. Then X satisfies Nisnevich descent.

Remark 3.2.3. According to Chapter 1, Remark 8.2.3, any object of indinfSch
satisfies étale descent.

3.2.4. We now claim:

Lemma 3.2.5. Any ind-inf-scheme X can be exhibited as a filtered colimit in
PreStk

colim
α
Xα,

where Xα ∈ infSchlaft and the maps Xα1 →Xα2 are ind-closed embeddings.

Proof. Write red
X as a filtered colimit in redPreStk

colim
α

Xα, Xα ∈
redSchft .

Let Xα be the formal completion of Xα in X , i.e.,

Xα = (Xα)dR ×
XdR

X .

This gives the desired presentation. �

3. (IND)-INF-SCHEMES 103

3.3. Ind-inf-schemes vs. ind-schemes. In this subsection we discuss various
conditions that guarantee that a given (ind)-inf-scheme is in fact an (ind)-scheme.

3.3.1. First we observe:

Lemma 3.3.2. Let X ′
→ X be a map in PreStklaft with X an ind-inf-scheme

(resp., ind-scheme). Then X ′ is an ind-inf-scheme (resp., ind-scheme) if and only

if for every S ∈ (
<∞Schaff

ft)/X , the base change S ×
X
X
′ is an ind-inf-scheme (resp.,

ind-scheme).

3.3.3. When is an ind-inf-scheme an ind-scheme? A partial answer to this question
is provided by Theorem 1.3.12. Here is a more algorithmic answer:

Corollary 3.3.4. An object X ∈ indinfSchlaft belongs to indSchlaft if and only
if:

● For any (S,x ∶ S → X) ∈ (
redSchaff

ft)/X , we have T ∗x (
red
X /X) ∈ Pro(QCoh(S))≤−1;

● For any (S,x ∶ S → X) ∈ (
redSchaff

ft)/X , the object H0
(T ∗x (X)) ∈ Pro(QCoh(S)♡)

is given by a surjective system.

Proof. This is a restatement of Theorem 1.7.7. �

The above assertion has a number of corollaries that will be useful in the sequel:

Corollary 3.3.5. Let f ∶ X → Y be a nil-isomorphism, where X ∈ indinfSchlaft

and Y ∈ indSchlaft. Assume that for every (S,x ∶ S → X) ∈ (
redSchaff

ft)/X we have:

● T ∗x (X /Y) ∈ Pro(QCoh(S)≤0
);

● The object H0
(T ∗x (X /Y)) ∈ Pro(QCoh(S)♡) is given by a surjective sys-

tem.

Then X ∈ indSchlaft.

Proof. We claim that X satisfies the conditions of Corollary 3.3.4. We need
to show that for every (S,x ∶ S → X) ∈ (

redSchaff
ft)/X we have:

● T ∗x (
red
X /X) ∈ Pro(QCoh(S)≤−1

);
● H0

(T ∗x (X)) ∈ Pro(QCoh(S)♡) is given by a surjective system.

Consider the fiber sequence

T ∗x (X /Y)→ T ∗x (
red
X /Y)→ T ∗x (

red
X /X)

in Pro(QCoh(S)−).

Since Y is an ind-scheme and red
X ≃

red
Y, we have

T ∗x (
red
X /Y) ∈ Pro(QCoh(S)≤−1

).

Hence, T ∗x (
red
X /X) ∈ Pro(QCoh(S)≤−1

), as desired.

Consider now the fiber sequence

T ∗f○x(Y)→ T ∗x (X)→ T ∗x (X /Y),

and the corresponding exact sequence

H0
(T ∗f○x(Y))→H0

(T ∗x (X))→H0
(T ∗x (X /Y))→ 0.

From here we obtain that H0
(T ∗x (X)) ∈ Pro(QCoh(S)♡) is given by a surjective

system, since both H0
(T ∗f○x(Y)) and H0

(T ∗x (X /Y)) are.
�

104 2. IND-SCHEMES AND INF-SCHEMES

4. (Ind)-inf-schemes and nil-closed embeddings

The results of this section are of crucial technical importance. We prove two
types of results. One is about approximating (ind)-inf-schemes by schemes; this is
needed for the development of IndCoh on (ind)-inf-schemes. The other is about
recovering an (ind)-inf-scheme as a prestack (i.e., a presheaf on the category of
affine schemes) from its restriction to a much smaller subcategory of test schemes;
this is needed for the study of formal moduli problems in Chapter 5.

4.1. Exhibiting ind-inf-schemes as colimits. In this subsection we show that
an (ind)-inf-scheme X is isomorphic to the colimit of schemes equipped with a
nil-closed map into X .

4.1.1. For X ∈ PreStk let

PreStknil-closed in X ⊂ PreStk/X

be the full subcategory spanned by objects f ∶ X ′
→ X for which f is nil-closed.

We will use a similar notation for full subcategories of PreStk, e.g.,

Schnil-closed in X ⊂ Sch/X ,

etc.

4.1.2. We have the following assertion (cf. Corollary 1.7.5(a’) in the case of ind-
schemes):

Theorem 4.1.3. Let X be an object of indinfSchlaft. Then the map

colim
Z∈(Schaft)nil-closed in X

Z → X ,

where the colimit is taken in PreStk, is an isomorphism.

Evaluating the two sides in Theorem 4.1.3 on <∞Schaff
ft , we obtain:

Corollary 4.1.4. Let X be an object of indinfSchlaft. Then the map

colim
Z∈(Schaft)nil-closed in X

Z → X ,

where the colimit is taken in PreStklaft, is an isomorphism.

With future applications in mind, let us state the following particular case of
Corollary 4.1.4 separately:

Corollary 4.1.5. Let X ∈ indinfSchlaft be such that red
X = X0 is ind-affine.

Then the functor

(
<∞Schaff

ft)/X ×

(redSchaff
ft)/X0

(
redSchaff

ft)closed in X0 ↪ (
<∞Schaff

ft)/X

is cofinal.

Remark 4.1.6. We note that the analog of Corollary 1.7.5(b) fails for ind-inf-
schemes. I.e., it is not true that the inclusion

(Schaft)nil-closed in X ↪ (Schaft)/X

is cofinal.

The rest of this subsection is devoted to the proof of Theorem 4.1.3.

4. (IND)-INF-SCHEMES AND NIL-CLOSED EMBEDDINGS 105

4.1.7. Step 0. For (S,x) ∈ (
clSchaff

)/X consider the category Factor(x,nil-closed, ft, cl)
of factorizations

S → Z → X ,

where Z ∈ (
clSchft)nil-closed in X . In Steps 1-6 we will show that this category is

contractible.

Since cl
X ∈ PreStklft, it is easy to see that we can assume that S ∈

clSchaff
ft .

4.1.8. Step 1. Denote S0 ∶=
redS and x0 ∶= x∣S0 . Consider the category

Factor(x0,nil-closed, red)

of factorizations

S0 → Z0 → X ,

where Z0 ∈ (
redSchft)closed in redX .

The category Factor(x0,nil-closed, red) is contractible, since red
X is a (reduced)

ind-scheme locally of finite type.

We have a functor

(4.1) Factor(x,nil-closed, ft, cl)→ Factor(x0,nil-closed, red), Z ↦ redZ,

and it is enough to show that (4.1) is a homotopy equivalence.

We note that (4.1) is a co-Cartesian fibration via the formation of push-outs.
Hence, it is enough to show that the fibers of (4.1) are contractible.

4.1.9. Step 2. For an object S0 → Z0 → X of Factor(x0,nil-closed, red). The fiber
of (4.1) over this object is described as follows.

Let Z ′ denote the push-out

S ⊔
S0

Z0.

(Note, however, that Z ′ is not necessarily of finite type.)

Since S was assumed of finite type, the map S0 → S is a nilpotent embedding (in
fact, a finite succession of square-zero extensions). Since the morphism S0 → Z0 is
affine, by Chapter 1, Corollary 7.2.3, we obtain a canonically defined map Z ′

→ X .

The sought-for fiber is the category of factorizations of the above map Z ′
→ X

as

Z ′
→ Z → X ,

where Z ∈
clSchft and redZ = Z0.

4.1.10. Step 3. We will prove the following general assertion. Suppose that Z ′
0 →

Z ′ can be written as a finite succession of square-zero extensions, with Z ′
0, Z

′
∈

(
clSchqc)/X and Z ′

0 ∈
clSchft.

Let C(x) denote the category of factorizations of the map x ∶ Z ′
→ X as

Z ′
→ Z → X ,

where Z ∈
clSchft and Z ′

0 → Z a nil-isomorphism.

We claim that C(x) is contractible.

106 2. IND-SCHEMES AND INF-SCHEMES

4.1.11. Step 4. Suppose that Z ′
0 → Z ′ can be written as a succession of m square-

zero extensions. We will argue by induction on m.

If m = 1, the required assertion is proved by repeating Chapter 1, Proof of
Theorem 9.1.2, Steps 2-3.

Let us carry out the induction step. Choose an intermediate extension

Z ′
0 → Z ′

1
2
→ Z ′,

and let x 1
2

denote the map Z ′
1
2

→ X .

Let C(x 1
2
) denote the corresponding category of factorizations of x 1

2
. By the

induction hypothesis, we can assume that C(x 1
2
) is contractible.

Let D denote the category of commutative diagrams

Z ′
ÐÐÐÐ→ Z

Õ
×
×
×

Õ
×
×
×

Z ′
1
2

ÐÐÐÐ→ Z 1
2

in (
clSchqc)Z′0/ /X with Z,Z 1

2
∈

clSchft, and where all the maps are nil-isomorphisms.

We have the forgetful functors

C(x 1
2
)←D→C(x).

We will show that both these functors are homotopy equivalences. This will
prove that C(x) is contractible.

4.1.12. Step 5. The functor D → C(x) is a Cartesian fibration. Hence, in order to
show that it is a homotopy equivalence, it is enough to show that it has contractible
fibers.

However, for an object (Z ′
→ Z → X) ∈ C(x), the fiber in question has a final

point: take Z 1
2
= Z.

4.1.13. Step 6. The functor D → C(x 1
2
) is a co-Cartesian fibration via the forma-

tion of push-outs. Hence, in order to show that it is a homotopy equivalence, it is
enough to show that it has contractible fibers.

For an object

(Z ′
1
2
→ Z 1

2
→ X) ∈ C(x 1

2
),

set

Z̃ ′
∶= Z ′

⊔
Z′

1
2

Z 1
2
.

Let x̃ denote the resulting map Z̃ ′
→ X . The fiber in question is the category

C(x̃). This category is contractible by the induction hypothesis, applied to the
nil-isomorphism

Z 1
2
→ Z̃ ′.

4. (IND)-INF-SCHEMES AND NIL-CLOSED EMBEDDINGS 107

4.1.14. Step 7. Now, let (S,x) be an arbitrary object of (Schaff
)/X . Let us show

that the category Factor(x,nil-closed,aft) of factorizations

S → Z → X ,

where Z ∈ (Schaft)nil-closed in X is contractible.

Denote S0 =
clS and x0 = x∣S0 . Consider the functor

Factor(x,nil-closed,aft)→ Factor(x0,nil-closed, ft, cl), Z ↦ Z0 ∶=
clZ.

This functor is a coCartesian fibration via the formation of push-outs. Since
we already know that Factor(x0,nil-closed, cl) is contractible, it suffices to show
that the fibers of the above functor are contractible. The latter is established by
repeating the argument of Chapter 1, Theorem 9.1.4.

4.2. A construction of ind-inf-schemes. Our current goal is to prove a par-
tial converse to Theorem 4.1.3, which will give rise to a procedure for explicitly
constructing ind-inf-schemes.

4.2.1. We start with an object X0 ∈
redindSchlft. In this subsection we will assume

that X0 is ind-affine.

Let Xnil-closed be a presheaf on the category

<∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0 ,

where the functor <∞Schaff
ft →

redSchaff
ft is S ↦ redS.

4.2.2. We impose the following assumptions on Xnil-closed:

● The restriction of Xnil-closed to the full subcategory

(
redSchaff

ft)closed in X0 =
redSchaff

ft ×
redSchaff

ft

(
redSchaff

ft)closed in X0 ⊂

⊂
<∞Schaff

ft ×
redSchaff

ft

(
redSchaff

ft)closed in X0

takes the value ∗ ∈ Spc.
● For a push-out diagram

Z1 ⊔
Z
Z ′

in <∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0 , where Z ↪ Z ′ has a structure of

square-zero extension, the resulting map

Xnil-closed(Z1 ⊔
Z
Z ′

)→ Xnil-closed(Z1) ×
Xnil-closed(Z)

Xnil-closed(Z
′
)

is an isomorphism (cf. characterization of deformation theory in Chap-
ter 1, Corollary 6.3.6).

108 2. IND-SCHEMES AND INF-SCHEMES

4.2.3. Let X denote the left Kan extension of Xnil-closed under the fully faithful
embedding

(
<∞Schaff

ft ×
redSchaff

ft

(
redSchaff

ft)closed in X0)
op
↪ (

<∞Schaff
×

redSchaff
(
redSchaff

)/X0
)

op.

Note that

<∞Schaff
×

redSchaff
(
redSchaff

)/X0
= (

<∞Schaff
)/(X0)dR

.

Thus, we can view X as an object of convPreStk mapping to (X0)dR. By
construction, X belongs to

PreStklaft ⊂
convPreStk,

and red
X is canonically isomorphic to X0.

4.2.4. We are going to prove:

Theorem 4.2.5. Under the above circumstances X ∈ indinfSchlaft.

By combining with Corollary 4.1.5, we obtain:

Corollary 4.2.6. The assignements

Xnil-closed ↝ X

and

X ↝ X ∣<∞Schaff
ft ×

redSchaff
ft

(redSchaff
ft)closed in X0

define mutually inverse equivalences between

(indinfSchlaft)/(X0)dR
×

(redindSchlft)/X0

∗

and the category of presheaves on <∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0 , satisfying

the assumptions of Sect. 4.2.2.

The rest of the subsection is devoted to the proof of Theorem 4.2.5.

4.2.7. Step 1. We only have to show that X admits deformation theory. Since
X ∈ PreStklaft, by Chapter 1, Corollary 7.2.6, it suffices to check the following:

Let S → Z be a map in (
<∞Schaff

)/X , where redZ → X0 is a closed embedding

and Z ∈
<∞Schaff

ft . We need to show that for a map S ↪ S′, equipped with a

structure of square-zero extension, and such that S′ ∈ <∞Schaff , the map

MapsZ/(Z
′,X)→MapsS/(S

′,X)

is an isomorphism, where Z ′
∶= Z ⊔

S
S′.

Fix a point x′ ∈ MapsS/(S
′,X). We need to show that the groupoid

(4.2) MapsZ/(Z
′,X) ×

MapsS/(S′,X)
{x′}

is contractible.

4. (IND)-INF-SCHEMES AND NIL-CLOSED EMBEDDINGS 109

4.2.8. Step 2. Let C be the category of factorizations of the given map S → X as

S → Z1 → X ,

where redZ1 → X0 is a closed embedding, and Z1 ∈
<∞Schaff

ft . By the construction of
X as a left Kan extension, the category C is contractible.

Let C′ be the category whose objects are commutative diagrams

S′ ÐÐÐÐ→ Z ′
1 ∶= Z1 ⊔

S
S′ ÐÐÐÐ→ X

Õ
×
×
×

Õ
×
×
×

Õ
×
×
×

id

S ÐÐÐÐ→ Z1 ÐÐÐÐ→ X ,

where the bottom row is an object of C.

We have a natural forgetful functor C′
→ C. We claim that this functor is a

co-Cartesian fibration in groupoids, such that every edge in C induces a homotopy
equivalence between the fibers. The claim will be proved in Step 6.

Since the category C is contractible, we obtain that for any (S → Z1 → X) ∈ C
the map

C′
×
C
{(S → Z1 → X)}→C′

is a homotopy equivalence. In particular, we can take (S → Z1 → X) to be the
orginal map (S → Z → X).

(Note that

C′
×
C
{(S → Z → X)}

identifies with the groupoid (4.2), whose contractibilty we want to establish.)

4.2.9. Step 3. Let Factor(x′) denote the category of factorizations of x′ as

S′ →W → X ,

with W ∈
<∞Schaff

ft and redW → X0 being a closed embedding. This category is
contractible by definition.

We claim that there is a canonical functor

Factor(x′)→C′.

Indeed, for an object of Factor(x′) as above, consider the composed map

S → S′ →W,

and set W ′
∶=W ⊔

S
S′. The extension W ↪W ′ splits by construction.

We regard

S →W → X

as an object of C. And we regard the composition

W ′
→W → X

as an object of C′ over it.

110 2. IND-SCHEMES AND INF-SCHEMES

4.2.10. Step 4. Let D denote the category where an object is given by the following
data:

● A square-zero extension Z ↪ Z̃ ′ with Z̃ ′
∈
<∞Schaff

ft ;

● A map Z ′
→ Z̃ ′ in the category of square-zero extensions of Z.

● A map x̃′ ∶ Z̃ ′
→ X , extending x′ and compatible with the restriction to

Z.

We have a natural functor D →MapsZ/(Z
′,X) ×

MapsS/(S′,Y)
{x′}, and we claim

that this functor is a homotopy equivalence.

Indeed, note that the scheme Z ′ can be written as a filtered limit of the Z̃ ′’s,
taken over the category of square-zero extensions

Z ↪ Z̃ ′, Z̃ ′
∈
≤nSchaff

ft ,

where n is such that Z,Z ′
∈
≤nSchaff . Hence, our assertion follows from the fact

that X ∈ PreStklaft, and hence takes filtered limits in ≤nSchaff to colimits.

Note also that we have a naturally defined functor

D→ Factor(x′)

that sends Z̃ ′ to W .

4.2.11. Step 5. We have a non-commuting diagram of categories:

(4.3)

MapsZ/(Z
′,X) ×

MapsS/(S′,X)
{x′} ÐÐÐÐ→ C′

Õ
×
×
×

Õ
×
×
×

D ÐÐÐÐ→ Factor(x′).

However, we claim that the two resulting maps

D⇉C′

are homotopic. Indeed, the two functors send an object of D as above to

S′ ÐÐÐÐ→ Z ′
ÐÐÐÐ→ X

Õ
×
×
×

Õ
×
×
×

Õ
×
×
×

id

S ÐÐÐÐ→ Z ÐÐÐÐ→ X ,

(for the clockwise circuit)

S′ ÐÐÐÐ→ Z̃ ′
⊔
S
S′ ÐÐÐÐ→ X

Õ
×
×
×

Õ
×
×
×

Õ
×
×
×

id

S ÐÐÐÐ→ Z̃ ′ x̃′

ÐÐÐÐ→ X ,

(for the anti-clockwise circuit), respectively. The required homotopy is provided by

the map Z → Z̃ ′.

Note that the clockwise circuit in (4.3) is a homotopy equivalence. Hence, we
obtain that MapsZ/(Z

′,X) ×
MapsS/(S′,Y)

{x′} is a retract of Factor(x′). Therefore, it

is contractible, as required.

4. (IND)-INF-SCHEMES AND NIL-CLOSED EMBEDDINGS 111

4.2.12. Step 6. It suffices to show that whenever Z1 → Z2 is a map in

<∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0
,

and Z1 ↪ Z ′
1 is a square-zero extension with Z ′

1 ∈
<∞Schaff , then for

Z ′
2 ∶= Z2 ⊔

Z1

Z ′
1,

the map

Maps(Z ′
2,X)→Maps(Z2,X) ×

Maps(Z1,X)
Maps(Z ′

1,X)

is an isomorphism.

As in Step 3, we write

Z ′
1 ≃ lim

α∈A
Z ′

1,α,

where A is a filtered category, and Z1 ↪ Z ′
1,α are square-zero extensions with

Z ′
1,α ∈

≤nSchaff
aft for some n. Then

Z ′
2 ≃ lim

α∈A
Z ′

2,α,

where

Z ′
2,α ∶= Z2 ⊔

Z1

Z ′
1,α.

The required assertion now follows from the fact X belongs to PreStklaft, and
hence takes filtered limits in ≤nSchaff

aft to colimits.

4.3. Exhibiting inf-schemes as colimits. In this subsection we will adapt The-
orem 4.1.3 to the case of inf-schemes. Namely, we will show that in this case we
can replace the word ‘nil-closed’ by ‘nil-isomorphism’.

4.3.1. For X ∈ PreStk let

PreStknil-isom to X ⊂ PreStk/X

be the full subcategory spanned by objects f ∶ X
′
→ X for which f is a nil-

isomorphism.

We will use a similar notation for full subcategories of PreStk, e.g.,

Schnil-isom to X ⊂ Sch/X ,

etc.

We claim (compare with Proposition 1.8.5 in the case of nil-schematic ind-
schemes):

Proposition 4.3.2. Let X be an object of infSchlaft. Then the inclusion

(Schaft)nil-isom to X ↪ (Schaft)nil-closed in X

is cofinal.

Proof. It is enough to show that the embedding in question admits a left
adjoint. Given an object

(Z → X) ∈ (Schaff
aft)nil-closed in X ,

we note that since Z ∈ Schaff
aft, the map redZ → Z is a nilpotent embedding.

112 2. IND-SCHEMES AND INF-SCHEMES

Now, the value of the left adjoint in question is given by sending

(Z → X) ∈ (Schaff
aft)nil-closed in X

to

Z ⊔
redZ

red
X ,

which maps to X using Chapter 1, Corollary 7.2.3.
�

Combining with Theorem 4.1.3, we obtain (compare with Corollary 1.8.6(a’)
in the case of nil-schematic ind-schemes):

Corollary 4.3.3. Let X be an object of infSchlaft. Then the map

colim
Z∈(Schaft)nil-isom to X

Z → X ,

induces an isomorphism, when the colimit is taken in either PreStk or PreStklaft.

Note that Corollary 4.3.3 admits the following corollary:

Corollary 4.3.4. Let X ∈ infSchlaft be such that red
X = X0 ∈

redSchaff
ft . Then

the functor

(
<∞Schaff

ft)/X ×

(redSchaff
ft)/X0

{X0}↪ (
<∞Schaff

)/X

is cofinal.

4.3.5. We now claim (compare with Corollary 1.8.6(a”) in the case of nil-schematic
ind-schemes):

Proposition 4.3.6. For X ∈ infSchlaft the category (Schaft)nil-isom to X is sifted.

Proof. We need to show that for a pair of nilpotent embeddings f1 ∶ Z1 → X

and f2 ∶ Z2 → X , the category of

(Z1
g1
→ Z, Z2

g2
→ Z, Z

f
→ X , f1 ∼ f ○ g1, f2 ∼ f ○ g2)

is contractible.

We claim, however, that the category in question admits an initial object,
namely

Z ∶= Z1 ⊔
redX

Z2,

see Chapter 1, Corollary 7.2.3.
�

4.4. A construction of inf-schemes. In this subsection we will consider a ver-
sion of Proposition 4.4.5 for inf-schemes. This version will be crucial for our study
of formal moduli problems in Chapter 5.

4.4.1. We start with an object X0 ∈
redSchaff

ft , and let Xnil-isom be a presheaf on
the category

<∞Schaft ×
redSchft

{X0},

where the functor <∞Schaft →
redSchft is S ↦ redS.

4. (IND)-INF-SCHEMES AND NIL-CLOSED EMBEDDINGS 113

4.4.2. We impose the following two conditions:

● Xnil-isom(X0) = ∗.

● For a push-out diagram

Z1 ⊔
Z
Z ′

in <∞Schaff
ft ×

redSchaff
ft

{X0}, where Z ↪ Z ′ has a structure of square-zero

extension, the resulting map

Xnil-isom(Z1 ⊔
Z
Z ′

)→ Xnil-isom(Z1) ×
Xnil-isom(Z)

Xnil-isom(Z ′
)

is an isomorphism (cf. remark following Chapter 1, Definition 6.1.2).

4.4.3. Let X denote the left Kan extension of Xnil-isom under the fully faithful
embedding

(
<∞Schaff

ft ×
redSchaff

ft

{X0})
op
↪ (

<∞Schaff
×

redSchaff
(
redSchaff

)/X0
)

op.

Thus, we can view X as an object of convPreStk mapping to (X0)dR. By
construction X belongs to

PreStklaft ⊂
convPreStk,

and red
X is canonically isomorphic to X0.

4.4.4. We are going to prove:

Proposition 4.4.5. Under the above circumstances X ∈ infSchlaft.

Combining with Corollary 4.3.4, we obtain:

Corollary 4.4.6. The assignements

Xnil-isom ↝ X and X ↝ X ∣<∞Schaff
ft ×

redSchaff
ft

{X0}

define mutually inverse equivalences between

(infSchlaft)/(X0)dR
×

(redindSchlft)/X0

∗

and the category of presheaves on <∞Schaff
ft ×

redSchaff
ft

{X0}, satisfying the two assump-

tions of Sect. 4.4.2.

4.4.7. Proof of Proposition 4.4.5. Let Xind-closed denote the presheaf on the category

<∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0

equal to the left Kan extension of Xnil-isom under the fully faithful embedding

(
<∞Schaff

ft ×
redSchaff

ft

{X0})
op
↪ (

<∞Schaff
ft ×

redSchaff
ft

(
redSchaff

ft)closed in X0)
op.

Now, by Theorem 4.2.5, it is sufficient to show that Xind-closed satisfies the
conditions of Sect. 4.2.2.

114 2. IND-SCHEMES AND INF-SCHEMES

Note, however, that the functor
<∞Schaff

ft ×
redSchaff

ft

{X0}↪
<∞Schaff

ft ×
redSchaff

ft

(
redSchaff

ft)closed in X0

admits a left adjoint, given by

Z ↦ Z ⊔
redZ

X0.

Hence, the value of Xind-closed on Z → X can be calculated as

Xnil-isom(Z ⊔
redZ

X0).

This implies the required condition on Xind-closed, since the above left adjoint
preserves push-outs.

CHAPTER 3

Ind-coherent sheaves on ind-inf-schemes

Introduction

In this Chapter we will perform a construction central to this book: we will
extend the assignment

X ↝ IndCoh(X),

viewed as a functor out of the (∞,2)-category of correspondences on schemes, to a
functor out of the (∞,2)-category of correspondences on ind-inf-schemes.

0.1. Why does everything work so nicely? Let us explain the mechanism of
why IndCoh works out so well on ind-inf-schemes (there is not much difference be-
tween ind-inf-schemes and inf-schemes, the former being just a little more general).

0.1.1. The key assertion here is Chapter 2, Theorem 4.1.3. It says that an ind-inf-
scheme can be written as

X = colim
a∈A

Xa,

where the colimit is taken in PreStklaft, and where the maps Xa

ia,b
Ð→ Xb are nil-

closed embeddings of schemes; in particular, they are proper.

We can (tautologically) write IndCoh(X) as the limit

lim
a∈Aop

IndCoh(Xa)

under the functors i!a,b.

Hence, by Volume I, Chapter 1, Proposition 2.5.7 we have:

IndCoh(X) ≃ colim
a∈A

IndCoh(Xa),

where the functors IndCoh(Xa)→ IndCoh(Xb) are (ia,b)
IndCoh
∗ .

0.1.2. The latter presentation implies that a functor out of IndCoh(X) amounts
to a compatible family of functors out of the categories IndCoh(Xa).

This readily implies that if f ∶ X → Y is an ind-inf-schematic ind-proper map
between laft prestacks, then the functor f ! admits a left adjoint that satisfies base
change against !-pullbacks. The latter, in turn, entails the descent property of
IndCoh for point-wise surjective ind-inf-schematic ind-proper maps.

In addition, we obtain that IndCoh(X) is compactly generated, and has a t-
structure with reasonable properties.

0.2. Direct image for IndCoh on ind-inf-schemes. The first step in making
IndCoh into a functor out of the category of correspondences is the construction
the direct image part of this functor.

115

116 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

0.2.1. Since ind-inf-schemes are laft prestacks, we know what IndCoh(X) is for
X ∈ indinfSchlaft. We also know how to form the !-pullback for a morphism f ∶

X1 → X2. What we do not yet know is how to form push-forwards.

The construction of push-forwards will be given as a result of the combination
of Corollary 4.3.5 and Theorem 4.3.3. It amounts to the following.

As we have already mentioned, if i ∶ Y → X is an ind-proper map between ind-
inf-schemes, then the functor i! ∶ IndCoh(Y)→ IndCoh(X) admits a left adjoint, to
be denoted iIndCoh

∗ . In particular, we can take i to be nil-closed map from a scheme.

Now, the claim is that for a map f ∶ X1 → X2 there is a uniquely defined functor

f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2)

such that for every commutative diagram

X1
i1

ÐÐÐÐ→ X1

g
×
×
×
Ö

×
×
×
Ö

f

X2
i2

ÐÐÐÐ→ X2,

where X1,X2 are schemes and i1, i2 are nil-closed maps, we have

f IndCoh
∗ ○ (i1)

IndCoh
∗ ≃ (i2)

IndCoh
∗ ○ gIndCoh

∗ .

Moreover, if f is itself nil-closed, then f IndCoh
∗ identifies with the left adjoint of

f !.

Essentially, the existence and uniqueness of f IndCoh
∗ follows from the description

of functors out of IndCoh(X) (in this case X = X1) in Sect. 0.1.2. What this
amounts to technically will be reviewed in Sect. 0.2.3.

0.2.2. Having defined the functor f IndCoh
∗ for any morphism X → Y, we can in

particular take Y = pt. In this way we obtain the functor of global sections

Γ(X ,−)IndCoh
∶ IndCoh(X)→ Vect .

Here is an example of what this functor does. As we will see in Chapter IV.3, the
category of inf-schemes whose reduced scheme is pt is canonically equivalent to the
category of Lie algebras in Vect. For a given Lie algebra g, the category IndCoh on
the corresponding inf-scheme B(g) identifies canonically with the category g-mod
of modules over g.

Under this identification, the functor of global sections Γ(B(g),−)IndCoh corre-
sponds to the functor of g-coinvariants. (Moreover, the forgetful functor g-mod →
Vect is the pullback under the map pt→ B(g).)

0.2.3. A more precise description of the construction in Sect. 0.2.1 is as follows.

We consider the category indinfSchlaft and its full subcategory Schaft. We now
consider the categories

(Schaft)nil-closed ⊂ (indinfSchlaft)nil-closed,

where we restrict morphisms to be nil-closed.

Consider the functor

IndCohSchaft
∶ Schaft → DGCatcont, X ↦ IndCoh(X), (X1

g
→X2)↦ gIndCoh

∗ .

INTRODUCTION 117

We consider the operation of left Kan extension

LKE(Schaft)nil-closed↪(indinfSchlaft)nil-closed
(IndCohSchaft

∣(Schaft)nil-closed
);

this a functor

(indinfSchlaft)nil-closed → DGCatcont .

One shows (Proposition 4.1.3 and Lemma 1.4.4) that the value of the above
functor on a given X ∈ indinfSchlaft identifies canonically with IndCoh(X).

Now, the key assertion is Theorem 4.3.3 that says that the natural transforma-
tion

LKE(Schaft)nil-closed↪(indinfSchlaft)nil-closed
(IndCohSchaft

∣(Schaft)nil-closed
)→

→ LKESchaft↪indinfSchlaft
(IndCohSchaft

)∣(indinfSchlaft)nil-closed
)

is an isomorphism. This theorem ensures that the functor

LKESchaft↪indinfSchlaft
(IndCohSchaft

) ∶ indinfSchlaft → DGCatcont

takes the value IndCoh(X) on a given X ∈ indinfSchlaft. Being a functor, it gives
rise to the sought-for functoriality of IndCoh:

X1
f
→ X2 ↦ f IndCoh

∗ ∶ IndCoh(X1)→ IndCoh(X2).

0.3. Extending to correspondences.
0.3.1. In order to extend the functor

IndCohindinfSchaft
∶= LKESchaft↪indinfSchlaft

(IndCohSchaft
)

to a functor out of the category of correspondences, we apply the machinery of
Volume I, Chapter 8, Sect. 1. The only thing to check is that the functors

f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2)

thus constructed satisfy base change against the !-pullback functors under ind-
proper maps. I.e., given a Cartesian diagram of objects of indinfSchlaft

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2

where g2 (and hence g1) is ind-proper, we have, by adjunction, natural transforma-
tions

(f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗

and

(g1)
IndCoh
∗ ○ (f ′)!

→ f !
○ (g2)

IndCoh
∗ .

We show that these natural transformations are isomorphisms. Once this is
done, by Volume I, Chapter 8, Theorem 1.1.9, we obtain the desired functor

IndCoh(indinfSchlaft)ind-proper
all;all

∶ Corr(indinfSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont .

This is a functor from the (∞,2)-category of correspondences, whose objects
are ind-inf-schemes, horizontal and vertical morphisms are arbitrary maps, and
2-morphisms are given by ind-proper maps.

118 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

0.3.2. Finally, we apply Volume I, Chapter 8, Theorem 6.1.5 and extend the latter
functor to a functor

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

∶ Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont .

I.e., it is a functor from the (∞,2)-category of correspondences, whose objects
are all laft prestacks, horizontal morphisms are arbitrary maps, vertical morphisms
are ind-inf-schematic maps, and 2-morphisms are ind-inf-schematic and ind-proper
maps.

This is the furthest point that we can imagine that the theory of IndCoh can
be extended to.

0.4. What else is done in this Chapter?
0.4.1. In Sect. 1 we analyze the behavior of the category IndCoh on ind-schemes.
Some of the assertions concerning ind-schemes (such as base change) are redundant:
they will be reproved for ind-inf-schemes in greater generality. We have included
them in order to compare the statements (and methods of their proofs) for ind-
schemes and ind-inf-schemes.

We show that for an ind-scheme X , the category IndCoh(X) is compactly
generated and that its compact objects are of the form iIndCoh

∗ (F), where i ∶X → X
is a closed embedding with X ∈ Schaft and F ∈ Coh(X). In the above formula,
iIndCoh
∗ (F) is the left adjoint to the functor i!.

We show that the category IndCoh(X) has a unique t-structure, for which the
above functors iIndCoh

∗ (F) are t-exact.

We apply a left Kan extension to the functor

IndCohSchaft
∶ Schaft → DGCatcont

and obtain a functor

IndCohindSchlaft
∶ indSchlaft → DGCatcont .

We show that its value on a given X ∈ indSchlaft identifies canonically with
IndCoh(X). This is quite a bit easier than for ind-inf-scheme because of Chapter 2,
Corollary 1.7.5(b)), the analog of which fails for ind-inf-schemes.

The construction of IndCohindSchlaft
has the property that for an ind-proper

map f ∶ X → Y, the corresponding functor f IndCoh
∗ ∶ IndCoh(X) → IndCoh(Y) is

the left adjoint of f !.

We show that a morphism f ∶ X → Y between ind-schemes, the functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

is left t-exact, and if f is ind-affine, then it is t-exact.

INTRODUCTION 119

0.4.2. In Sect. 2 we establish the base change property for ind-schematic ind-
proper morphisms. Namely, let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2

be a Cartesian diagram of laft prestacks.

Suppose that the vertical arrows are ind-schematic ind-proper. In this case, by
adjunction we obtain a natural transformation

(f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗

and we show that it is an isomorphism.

Now suppose that in the above diagram all prestacks are ind-schemes the hori-
zontal arrows are ind-proper. Then, again by adjunction, we have a natural trans-
formation

(f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ ,

and we also show that it is an isomorphism.

0.4.3. In Sect. 3 we initiate the study of IndCoh on ind-inf-schemes. The key
statement is Proposition 3.1.2. It says that for an ind-inf-schematic nil-isomorphism
f ∶ X → Y, the functor f ! is:

(i) conservative;

(ii) admits a left adjoint;

(iii) the left adjoint of f ! satisfies base change against !-pullbacks.

The proof of Proposition 3.1.2 relies on Chapter 2, Corollary 4.3.3, which is
deduced from Chapter 2, Theorem 4.1.3 and says that an ind-inf-scheme whose
underlying reduced ind-scheme is an affine scheme, can be written as a colimit of
affine schemes under nil-closed maps.

From Proposition 3.1.2 we deduce the various favorable properties of IndCoh
on ind-inf-schemes mentioned in Sect. 0.1.

In particular, we establish ind-proper descent for IndCoh. The statement here
is that if X → Y is ind-inf-schematic ind-proper and point-wise surjective map
between laft prestacks, then the pullback functor

IndCoh(Y)→ Tot(IndCoh(X ●
))

is an equivalence, where X ● is the co-simplicial prestack given by the Čech nerve
of X → Y.

120 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

0.4.4. In Sect. 4 we carry out the construction of the functoriality of IndCoh with
respect to the operation of direct image, described in Sect. 0.2 above.

In Sect. 5 we carry out the construction of IndCoh as a functor out of the
category of correspondences, already explained in Sect. 0.3.

In Sect. 6 we show that for in ind-inf-scheme X , the category IndCoh(X) is
canonically self-dual. I.e., there is a canonically defined identification

DSerre
X ∶ IndCoh(X)

∨
→ IndCoh(X),

or equivalently
DSerre
X ∶ (IndCoh(X)

c
)
op
→ IndCoh(X)

c.

Under this identification, for a morphism f ∶ X1 → X2, the functor dual to
f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2) is

f !
∶ IndCoh(X2)→ IndCoh(X1).

It follows formally that if f is ind-proper, then f IndCoh
∗ sends IndCoh(X1)

c to
IndCoh(X2)

c and

DSerre
X2

○ (f IndCoh
∗)

op
○DSerre

X1
≃ f IndCoh

∗

as functors IndCoh(X1)
c
→ IndCoh(X2)

c.

1. Ind-coherent sheaves on ind-schemes

In order to develop the theory of IndCoh on ind-inf-schemes, we first need to
do this for ind-schemes. The latter theory follows rather easily from the one on
schemes.

In this section we will mainly review the results from [GaRo1, Sect. 2].

1.1. Basic properties. In this subsection we will express the category IndCoh
on an ind-scheme X in terms of that on schemes equipped with a closed embedding
into X .

1.1.1. Let IndCoh!
indSchlaft

denote the restriction of the functor IndCoh!
PreStklaft

to
the full subcategory

(indSchlaft)
op
↪ (PreStklaft)

op.

In particular, for X ∈ indSchlaft we have a well-defined category IndCoh(X).

1.1.2. Suppose X has been written as

(1.1) X ≃
conv
X
′
X
′
≃ colim

a∈A
Xa,

where Xa ∈ Schaft with the maps ia,b ∶ Xa → Xb being closed embeddings. In this
case we have:

Proposition 1.1.3. Under the above circumstances, !-restriction defines an
equivalence

IndCoh(X)→ lim
a∈Aop

IndCoh(Xa
),

where for a→ b, the corresponding functor IndCoh(Xb)→ IndCoh(Xa) is i!a,b.

Proof. This follows from the convergence property of the functor IndCoh!
Schaff

aft
,

see Volume I, Chapter 5, Lemma 3.2.4 and Sect. 3.4.1.
�

1. IND-COHERENT SHEAVES ON IND-SCHEMES 121

Remark 1.1.4. The reason we exhibit an ind-scheme X as conv
(colim
a∈A

Xa)

rather than just as colim
a∈A

Xa is that the former presentation comes up in practice

more often: many ind-schemes are given in this form. The fact that the resulting
prestack is indeed an ind-scheme (i.e., can be written as a colimit of schemes under
closed embeddings) is Chapter 2, Corollary 1.4.4 and is somewhat non-trivial.

1.1.5. Combining the above proposition with Volume I, Chapter 1, Proposition
2.5.7, we obtain:

Corollary 1.1.6. For X written as in (1.1), we have

IndCoh(X) ≃ colim
a∈A

IndCoh(Xa
),

where for a→ b, the corresponding functor IndCoh(Xa)→ IndCoh(Xb) is (ia,b)
IndCoh
∗ .

Corollary 1.1.7. For X ∈ indSchlaft and a closed embedding i ∶ X → X from
X ∈ Schaft, the functor

iIndCoh
∗ ∶ IndCoh(X)→ IndCoh(X),

left adjoint to i!, is well-defined.

For X ∈ indSchlaft, let Coh(X) denote the full subcategory of IndCoh(X)

spanned by objects

iIndCoh
∗ (F), i ∶X → X is a closed embedding and F ∈ Coh(X).

From Corollary 1.1.6 we obtain:

Corollary 1.1.8. For an ind-scheme X , the category IndCoh(X) is compactly
generated and

IndCoh(X)
c
= Coh(X).

Proof. Follows from [DrGa1, Corollary 1.9.4 and Lemma 1.9.5.]. �

1.1.9. Here is another convenient fact about the category IndCoh(X), where X ∈

indSchlaft. Let

X ′ i
′

→ X
i′′

←X ′′

be closed embeddings.

We would like to calculate the composite

(i′)!
○ (i′′)IndCoh

∗ ∶ IndCoh(X ′′
)→ IndCoh(X ′

).

Let A denote the category (Schaft)closed in X , so that X ′ and X ′′ correspond
to indices a′ and a′′, respectively. Let ia′ and ia′′ denote the corresponding closed
embeddings, i.e., the maps i′ and i′′, respectively. Let B be any category cofinal in

Aa′⊔a′′/ ∶= Aa′/ ×
A
Aa′′/.

For b ∈ B, let

X ′
=Xa′

ia′,b
Ð→Xb

ia′′,b
←Ð Xa′′ =X

′′

denote the corresponding maps.

The next assertion results from [Ga4, Lemma 1.3.6]:

122 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

Lemma 1.1.10. Under the above circumstances, we have a canonical isomor-
phism

(i′)!
○ (i′′)IndCoh

∗ ≃ colim
b∈B

(ia′,b)
!
○ (ia′′,b)

IndCoh
∗ .

1.2. t-structure. In this subsection we will study the naturally defined t-structure
on IndCoh of an ind-scheme.

1.2.1. For X ∈ indSchlaft we introduce a t-structure on the category IndCoh(X)

as follows:

An object F ∈ IndCoh(X) belongs to IndCoh(X)
≥0 if and only if for every

closed embedding i ∶X → X , where X ∈ Schaft, we have i!(F) ∈ IndCoh(X)
≥0.

By construction, this t-structure is compatible with filtered colimits, which by
definition means that IndCoh(X)

≥0 is preserved by filtered colimits.

1.2.2. We can describe this t-structure and the category IndCoh(X)
≤0 more ex-

plicitly. Write
cl
X ≃ colim

a∈A
Xa,

where Xa ∈ (
clSchaft)closed in X .

For each a, let ia denote the corresponding map (automatically, a closed em-
bedding) Xa → X . By Corollary 1.1.7, we have a pair of adjoint functors

(ia)
IndCoh
∗ ∶ IndCoh(Xa)⇄ IndCoh(X) ∶ i!a.

Lemma 1.2.3. Under the above circumstances we have:

(a) An object F ∈ IndCoh(X) belongs to IndCoh≥0
(X) if and only if for every a,

the object i!a(F) ∈ IndCoh(Xa) belongs to IndCoh(Xa)
≥0.

(b) The category IndCoh(X)
≤0 is generated under colimits by the essential images

of the functors (ia)
IndCoh
∗ (Coh(Xa)

≤0
).

Proof. It is easy to see that for a quasi-compact DG scheme X, the category
IndCoh(X)

≤0 is generated under colimits by Coh(clX)
≤0. In particular, by adjunc-

tion, an object F ∈ IndCoh(X) is coconnective if and only if its restriction to clX
is coconnective.

Hence, in the definition of IndCoh(X)
≥0, instead of all closed embeddings X →

X , it suffices to use only those with X a classical scheme.

Note that the category A is cofinal in (
clSchaft)closed in X . This implies point

(a) of the lemma. Point (b) follows formally from point (a).
�

1.2.4. Suppose i ∶ X → X is a closed embedding of a scheme into an ind-scheme.
By Corollary 1.1.7, we have a well-defined functor

iIndCoh
∗ ∶ IndCoh(X)→ IndCoh(X),

which is the right adjoint to i!. Since i! is left t-exact, the functor iIndCoh
∗ is right

t-exact. However, we claim:

Lemma 1.2.5. The functor iIndCoh
∗ is t-exact.

1. IND-COHERENT SHEAVES ON IND-SCHEMES 123

Proof. We need to show that for F ∈ IndCoh(X)
≥0, and a closed embedding

i′ ∶X ′
→ X , we have

(i′)!
○ iIndCoh

∗ (F) ∈ IndCoh(X ′
)
≥0.

This follows from Lemma 1.1.10: in the notations of loc.cit., each of the functors
(ia′′,b)

IndCoh
∗ is t-exact (because ia′′,b is a closed embedding), each of the functors

(ia′′,b)
! is left t-exact (because ia′,b is a closed embedding), and the category B is

filtered.
�

Corollary 1.2.6. The subcategory

Coh(X) = IndCoh(X)
c

is preserved by the truncation functors.

Proof. Follows from Lemma 1.2.5 and the corresponding fact for schemes. �

Corollary 1.2.7. The t-structure on IndCoh(X) is obtained from the t-structure
on Coh(X) by the procedure of Volume I, Chapter 4, Lemma 1.2.4.

1.3. Recovering IndCoh from ind-proper maps. The contents of this subsec-
tion are rather formal: we show that the functor IndCoh on ind-schemes can be re-
covered from the corresponding functor on schemes, where we restrict 1-morphisms
to be proper, or even closed embeddings. This is not surprising, given the definition
of ind-schemes.

1.3.1. Recall what it means for a map in PreStk to be ind-proper (resp., ind-closed
embedding), see Chapter 2, Definitions 1.6.7 and 1.6.11.

1.3.2. Consider the corresponding 1-full subactegories

(indSchlaft)ind-closed ⊂ (indSchlaft)ind-proper

and the corresponding categories

(Schaft)closed ⊂ (Schaft)proper.

Consider the corresponding fully faithful embeddings

(Schaft)closed ↪ (indSchlaft)ind-closed,

and

(Schaft)proper ↪ (indSchlaft)ind-proper.

Let IndCoh!
(Schaft)proper

denote the functor

IndCoh!
Schaft

∣((Schaft)proper)op ∶ ((Schaft)proper)
op
→ DGCatcont,

and similarly, for ‘proper’ replaced by ‘closed’.

Let IndCoh!
(indSchlaft)ind-proper

denote the functor

IndCoh!
indSchlaft

∣((indSchlaft)ind-proper)op ∶ ((indSchlaft)ind-proper)
op
→ DGCatcont,

and similarly, for ‘ind-proper’ replaced by ‘ind-closed’.

124 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

1.3.3. We claim:

Proposition 1.3.4. For X ∈ indSchlaft, the functors
(1.2)
(Schaft)closed in X ≃ (Schaft)closed ×

(indSchlaft)ind-closed

((indSchlaft)ind-closed)/X → (Schaft)/X

and
(1.3)
(Schaft)proper /X ≃ (Schaft)proper ×

(indSchlaft)ind-proper

((indSchlaft)ind-proper)/X → (Schaft)/X

are cofinal.

Proof. The cofinality of (1.2) is given by Chapter 2, Corollary 1.7.5(b). Since
(1.3) is fully faithful, we have that the functor

(Schaft)closed in X → (Schaft)proper ×
(indSchlaft)ind-proper

((indSchlaft)ind-proper)/X ,

and hence (1.3), is also cofinal. �

Corollary 1.3.5. The naturally defined functors

IndCoh!
(indSchlaft)ind-proper

→ RKE((Schaft)proper)op↪((indSchlaft)ind-proper)op (IndCoh!
(Schaft)proper

) ,

and

IndCoh!
(indSchlaft)ind-closed

→ RKE((Schaft)closed)op↪((indSchlaft)ind-closed)op (IndCoh!
(Schaft)closed

)

are isomorphisms.

Proof. The cofinality of (1.2) implies that the functor

IndCoh!
(indSchlaft)ind-closed

→ RKE((Schaft)closed)op↪((indSchlaft)ind-closed)op (IndCoh!
(Schaft)closed

)

is an isomorphism.

The cofinality of (1.3) implies that the functor

IndCoh!
(indSchlaft)ind-proper

→ RKE((Schaft)proper)op↪((indSchlaft)ind-proper)op (IndCoh!
(Schaft)proper

)

is an isomorphism.
�

1.4. Direct image for IndCoh on ind-schemes. In this subsection we show
how to construct the functor of direct image on IndCoh for morphisms between
ind-schemes.

1.4.1. Consider the functor

IndCohSchaft
∶ Schaft → DGCatcont,

where for a morphism f ∶X1 →X2 in Schaft, the functor

IndCoh(X1)→ IndCoh(X2)

is f IndCoh
∗ , see Volume I, Chapter 4, Sect. 2.2.

Recall the notation

IndCoh(Schaft)proper
= IndCohSchaft

∣(Schaft)proper
∶ (Schaft)proper → DGCatcont,

and consider also the corresponding functor

IndCoh(Schaft)closed
∶ (Schaft)closed → DGCatcont .

1. IND-COHERENT SHEAVES ON IND-SCHEMES 125

Denote

IndCohindSchlaft
∶= LKE(Schaft)↪(indSchlaft)(IndCoh(Schaft)),

and let

IndCoh(indSchlaft)ind-proper
, IndCoh(indSchlaft)ind-closed

denote its restriction to the corresponding 1-full subcategories.

The same proof as that of Corollary 1.3.5 gives:

Proposition 1.4.2. The natural maps

LKE(Schaft)proper↪(indSchlaft)ind-proper
(IndCoh(Schaft)proper

)→ IndCoh(indSchlaft)ind-proper
,

and

LKE(Schaft)closed↪(indSchlaft)ind-closed
(IndCoh(Schaft)closed

)→ IndCoh(indSchlaft)ind-closed

are isomorphisms.

1.4.3. Recall from Volume I, Chapter 1, Sect. 2.4 the notion of two functors
obtained from each other by passing to adjoints.

Let F ∶ C1 →C2 be a functor between ∞-categories. Let Φ1 ∶ C1 → DGCatcont

be a functor such that for every c′1 → c′′1 , the corresponding functor

Φ1(c
′
1)→ Φ1(c

′′
1)

admits a right adjoint. Let Ψ1 ∶ C
op
1 → DGCatcont be the resulting functor given

by taking the right adjoints.

Let Φ2 and Ψ2 be the left (resp., right) Kan extension of Φ1 (resp., Ψ1) along F
(resp., F op). The following is a particular case of Volume I, Chapter 8, Proposition
2.2.7:

Lemma 1.4.4. Under the above circumstances, the functor Ψ2 is obtained from
Φ2 by taking right adjoints.

1.4.5. We apply Lemma 1.4.4 in the following situation:

C1 ∶= (Schaft)proper, C2 ∶= (indSchlaft)ind-proper,

and F to be the natural embedding. We take

Φ1 ∶= IndCoh(Schaft)proper
and Ψ1 ∶= IndCoh!

(Schaft)proper
.

These two functors are obtained from one another by passage to adjoints, by
the definiton of the functor IndCoh!

(Schaft)proper
, see Volume I, Chapter 4, Corollary

5.1.12.

Corollary 1.4.6. The functor

IndCoh!
(indSchlaft)ind-proper

∶ ((indSchlaft)ind-proper)
op
→ DGCatcont

is obtained from the functor

IndCoh(indSchlaft)ind-proper
∶ (indSchlaft)ind-proper → DGCatcont

by passing to right adjoints.

126 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

1.4.7. By the above corollary and Proposition 1.4.2, for X ∈ indSchlaft there is a
canonical isomorphism

IndCoh!
indSchlaft

(X) ≃ IndCohindSchlaft
(X),

and by definition the left hand side is IndCoh(X). Thus, given a morphism f ∶

X1 → X2 in indSchlaft, the functor IndCohindSchlaft
gives a functor

f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2),

which, by definition of the functor IndCohindSchlaft
, agrees with the previously de-

fined IndCoh direct image functor when restricted to Schaft. Furthermore, by Corol-
lary 1.4.6, if f is ind-proper, then f IndCoh

∗ is the left adjoint of f !. In particular, for
a closed embedding

X
i
→ X

of a scheme X ∈ Schaft into an ind-scheme X ∈ indSchlaft, the corresponding functor
iIndCoh
∗ agrees with that of Corollary 1.1.7.

1.4.8. We can now make the following observation pertaining to the behavior of
the t-structure with respect to direct images:

Lemma 1.4.9. Let f ∶ X1 → X2 be a map of ind-schemes. Then the functor
f IndCoh
∗ is left t-exact. Furthermore, if f is ind-affine, then it is t-exact.

Proof. Let F ∈ IndCoh(X1)
≥0. We wish to show that f IndCoh

∗ (F) ∈ IndCoh(X2)
≥0.

By Corollary 1.2.7, we can assume that F = (i1)
IndCoh
∗ (F1) for F1 ∈ IndCoh(X1)

≥0

where
i1 ∶X1 → X1

is a closed embedding of a scheme. Now, let

X1
g
→X2

i2
→ X2

be a factorization of f ○ i1, where i2 is a closed embedding of a scheme. Thus, it
suffices to show that the functor

f IndCoh
∗ ○ (i1)

IndCoh
∗ ≃ (i2)

IndCoh
∗ ○ gIndCoh

∗

is left t-exact. However, (i2)
IndCoh
∗ is t-exact by Lemma 1.2.5, while gIndCoh

∗ (F1) is
left t-exact, since g is a map between schemes.

Now, suppose that f is ind-affine. In this case, we wish to show that f IndCoh
∗ is

also right t-exact. Let F ∈ IndCoh(X1)
≤0. We can assume that F = (i1)

IndCoh
∗ (F1)

for F1 ∈ IndCoh(X1)
≤0 where i1 ∶ X1 → X1 is a closed embedding. In the notation

as above, it suffices to show that

f IndCoh
∗ ○ (i1)

IndCoh
∗ ≃ (i2)

IndCoh
∗ ○ gIndCoh

∗

is t-exact.

By Lemma 1.2.5, (i2)
IndCoh
∗ is t-exact. Hence, it suffices to show that gIndCoh

∗
is t-exact. However, g is an affine map between schemes, and the assertion follows.

�

2. Proper base change for ind-schemes

Base change for IndCoh is a crucial property needed for its definition as a func-
tor out of the category of correspondences. In this section we make two (necessary)
preparatory steps, establishing base change for morphisms between ind-schemes.

2. PROPER BASE CHANGE FOR IND-SCHEMES 127

2.1. 1st version.
2.1.1. Recall the notion of ind-schematic map in PreStk, see Chapter 2, Defintion
1.6.5(a).

Let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

be a Cartesian diagram in PreStklaft with f being ind-schematic and ind-proper.
We claim:

Proposition 2.1.2. The functors f ! and (f ′)! admit left adjoints, to be denoted
f IndCoh
∗ and (f ′)IndCoh

∗ , respectively. Moreover, the natural transformation

(2.1) (f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ ,

arrising by adjunction from

g!
1 ○ f

!
≃ (f ′)!

○ g!
2,

is an isomorphism.

The rest of this subsection is devoted to the proof of this proposition.

2.1.3. We begin by reviewing the setting of Volume I, Chapter 1, Lemma 2.6.4:

Let G ∶ C2 → C1 be a functor between ∞-categories. Let A be a category of
indices, and suppose we are given an A-family of commutative diagrams

Ca
1

ia1
←ÐÐÐÐ C1

Ga
Õ
×
×
×

Õ
×
×
×

G

Ca
2

ia2
←ÐÐÐÐ C2.

Assume that for each a ∈ A, the functor Ga admits a left (resp. right) adjoint
F a. Furthermore, assume that for each map a′ → a′′ in A, the diagram

Ca′′

1

ia
′,a′′

1
←ÐÐÐÐ Ca′

1

Fa
′′
×
×
×
Ö

×
×
×
Ö
Fa

′

Ca′′

2

ia
′,a′′

2
←ÐÐÐÐ Ca′

2 ,

which a priori commutes up to a natural transformation, actually commutes.

Finally, assume that the functors

C1 → lim
a∈A

Ca
1 and C2 → lim

a∈A
Ca

2

are equivalences.

In the above situation, Volume I, Chapter 1, Lemma 2.6.4 says:

128 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

Lemma 2.1.4. The functor G admits a left (resp. right) adjoint F , and for
every a ∈ A, the diagram

Ca
1

ia1
←ÐÐÐÐ C1

Fa
×
×
×
Ö

×
×
×
Ö

F

Ca
2

ia2
←ÐÐÐÐ C2,

which a priori commutes up to a natural transformation, commutes.

2.1.5. To show that (2.1) is an isomorphism, it suffices to show that it becomes
an isomorphism after composing with f ! for every map f ∶ S → X ′

2, with S ∈ Schaft.
Therefore, we can assume that X ′

2 =X
′
2 ∈ Schaft.

Now, we will apply Lemma 2.1.4 to the following situation. Let C1 ∶= IndCoh(X1),
C2 ∶= IndCoh(X2) and let A be the category (Schaft)/X2

. For each Z ∈ (Schaft)/X2
,

let

Ca
2 ∶= IndCoh(Z), Ca

1 ∶= IndCoh(Z ×
X2

X1).

Now, since X ′
2 is in particular an object of (Schaft)/X2

, by Lemma 2.1.4, the
assertion of Proposition 2.1.2 reduces to the case when X2 = X2 ∈ Schaft and
X
′
2 = X ′

2 ∈ Schaft. In this case X1,X
′
1 ∈ indSchlaft and the left adjoints exist by

Corollary 1.4.6.

2.1.6. We have

X1 ≃ colim
a∈A

Xa,

where Xa ∈ Schaft and ia ∶Xa → X1 are closed embeddings.

Set

X ′
a ∶=X

′
2 ×
X2

Xa.

We have:

X
′
1 ≃ colim

a∈A
X ′
a,

Let i′a denote the corresponding closed embedding X ′
a → X

′
1, and let ga denote the

map X ′
a →Xa.

Note that the maps f ○ ia ∶ Xa → X2 and f ′ ○ i′a ∶ X
′
a → X ′

2 are proper, by
assumption.

2.1.7. By Corollary 1.1.6, we have:

IdIndCoh(X1) ≃ colim
a∈A

(ia)
IndCoh
∗ ○ (ia)

! and IdIndCoh(X ′
1) ≃ colim

a∈A
(i′a)

IndCoh
∗ ○ (i′a)

!.

Hence, we can rewrite the left-hand side in (2.1) as

colim
a∈A

(f ′)IndCoh
∗ ○ (i′a)

IndCoh
∗ ○ (i′a)

!
○ g!

1,

and the right-hand side as

colim
a∈A

g!
2 ○ f

IndCoh
∗ ○ (ia)

IndCoh
∗ ○ (ia)

!.

It follows from the construction that the map in (2.1) is given by a compatible
system of maps for each a ∈ A

2. PROPER BASE CHANGE FOR IND-SCHEMES 129

(f ′)IndCoh
∗ ○ (i′a)

IndCoh
∗ ○ (i′a)

!
○ g!

1 ≃ (f ′ ○ i′a)
IndCoh
∗ ○ (g1 ○ i

′
a)

!
≃

(f ′ ○ i′a)
IndCoh
∗ ○ (ia ○ ga)

!
≃ (f ′ ○ i′a)

IndCoh
∗ ○ g!

a ○ i
!
a →

→ g!
2 ○ (f ○ ia)

IndCoh
∗ ○ i!a ≃ g

!
2 ○ f

IndCoh
∗ ○ (ia)

IndCoh
∗ ○ (ia)

!,

where the arrow
(f ′ ○ i′a)

IndCoh
∗ ○ g!

a → g!
2 ○ (f ○ ia)

IndCoh
∗

is base change for the Cartesian square

X ′
a

ga
ÐÐÐÐ→ Xa

f ′○i′a
×
×
×
Ö

×
×
×
Ö

f○ia

X ′
2

g2
ÐÐÐÐ→ X2.

Hence, the required isomorphism follows from proper base change in the case
of schemes, see Volume I, Chapter 5, Proposition 3.1.4(b).

�

2.1.8. In the sequel we will need the following corollary of Proposition 2.1.2:

Corollary 2.1.9. Let X ′
→ X be a map of ind-schemes. Then the functor

IndCoh(X ′
)→ lim

(Z f→X)∈((Schaft)proper over X)op

IndCoh(Z ×
X
X
′
)

is an equivalence.

Proof. The statement of the corollary is equivalent to the fact that for F ∈

IndCoh(X ′
), the map

(2.2) colim
(Z f→X)∈(Schaft)proper over X

f ′IndCoh
∗ ○ f ′!(F)→ F

is an isomorphism, where

Z ×
X
X
′
=∶ Z ′ f

′

→ X
′.

Note that base change (i.e., Proposition 2.1.2) implies the projection formula,

so for each Z ′ f
′

→ X
′ as above, the natural map

f ′IndCoh
∗ ○ f ′!(F)→ f ′IndCoh

∗ ○ f ′!(ωX)

!
⊗F

is an isomorphism.

Hence, the map in (2.2) is obtained by tensoring with F from the map

colim
(Z f→X)∈(Schaft)proper over X

f ′IndCoh
∗ ○ f ′!(ωX ′)→ ωX ′ ,

and therefore it is sufficient to check that the latter map is an isomorphism.

However, again by base change, the latter map identifies with the pullback
under X ′

→ X of the map

colim
(Z f→X)∈(Schaft)proper over X

f IndCoh
∗ ○ f !

(ωX)→ ωX ,

while the latter is an isomorphism by Corollary 1.3.5.
�

130 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

2.2. 2nd version.
2.2.1. Now, let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2

be a Cartesian diagram in indSchlaft, such that the map g2, and hence g1, is ind-
proper.

From the isomorphism

(g2)
IndCoh
∗ ○ (f ′)IndCoh

∗ ≃ f IndCoh
∗ ○ (g1)

IndCoh
∗ ,

we obtain, by adjunction, a natural transformation:

(2.3) (f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ .

We claim:

Proposition 2.2.2. The map (2.3) is an isomorphism.

The rest of this subsection is devoted to the proof of the proposition.

2.2.3. First, suppose that f is ind-proper. In this case, the map (2.3) equals the
map (2.1). Hence, it is an isomorphism by Proposition 2.1.2.

2.2.4. We have

X
′
2 ≃ colim

a∈A
X ′

2,a,

where X ′
2,a ∈ Schaft and the maps i2,a ∶X

′
2,a → X

′
2 are closed embeddings. Therefore,

it suffices to show that (2.3) becomes an isomorphism after composing both sides
with i!2,a for every a. Thus, we can assume without loss of generality that X ′

2 =

X ′
2 ∈ Schaft.

Furthermore, by Corollary 1.1.6, we need to show that (2.3) becomes an iso-
morphism after precomposing both sides with the functor (i1)

IndCoh
∗ for a closed

embedding i1 ∶X1 → X1 with X1 ∈ Schaft. Consider the commutative diagram

X ′
1

//

��

X1

i1

��
X
′
1

g1 //

f ′

��

X1

f

��
X ′

2

g2 // X ′
2,

where both squares are Cartesian. Since i1 is ind-proper, we have that base change
holds for the top square. Hence, to show that (2.3) becomes an isomorphism after
precomposing with (i1)

IndCoh
∗ , we need to show that base change holds for the outer

square. In particular, we reduce to the case when X1 =X1 ∈ Schaft.

3. IndCoh ON (IND)-INF-SCHEMES 131

2.2.5. By Chapter 2, Corollary 1.7.5(b), we can factor the map X1 → X2 as a
composition

X1 → X̃1 → X2,

where X̃1 ∈ Schaft and X̃1 → X2 is a closed embedding (and in particular schematic).
We have the diagram

X ′
1

��

// X1

��
X̃ ′

1

��

// X̃1

��
X ′

2
// X2

where all the squares are Cartesian. The top square is a Cartesian square in Schaft

and hence satisfies base change by Volume I, Chapter 4, Proposition 5.2.1. In the
bottom square, the map X̃1 → X2 is ind-proper, and hence it satisfies base change
by the above. Hence the outer square satisfies base change as desired. �

3. IndCoh on (ind)-inf-schemes

In this section we begin the development of the theory of IndCoh on ind-inf-
schemes. We will essentially bootstrap it from IndCoh on ind-schemes, using nil
base change.

3.1. Nil base change. As just mentioned, nil base change is a crucial property of
the category IndCoh. Its proof relies on the structural results on inf-schemes from
Chapter 2, Sect. 4.

3.1.1. Recall the notion of an ind-inf-schematic map in PreStk, see Chapter 2,
Definition 3.1.5.

We will show:

Proposition 3.1.2. Let f ∶ X1 → X2 be a map in PreStklaft, and assume that
f is an inf-schematic nil-isomorphism.

(a) The functor f !
∶ IndCoh(X2)→ IndCoh(X1) admits a left adjoint, to be denoted

f IndCoh
∗ .

(b) The functor f ! is conservative.

(c) For a Cartesian daigram

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

the natural transformation

(f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ ,

arrising by adjunction from
g!

1 ○ f
!
≃ (f ′)!

○ g!
2,

is an isomorphism.

132 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

3.1.3. Proof of Proposition 3.1.2. Using Lemma 2.1.4, we reduce the assertion to
the case when X2 =X2 ∈ Schaff

aft, for points (a) and (b), and further to the case when

X
′
2 =X

′
2 ∈ Schaff

aft for point (c).

In this case X1 has the property that red
X1 = X1 ∈

redSchaff
ft . By Chapter 2,

Corollary 4.3.3, we can write

X1 ≃ colim
a∈A

X1,a,

where A is the category

(Schaff
aft)/X1

×

(redSchaff
aft)/X1

{X1},

and the colimit is taken in the category PreStklaft.

In particular, for every a, the resulting map X1,a → X2 is a nil-isomorphism,
and hence, proper. Moreover, for every morphism a′ → a′′, the corresponding map

ia′,a′′ ∶X1,a′ →X1,a′′

is also a nil-isomorphism and, in particular, is proper.

We have

IndCoh(X1) ≃ lim
a∈Aop

IndCoh(X1,a),

and the fact that f ! is conservative follows from the fact that each (f ○ ia)
! is

conservative.

Using Volume I, Chapter 1, Proposition 2.5.7, we can therefore rewrite

(3.1) IndCoh(X1) ≃ colim
a∈A

IndCoh(X1,a),

where the colimit is taken with respect to the functors

(ia′,a′′)
IndCoh
∗ ∶ IndCoh(X1,a′)→ IndCoh(X1,a′′).

Now, the left adjoint to f is given by the compatible collection of functors

(f ○ ia)
IndCoh
∗ ∶ IndCoh(X1,a)→ IndCoh(X2).

Thus, it remains to establish the base change property. However, the latter
follows by repeating the argument in Sects. 2.1.6-2.1.7.

�

3.2. Basic properties. We will now use nil base change to establish some basic
properties of the category IndCoh on an ind-inf-scheme.

3.2.1. First, as a corollary of Proposition 3.1.2 we obtain:

Corollary 3.2.2. Let X be an object of indinfSchlaft. Then the category
IndCoh(X) is compactly generated.

Proof. Consider the canonical map i ∶ red
X → X . The category IndCoh(red

X)

is compactly generated by Corollary 1.1.8. Now, Proposition 3.1.2 implies that the
essential image of iIndCoh

∗ (IndCoh(red
X)

c
) compactly generates IndCoh(X).

�

3. IndCoh ON (IND)-INF-SCHEMES 133

3.2.3. Let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

be a Cartesian diagram in PreStklaft with f being ind-inf-schematic and ind-proper.
We claim:

Proposition 3.2.4. The functors f ! and (f ′)! admit left adjoints, to be denoted
f IndCoh
∗ and (f ′)IndCoh

∗ , respectively. The natural transformation

(3.2) (f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ ,

arrising by adjunction from

g!
1 ○ f

!
≃ (f ′)!

○ g!
2,

is an isomorphism.

Proof. By Lemma 2.1.4, the assertion of the proposition reduces to the case
when X2 and (resp., both X2 and X ′

2) belong to Schaff
aft. Denote these objects by X2

and X ′
2, respectively. In this case X1 (resp., both X1 and X ′

1) belong to indinfSchlaft.
The existence of the left adjoint f IndCoh

∗ (and therefore also (f ′)IndCoh
∗) follows,

using Chapter 2, Corollary 4.1.4 and Proposition 2.1.2, by the same argument as
Proposition 3.1.2(a).

Now, let X0 be any object of indSchlaft endowed with a nil-isomorphism to X1;
e.g., X0 =

red
X1. Set

X
′
0 ∶=X

′
2 ×
X2

X0,

and consider the diagram

X
′
0

g0
ÐÐÐÐ→ X0

i′
×
×
×
Ö

×
×
×
Ö

i

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X ′
2

g2
ÐÐÐÐ→ X2,

in which both squares are Cartesian.

By Proposition 3.1.2(b), it suffices to prove the assertion for the top square and
for the outer square.

Now, the assertion for the outer square is given by Proposition 2.1.2, and for
the top square by Proposition 3.1.2(c).

�

3.3. Descent for ind-inf-schematic ind-proper maps.

134 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

3.3.1. Let X ● be a groupoid simplicial object in PreStklaft, see [Lu1, Definition
6.1.2.7]. Denote by

(3.3) ps, pt ∶ X
1
⇉ X

0

the corresponding maps.

We form a co-simplicial category IndCoh(X ●
)
! using the !-pullback functors,

and consider its totalization Tot(IndCoh(X ●
)
!
). Consider the functor of evaluation

on 0-simplices:

ev0
∶ Tot(IndCoh(X ●

))→ IndCoh(X 0
).

3.3.2. We claim:

Proposition 3.3.3. Suppose that the maps ps, pt in (3.3) are ind-inf-schematic
and ind-proper. Then:

(a) The functor ev0 admits a left adjoint and the adjoint pair

IndCoh(X 0
)⇄ Tot(IndCoh(X ●

)
!
)

is monadic. Furthermore, the resulting monad on IndCoh(X 0
), viewed as a plain

endo-functor, is canonically isomorphic to (pt)
IndCoh
∗ ○ (ps)

!.

(b) Suppose that X ● is the Čech nerve of a map f ∶ X
0
→ Y, where f is ind-

schematic and ind-proper. Assume also that f is surjective at the level of k-points.
Then the resulting map

IndCoh(Y)→ Tot(IndCoh(X ●
)
!
)

is an equivalence.

Proof. Follows by repeating the argument of Volume I, Chapter 4, Proposition
7.2.2. �

3.3.4. For X ∈ PreStklaft recall the category Pro(QCoh(X)
−
)
fake
laft , see Chapter 1,

Sect. 4.3.6. From Proposition 3.3.3 and Chapter 1, Corollary 4.4.2 we obtain:

Corollary 3.3.5. Let X → Y be a map in PreStklaft, which is ind-inf-schematic,
ind-proper and surjective at the level of k-points. Then the pullback functor

Pro(QCoh(Y)−)fake
laft → Tot (Pro(QCoh(X ●

/Y)
−
)
fake
laft)

is an equivalence.

3.3.6. Descent for maps. Let f ∶ X → Y be an inf-schematic nil-isomorphism in
PreStklaft. We then have:

Proposition 3.3.7. For Z ∈ PreStklaft-def , the natural map

Tot(Maps(X ●,Z))→Maps(Y,Z)

is an isomorphism.

Proof. The statement automatically reduces to the case when Y = Y ∈
<∞Schaff

ft .
Furthermore, by Chapter 2, Corollary 4.3.4, we can further assume that X = X ∈

<∞Schaff
ft .

The assertion of the proposition is evident if Y is reduced: in this case the
simplicial object X● is split. Hence, by Chapter 1, Proposition 5.4.2, by induction,

3. IndCoh ON (IND)-INF-SCHEMES 135

it suffices to show that if the assertion holds for a given Y and we have a square-
zero extension Y ↪ Y ′ by means of F ∈ Coh(Y)

≤0, then the assertion holds also for

X ′
∈ (Schaff

aft)nil-isom to Y ′ .

Set X ∶=X ′
×
Y ′
Y ′. By Chapter 1, Proposition 5.3.2, the map

X●
↪X ′●

has a structure of simplicial object in the category of square-zero extensions.

By the induction hypothesis, it is enough to show that for a given map z ∶ Y →
Z, the map

(3.4) Maps(Y ′,Z) ×
Maps(Y,Z)

{z}→ Tot(Maps(X ′●,Z)) ×
Tot(Maps(X●,Z))

{z}

is an isomorphism.

Since Z admits deformation theory, the left-hand side in (3.4) is canonically
isomorphic to the groupoid of null-homotopies of the composition

T ∗z (Z)→ T ∗(Y)→ F .

We rewrite the right-hand side in (3.4) as the totalization of the simplicial space

Maps(X ′●,Z) ×
Maps(X●,Z)

{z}.

The above simplicial groupoid identifies with that of null-homotopies of the
composition

T ∗z○f●(Z)→ T ∗(X●
)→ f●(F),

where f● denotes the map X●
→ Y .

Now, the desired property follows the the descent property of Pro(QCoh(−)−)fake
laft ,

see Corollary 3.3.5 above.
�

3.4. t-structure for ind-inf-schemes. The category IndCoh on an ind-inf-scheme
also possesses a t-structure. However, it has less favorable properties than in the
case of ind-schemes.

3.4.1. Let X be an ind-inf-scheme. We define a t-structure on the category
IndCoh(X) by declaring that an object F ∈ IndCoh(X) belongs to IndCoh(X)

≥0 if
and only if i!(F) belongs to IndCoh(red

X)
≥0, where

i ∶ red
X → X

is the canonical map.

Equivalently, we let IndCoh(X)
≤0 be generated under colimits by the essential

image of IndCoh(red
X)

≤0 under iIndCoh
∗ .

It is easy to see that if f is an ind-finite map, then the functor f ! is left t-exact.

136 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

3.4.2. Suppose that X is actually an ind-scheme. We claim that the t-structure
defined above, when we view X as a mere ind-inf-scheme, coincides with one for X
considered as an ind-scheme of Sect. 1.2. This follows from the next lemma:

Lemma 3.4.3. Let f ∶ X1 → X2 be a nil-isomorphism of ind-schemes. Then for
F ∈ IndCoh(X2) we have:

F ∈ IndCoh(X2)
≥0
⇔ f !

(F) ∈ F ∈ IndCoh(X1)
≥0.

Proof. The ⇒ implication is tautological. For the ⇐ implication, by the
definition of the t-structure on IndCoh(X2), we can assume that X2 = X2 ∈ Schaft

and X1 =X1 ∈ Schaft; i.e. f is a nil-isomorphism of schemes X1 →X2.

By the definition of the t-structure on IndCoh(X2) and adjunction, it suffices
to show that Coh(X2)

≤0 is generated by the essential image of Coh(X1)
≤0 under

f IndCoh
∗ , which is obvious. �

Corollary 3.4.4. Let X be an object of indinfSchlaft.

(a) For F ∈ IndCoh(X), we have F ∈ IndCoh(X)
≥0 if and only if for every nil-closed

map f ∶X → X with X ∈
redSchft we have

f !
(F) ∈ IndCoh(X)

≥0.

(b) The category IndCoh(X)
≤0 is generated under colimits by the essential images

of the categories IndCoh(X)
≤0 for f ∶X → X with X ∈

redSchft and f nil-closed.

3.4.5. As mentioned above, if f is an ind-finite map X1 → X2 of ind-inf-schemes,
then the functor f ! is left t-exact. By adjunction, this implies that the functor
f IndCoh
∗ is right t-exact.

Lemma 3.4.6. Let f ∶ X1 → X2 be an ind-finite and ind-schematic map between
ind-inf-schemes. Then the functor f IndCoh

∗ is t-exact.

Proof. We only have to prove that f IndCoh
∗ is left t-exact. By Proposi-

tion 3.1.2(c), the assertion reduces to the case when X2 = indSchlaft. In the latter
case, X1 is an ind-scheme, and the assertion follows from the fact that the functor
f IndCoh
∗ for a map of ind-schemes is left t-exact, by Lemma 1.4.9. �

Remark 3.4.7. It is easy to see that the assertion of the lemma is false without
the assumption that f be ind-schematic, see Sect. 0.2.2

4. The direct image functor for ind-inf-schemes

In this section we construct the direct image functor on IndCoh for maps be-
tween ind-inf-schemes. The idea is that one can bootstrap it from the case of
maps that are nil-closed embeddings, while for the latter the sought-for procedure
is obtained as left/right Kan extension from the case of schemes.

4.1. Recovering from nil-closed embeddings. In this subsection we show that
if we take IndCoh on the category of schemes, with morphisms restricted to nil-
closed maps, then its right Kan extension to ind-inf-schemes recovers the usual
IndCoh.

4. THE DIRECT IMAGE FUNCTOR FOR IND-INF-SCHEMES 137

4.1.1. Consider the fully faithful embeddings

Schaff
aft ↪ Schaft ↪ indinfSchlaft ↪ PreStklaft .

Denote

IndCoh!
indinfSchlaft

∶= IndCoh!
PreStklaft

∣(indinfSchlaft)op .

Since

IndCoh!
Schaft

→ RKE(Schaff
aft)op↪(Schaft)op(IndCoh!

Schaff
aft

)

is an isomorphism, the map

(4.1) IndCoh!
indinfSchlaft

→ RKE(Schaft)op↪(indinfSchlaft)op(IndCoh!
Schaft

)

is an isomorphism.

4.1.2. Let

(indinfSchlaft)nil-closed ⊂ indinfSchlaft

denote the 1-full subcategory, where we restrict 1-morphisms to be nil-closed.

Denote

IndCoh!
(indinfSchlaft)nil-closed

∶= IndCoh!
indinfSchlaft

∣((indinfSchlaft)nil-closed)op .

From the isomorphism (4.1), we obtain a canonically defined map

(4.2) IndCoh!
(indinfSchlaft)nil-closed

→

RKE((Schaft)nil-closed)op↪((indinfSchlaft)nil-closed)op(IndCoh!
(Schaft)nil-closed

).

We will prove:

Proposition 4.1.3. The map (4.2) is an isomorphism.

Proof. We need to show that for X ∈ indinfSchlaft, the functor

IndCoh(X)→ lim
Z∈((Schaft)nil-closed in X)op

IndCoh(Z)

is an equivalence.

However, this follows from Chapter 2, Corollary 4.1.4, since the functor IndCoh
takes colimits in PreStklaft to limits.

�

4.1.4. For the sequel we will need the following observation:

Corollary 4.1.5. Let X ′
→ X be a map of ind-inf-schemes. Then the functor

IndCoh(X ′
)→ lim

Z∈((Schaft)nil-closed in X)op
IndCoh(Z ×

X
X
′
)

is an equivalence.

Proof. Same as that of Corollary 2.1.9. �

4.2. Recovering from nil-isomorphisms. The material in this subsection is not
needed for the sequel and is included for the sake of completeness.

138 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

4.2.1. Let

(indinfSchlaft)nil-isom ⊂ indinfSchlaft and (indSchlaft)nil-isom ⊂ indSchlaft

denote the 1-full subcategories, where we restrict 1-morphisms to be nil-isomorphisms.

Denote also

IndCoh!
(indinfSchlaft)nil-isom

∶= IndCoh!
indinfSchlaft

∣((indinfSchlaft)nil-isom)op

and

IndCoh!
(indSchlaft)nil-isom

∶= IndCoh!
indSchlaft

∣((indSchlaft)nil-isom)op

4.2.2. From Proposition 4.1.3 we deduce:

Corollary 4.2.3. The natural map

IndCoh!
(indinfSchlaft)nil-isom

→

→ RKE((indSchlaft)nil-isom)op↪((indinfSchlaft)nil-isom)op(IndCoh!
(indSchlaft)nil-isom

)

is an isomorphism.

Proof. By Corollary 1.3.5 and Proposition 4.1.3, the map

IndCoh!
(indinfSchlaft)nil-closed

→

→ RKE((indSchlaft)nil-closed)op↪((indinfSchlaft)nil-closed)op(IndCoh!
(indSchlaft)nil-closed

)

is an isomorphism.

Hence, it remains to show that for X ∈ indinfSchlaft, the restriction map

lim
Y∈((indSchlaft)nil-closed in X)op

IndCoh(Y)→ lim
Y∈((indSchlaft)nil-isom to X)op

IndCoh(Y)

is an isomorphism.

We claim that the map

(indSchlaft)nil-isom to X → (indSchlaft)nil-closed in X

is cofinal. Indeed, it admits a left adjoint, given by sending an object

(Y → X) ∈ (indSchlaft)nil-closed in X

Y ⊔
redY

red
X → X ,

where the push-out is taken in the category PreStklaft.
�

4.3. Constructing the direct image functor. In this subsection we finally
construct the direct image functor. The crucial assertion is Theorem 4.3.3, which
says that this functor is the ‘right one’.

4. THE DIRECT IMAGE FUNCTOR FOR IND-INF-SCHEMES 139

4.3.1. Consider again the functor

IndCohSchaft
∶ Schaft → DGCatcont,

where for a morphism f ∶ X1 → X2, the functor IndCoh(X1) → IndCoh(X2) is
f IndCoh
∗ .

Recall the notation:

IndCoh(Schaft)nil-closed
∶= IndCohSchaft

∣(Schaft)nil-closed
.

Denote

IndCohindinfSchlaft
∶= LKESchaft↪indinfSchlaft

(IndCohSchaft
),

Note that by Proposition 1.4.2, the restriction of IndCohindinfSchlaft
to IndCohinfSchlaft

identifies canonically with IndCohindSchlaft
.

4.3.2. Denote

IndCoh(indinfSchlaft)nil-closed
∶= IndCohindinfSchlaft

∣(indinfSchlaft)nil-closed
.

We have a canonical map

(4.3) LKE(Schaft)nil-closed↪(indinfSchlaft)nil-closed
(IndCoh(Schaft)nil-closed

)→

→ IndCoh(indinfSchlaft)nil-closed
.

We claim:

Theorem 4.3.3. The map (4.3) is an isomorphism.

4.3.4. Note that by combining Lemma 1.4.4 and Theorem 4.3.3, we obtain:

Corollary 4.3.5. The functors

IndCoh(indinfSchlaft)nil-closed
and IndCoh!

(indinfSchlaft)nil-closed

are obtained from one another by passing to adjoints.

Remark 4.3.6. The concrete meaning of the combination of the above corollary
and Theorem 4.3.3 is the following. Let f ∶ X1 → X2 is a morphism between objects
of indinfSchlaft. Then the claim is that we have a well-defined functor

f IndCoh
∗ ∶ IndCoh(X1)→ IndCoh(X2),

which tautologically agrees with the previously constructed IndCoh direct image
functor when X1,X2 ∈ indSchlaft.

Furthermore, if f is nil-closed, then f IndCoh
∗ is the left adjoint of f !.

Remark 4.3.7. Given an ind-proper map

f ∶ X → Y

in indinfSchlaft, we have defined two functors that we called f IndCoh
∗ ; namely, one

is the functor given by IndCohindinfSchlaft
and the other is the right adjoint of f !. A

priori, these two functors are unrelated.

However, this abuse of notation will be justified in Corollary 5.2.3, where we
will establish a canonical identification of these functors. Namely, we will show that
the assertion of Theorem 4.3.3 and therefore Corollary 4.3.5 can be strengthened
by replacing the class of nil-closed morphisms by that of ind-proper ones.

140 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

Remark 4.3.8. In what follows, for X1 = X and X2 = pt, we shall also use the
notation

Γ(X ,−)IndCoh

for the functor (pX)
IndCoh
∗ , where pX ∶ X → pt is the projection.

4.4. Proof of Theorem 4.3.3. Before we begin the proof, let us explain why the
proof of Theorem 4.3.3 is more involved than that of Proposition 4.1.3.

The reason is that in Proposition 4.1.3, we could test the equivalence via affine
schemes, and the latter we did using Chapter 2, Theorem 4.1.3. Now, for Theo-
rem 4.3.3 affine schemes are not enough. We could have gotten away cheaply if we
knew that for (a not necessarily affine) scheme Z ∈ Schaft and a map Z → X , the
category of its factorizations as

Z → Z ′
→ X ,

where Z ′
→ X is a nil-isomorphism, is contractible. However, the latter fact is

simply not true (see Chapter 2, Remark 4.1.6).

4.4.1. Step -1. We need to show that for X ∈ indinfSchlaft, the functor

colim
Z∈(Schaft)nil-closed in X

IndCoh(Z)→ colim
Y ∈(Schaft)/X

IndCoh(Y)

is an equivalence.

The convergence property of the IndCoh functor allows to replace Schaft by
<∞Schft. Thus, we need to show that the functor

colim
Z∈(<∞Schft)nil-closed in X

IndCoh(Z)→ colim
Y ∈(<∞Schft)/X

IndCoh(Y)

is an equivalence.

4.4.2. Step 0. Consider the commutative diagram

(4.4)

colim
Y ∈(<∞Schft)/X

IndCoh(Y) ←ÐÐÐÐ colim
S∈(<∞Schaff

ft)/X
IndCoh(S)

Õ
×
×
×

Õ
×
×
×

colim
Z∈(<∞Schft)nil-closed in X

IndCoh(Z) ←ÐÐÐÐ colim
(S→Z→X)∈C

IndCoh(S),

where C is the category of S → Z → X , with S ∈
<∞Schaff

ft and

(Z → X) ∈ (
<∞Schft)nil-closed in X .

We will show that the horizontal arrows and the right vertical arrow in this
diagram are equivalences. This will prove that the left vertical arrow is also an
equivalence.

4. THE DIRECT IMAGE FUNCTOR FOR IND-INF-SCHEMES 141

4.4.3. Step 1. Consider the functor C → (
<∞Schaff

ft)/X , appearing in the right ver-
tical arrow in (4.4). We claim that it is cofinal, which would prove that the right
vertical arrow in (4.4) is an equivalence.

We note that the functor C → (
<∞Schaff

ft)/X is a Cartesian fibration. Hence,
the fact that it is cofinal is equivalent to the fact that it has contractible fibers.

The fiber over a given object S → X is the category of factorizations

S → Z → X , (Z → X) ∈ (
<∞Schft)nil-closed in X .

This category is contractible by Chapter 2, Theorem 4.1.3.

4.4.4. Step 2. Consider the functor C → (
<∞Schft)nil-closed in X , appearing in the

bottom horizontal arrow in (4.4). It is a co-Cartesian fibration.

Hence, in order to show that this arrow in the diagram is an equivalence, it
suffices to show that for a given Z ∈ (

<∞Schft)nil-closed in X , the functor

(4.5) colim
S∈(<∞Schaff

ft)/Z
IndCoh(S)→ IndCoh(Z)

is an equivalence.

We have the following assertion, proved below:

Proposition 4.4.5. The functor IndCohSchaft
, regarded as a presheaf on Schaft

with values in (DGCatcont)
op satisfies Zariski descent.

This proposition readily implies that (4.5) is an equivalence (for a general state-

ment along these lines see [Ga1, Proposition 6.4.3]; here we apply it to <∞Schaff
ft ⊂

<∞Schft.)

4.4.6. Step 3. To treat the top horizontal arrow in (4.4), we consider the category
D of

S → Y → X , S ∈
<∞Schaff

ft , Y ∈
<∞Schft,

and functor

(4.6) colim
(S→Y→X)∈D

IndCoh(S)→ colim
S∈(<∞Schaff

ft)/X
IndCoh(S).

We note that the functor (4.6) is an equivalence, because the corresponding

forgetful functor D → (
<∞Schaff

ft)/X is cofinal (it is a Cartesian fibration with con-
tractible fibers).

Hence, it remains to show that the composition

colim
(S→Y→X)∈D

IndCoh(S)→ colim
Y ∈(<∞Schft)/X

IndCoh(S)

of (4.6) with the top horizontal arrow in (4.4) is an equivalence.

The above functor corresponds to the co-Cartesian fibration D→ (
<∞Schft)/X .

Hence, it suffices to show that for a fixed Y ∈ (
<∞Schft)/X , the functor

colim
S∈(<∞Schaff

ft)/Y
IndCoh(S)→ IndCoh(Y)

is an equivalence.

However, this follows as in Step 2 from Proposition 4.4.5.

142 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

4.4.7. Proof of Proposition 4.4.5. The assertion of the proposition is equivalent to
the following. Let X ∈ Schaft be covered by two opens U1 and U2. Denote

U1
j1
↪X, U2

j2
↪X, U1 ∩U2

j12
↪ X,

U1 ∩U2

j12,1

↪ U1, U1 ∩U2

j12,1

↪ U2.

Then the claim is that the diagram

IndCoh(U1 ∩U2)
(j12,1)IndCoh

∗

ÐÐÐÐÐÐÐ→ IndCoh(U1)

(j12,2)IndCoh
∗

×
×
×
Ö

×
×
×
Ö

(j1)IndCoh
∗

IndCoh(U1)
(j2)IndCoh

∗

ÐÐÐÐÐÐ→ IndCoh(X)

is a push-out square in DGCatcont.

In other words, given C ∈ DGCat and a triple of continuous functors

F1 ∶ IndCoh(U1)→C, F2 ∶ IndCoh(U2)→C, F12 ∶ IndCoh(U1 ∩U2)→C

endowed with isomorphisms

F1 ○ (j12,1)
IndCoh
∗ ≃ F12 ≃ F2 ○ (j12,2)

IndCoh
∗ ,

we need to show that this data comes from a uniquely defined functor

F ∶ IndCoh(X)→C.

The sought-for functor F is recovered as follows: for F ∈ IndCoh(X), we have

F (F) = F1(j
!
1(F)) ×

F12(j!12(F))
F2(j

!
2(F)),

where the maps Fi(j
!
i(F))→ F12(j

!
12(F)) are given by

Fi(j
!
i(F))→ Fi((j12,i)

IndCoh
∗ ○j!

12,i○j
!
i(F)) = Fi((j12,i)

IndCoh
∗ ○j!

12(F) ≃ F12(j
!
12(F)).

�

4.5. Base change. As in the case of ind-schemes, there are two types of base
change isomorphism for ind-proper inf-schematic maps. The first is given by Propo-
sition 3.2.4. Here we will prove the second.

4.5.1. Let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

be a Cartesian diagram of objects of indinfSchlaft such that g2 is an ind-closed
embedding. Note that in this case, the right adjoint of (g2)

IndCoh
∗ is g!

2 (and similarly
for g1).

From the isomorphism

(g2)
IndCoh
∗ ○ (f ′)IndCoh

∗ ≃ f IndCoh
∗ ○ (g1)

IndCoh
∗ ,

we obtain, by adjunction, a natural transformation:

(4.7) (f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ .

4. THE DIRECT IMAGE FUNCTOR FOR IND-INF-SCHEMES 143

We claim:

Proposition 4.5.2. The map (4.7) is an isomorphism.

Proof. Let X0 ∶=
red
X1. Set

X
′
0 ∶= X

′
1 ×
X1

X0,

and consider the diagram

X
′
0

g0
ÐÐÐÐ→ X0

i′
×
×
×
Ö

×
×
×
Ö

i

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

in which both squares are Cartesian.

Since the functor i! is conservative (by Proposition 3.1.2(b)), its left adjoint
iIndCoh
∗ generates the target. Hence, it suffices to show that the outer square and

the top square each satisfy base change of Proposition 4.5.2.

Note that base change for the top square is given by Proposition 3.1.2(c).

This reduces the assertion of the proposition to the case when X1 is a classical
reduced ind-scheme. In this case the map f factors as

X1 → X3/2 → X2,

where X3/2 =
red
X2. Set X ′

3/2 ∶= X
′
2 ×
X2

X3/2, and consider the diagram

X
′
1

g0
ÐÐÐÐ→ X1

j′
×
×
×
Ö

×
×
×
Ö

j

X
′
3/2

g3
ÐÐÐÐ→ X3/2

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

in which both squares are Cartesian.

It is sufficient to show that the two inner squares each satisfy base change of
Proposition 4.5.2. For the bottom square, this is given by Proposition 3.1.2(c).

We note now that X3/2 and X ′
3/2 are ind-schemes. Hence, base change for the

top square, this is given by Proposition 2.2.2.
�

144 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

5. Extending the formalism of correspondences to inf-schemes

In this section we will take the formalism of IndCoh to what (in our opinion)
is its ultimate domain of definition: the category of correspondences, where the
objects are all prestacks (locally almost of finite type), pullbacks are taken with
respect to any maps, push-forwards are taken with respect to ind-inf-schematic
maps, and adjunctions hold for ind-proper maps.

5.1. Set-up for extension. As a first step, we will consider the category of cor-
respondences, where the objects are ind-inf-schemes, pullbacks and push-forwards
are taken with respect to any maps, and adjunctions are for nil-closed maps. We
will construct the required functor by the Kan extension procedure from Volume I,
Chapter 8, Theorem 1.1.9.

5.1.1. We consider the category indinfSchlaft with the following three classes of
morphisms

vert = all, horiz = all, adm = nil-closed .

Let
Corr(indinfSchlaft)

nil-closed
all;all

be the resulting (∞,2)-category of correspondences.

5.1.2. Consider also the category

Corr(Schaft)
proper
all;all ,

and the functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)
proper
all;all → DGCat2 -Cat

cont ,

constructed in Volume I, Chapter 5, Theorem 2.1.4.

We restrict it along

Corr(Schlaft)
nil-closed
all;all → Corr(Schaft)

proper
all;all ,

and obtain a functor

IndCohCorr(Schaft)nil-closed
all;all

∶ Corr(Schaft)
nil-closed
all;all → DGCat2 -Cat

cont .

Note that by Volume I, Chapter 7, Theorem 4.1.3, this restriction does not lose
any information.

We wish to extend the functor IndCohCorr(Schaft)nil-closed
all;all

to a functor

IndCohCorr(indinfSchlaft)nil-closed
all;all

∶ Corr(indinfSchlaft)
nil-closed
all;all → DGCat2 -Cat

cont ,

along the tautological functor

Schlaft → indinfSchlaft .

We will apply Volume I, Chapter 8, Theorem 1.1.9 to obtain this extension. In
the present context, the conditions of Volume I, Chapter 8, Sect. 1.1.6 are satisfied
for the following reasons:

Condition (1) is satisfied by Proposition 4.5.2;

Condition (2) is satisfied by by Theorem 4.3.3;

Condition (3) is satisfied by by Proposition 3.2.4;

Condition (4) is satisfied by Proposition 4.1.3.

5. EXTENDING THE FORMALISM OF CORRESPONDENCES TO INF-SCHEMES 145

Condition (*) is satisfied by Corollary 4.1.5.

5.1.3. Applying Volume I, Chapter 8, Theorem 1.1.9, we obtain:

Theorem 5.1.4. There exists a uniquely defined functor

IndCohCorr(indinfSchlaft)nil-closed
all;all

∶ Corr(indinfSchlaft)
nil-closed
all;all → DGCat2 -Cat

cont ,

whose restriction along

Corr(Schaft)
nil-closed
all;all → Corr(indinfSchlaft)

nil-closed
all;all

identifies with IndCohCorr(Schaft)nil-closed
all;all

.

Moreover, the restrictions of IndCohCorr(indinfSchlaft)nil-closed
all;all

to

(indinfSchlaft)
op and indinfSchlaft

identify, respectively, with

IndCoh!
indinfSchlaft

and IndCohindinfSchlaft
.

5.2. Adding adjunctions for ind-proper morphsisms. In this subsection we
will extend the functor from the previous subsection, where we include adjunctions
for ind-proper maps.

5.2.1. Consider now the (∞,2)-category

Corr(indinfSchlaft)
ind-proper
all;all ,

where we enlarge the class of 2-morphisms to that of ind-proper maps.

Consider the 2-fully faithful functor

Corr(indinfSchlaft)
nil-closed
all;all → Corr(indinfSchlaft)

ind-proper
all;all .

We are going to prove:

Theorem 5.2.2. There exists a unique extension of the functor IndCohCorr(Schaft)proper
all;all

to a functor

IndCohCorr(indinfSchlaft)ind-proper
all;all

∶ Corr(indinfSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont .

As a formal corollary, using Volume I, Chapter 7, Theorem 3.2.2, we obtain:

Corollary 5.2.3. The functors

IndCoh(indinfSchlaft)ind-proper
∶= IndCohindinfSchlaft

∣(indinfSchlaft)ind-proper

and

IndCoh!
(indinfSchlaft)ind-proper

∶= IndCoh!
indinfSchlaft

∣((indinfSchlaft)ind-proper)op

are obtained from each other by passing to adjoints.

146 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

5.2.4. Let us explain the concrete content of Theorem 5.2.2 and Corollary 5.2.3.

First, Corollary 5.2.3 says that if f ∶ X1 → X2 is an ind-proper map between
ind-inf-schemes, then the functor f IndCoh

∗ is the left adjoint of f !.

Next, let

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2

be a Cartesian diagram in indinfSchlaft.

Theorem 5.1.4 says that we have a canonical isomorphism

(5.1) g!
2 ○ f

IndCoh
∗ ≃ (f ′)IndCoh

∗ ○ g!
1.

If f is ind-proper, then the morphism ← in (5.1) is obtained by adjunction from
the (iso)morphism

(f ′)!
○ g!

2 ≃ g
!
1 ○ f

!.

If g2 is ind-proper, then the morphism → in (5.1) is obtained by adjunction
from the (iso)morphism

f IndCoh
∗ ○ (g1)

IndCoh
∗ ≃ (g2)

IndCoh
∗ ○ (f ′)IndCoh

∗ .

In particular, a generalization of Proposition 4.5.2 holds with ‘nil-closed’ re-
placed by ‘ind-proper’.

If the ind-inf-schemes in the above diagram are schemes, then the isomorphism
(5.1) equals one defined a priori in this case by Volume I, Chapter 5, Corollary
3.1.4.

5.2.5. Note that by combining Corollary 5.2.3 with Lemma 1.4.4, we obtain:

Corollary 5.2.6.

LKE(Schaft)proper↪(indinfSchlaft)ind-proper
(IndCoh(Schaft)proper

)→ IndCoh(indinfSchlaft)ind-proper

is an isomorphism.

5.3. Proof of Theorem 5.2.2.
5.3.1. The case of ind-schemes. Consider the category indSchlaft with the following
three classes of morphisms

vert = all, horiz = all, adm = ind-proper .

We claim that we have the following result:

Theorem 5.3.2. There exists a uniquely defined functor

IndCohCorr(indSchlaft)ind-proper
all;all

∶ (indSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont ,

whose restriction along

Corr(Schaft)
proper
all;all → Corr(indSchlaft)

ind-proper
all;all

identifies canonically with IndCohCorr(Schaft)nil-closed
all;all

.

5. EXTENDING THE FORMALISM OF CORRESPONDENCES TO INF-SCHEMES 147

Proof. This follows from Volume I, Chapter 8, Theorem 1.1.9 applied to the
functor

Schaft → indSchlaft .

Here the conditions of Volume I, Chapter 8, Sect. 1.1.6 are satisfied for the
following reasons:

Condition (1) holds by Proposition 2.2.2;

Condition (2) holds by Corollary 1.3.5;

Condition (3) holds by Proposition 2.1.2;

Condition (4) holds by Proposition 1.4.2.

Condition (*) holds by by Corollary 2.1.9.
�

Remark 5.3.3. The difference between the case of ind-schemes and that of
inf-schemes that the fact that the map

LKE(Schaft)proper↪(indinfSchlaft)ind-proper
(IndCoh(Schaft)proper

)→ IndCoh(indinfSchlaft)ind-proper

is an isomorphism only follows a posteriori from Theorem 5.2.2, while the corre-
sponding fact for ind-schemes, i.e., the isomorphism

LKE(Schaft)proper↪(indSchlaft)ind-proper
(IndCoh(Schaft)proper

) ≃ IndCoh(indSchlaft)ind-proper

is given by Corollary 1.3.5.

5.3.4. We are going to deduce Theorem 5.2.2 from Theorem 5.1.4 by applying
Volume I, Chapter 7, Theorem 4.1.3. Thus, we need to check that the inclusion

nil-closed ⊂ ind-proper

satisfies the condition of Volume I, Chapter 7, Sect. 4.1.2.

That is, we consider a ind-proper morphism

f ∶ X1 → X2

of objects of indinfSchlaft, and the Cartesian square:

X1 ×
X2

X1
p2

ÐÐÐÐ→ X1

p1

×
×
×
Ö

×
×
×
Ö

f

X1
f

ÐÐÐÐ→ X2.

The diagonal map
∆X1/X2

∶ X1 → X1 ×
X2

X1

is nil-closed. Hence, from the ((∆X1/X2
)
IndCoh
∗ , (∆X1/X2

)
!-adjunction, we obtain a

natural transformation

(∆X1/X2
)
IndCoh
∗ ○ (∆X1/X2

)
!
→ IdIndCoh(X1 ×

X2
X1) .

By composing, the latter natural transformation gives rise to

(5.2) IdIndCoh(X1) ≃ (idX1)
IndCoh
∗ ○ (idX1)

!
≃

≃ (p1)
IndCoh
∗ ○ (∆X1/X2

)
IndCoh
∗ ○ (∆X1/X2

)
!
○ p!

2 → (p1)
IndCoh
∗ ○ p!

2 ≃ f
!
○ f IndCoh

∗ ,

148 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

where the last isomorphism is due to the existence of the functor IndCohCorr(indinfSchlaft)nil-closed
all;all

,

see Sect. 5.2.4.

We need to show that the natural transformation (5.2) is the unit of an ad-
junction. I.e., that for F1 ∈ IndCoh(X1) and F2 ∈ IndCoh(X2), the map

(5.3) Maps(f IndCoh
∗ (F1),F2)→Maps(f !

○ f IndCoh
∗ (F1), f

!
(F2)) ≃

≃ Maps((p1)
IndCoh
∗ ○ p!

2(F1), f
!
(F2))→Maps(F1, f

!
(F2))

is an isomorphism.

We note that by Theorem 5.1.4 the map (5.3) is the unit for the (f IndCoh
∗ , f !

)

adjunction, when f is nil-closed.

5.3.5. Note that the natural transformation (5.2) is defined for any map f which
is nil-separated, i.e., one for which ∆X1/X2

is nil-closed.

Let g ∶ X0 → X1 be another nil-separated map between objects of indinfSchlaft.
Diagram chase implies:

Lemma 5.3.6. For F0 ∈ IndCoh(X0) and F2 ∈ IndCoh(X2), the diagram

Maps(gIndCoh
∗ (F0), f

!
(F2))

(5.3)
ÐÐÐÐ→ Maps(F0, g

!
○ f !

(F2))

(5.3)
Õ
×
×
×

Õ
×
×
×

id

Maps(f IndCoh
∗ ○ gIndCoh

∗ (F0),F2)
(5.3)
ÐÐÐÐ→ Maps(F0, g

!
○ f !

(F2))

commutes.

5.3.7. Let us take X0 ∶=
red
X1 and g to be the canonical embedding. By Proposi-

tion 3.1.2, it is sufficient to show that (5.3) is an isomorphism for F1 of the form
gIndCoh
∗ (F0) for F0 ∈ IndCoh(X0).

Using Lemma 5.3.6, and the fact that the map

Maps(gIndCoh
∗ (F0), f

!
(F2))→Maps(F0, g

!
○ f !

(F2))

is an isomorphism in this case, since g is nil-closed, we obtain that it is sufficient
to show that (5.3) is an isomorphism, when the initial map f is replaced by f ○ g.

Thus, in proving that (5.3) is an isomorphism, we can assume that X1 is a
reduced ind-scheme.

5.3.8. Let us now factor f as

X1 → X3/2 → X2,

where X3/2 ∶=
red
X2. Applying Lemma 5.3.6 again, we obtain that it is enough to

show that (5.3) is an isomorphism for f replaced by X1 → X3/2 and X3/2 → X2

separately.

For the map X3/2 → X2, the assertion follows from the fact that the map in
question is nil-closed.

5. EXTENDING THE FORMALISM OF CORRESPONDENCES TO INF-SCHEMES 149

5.3.9. Hence, we are further reduced to the case when f is a ind-proper map
between ind-schemes. However, in this case, the required isomorphism follows from
Theorem 5.3.2: it follows by Volume I, Chapter 7, Theorem 4.1.3 from the existence
of the functor

IndCohCorr(indSchlaft)nil-proper
all;all

∶ Corr(indSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont ,

whose restriction to Corr(indSchlaft)
nil-closed
all;all is isomorphic to

IndCohCorr(infSchlaft)nil-closed
all;all

∣Corr(indSchlaft)nil-closed
all;all

.

�

5.4. Extending to prestacks. In this subsection, we will finally extend the for-
malism to the category of correspondences that has all laft prestacks as objects.

5.4.1. Consider the category PreStklaft, and the three classes of morphisms

indinfsch, all, indinfsch & ind-proper,

where ‘indinfsch’ stands for the class of ind-inf-schematic morphisms, and ‘ind-
proper’ for the class of morphisms that are ind-proper.

Consider the tautological embedding

indinfSchlaft ↪ PreStklaft .

It satisfies the conditions of Volume I, Chapter 8, Theorem 6.1.5, with respect
to the classes

(all,all, ind-proper)→ (indinfsch,all, indinfsch & ind-proper).

Now, consider the functor

IndCohCorr(indinfSchlaft)ind-proper
all;all

∶ Corr(indinfSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont ,

and the corresponding functor

IndCoh!
indinfSchlaft

∶ (indinfSchlaft)
op
→ DGCatcont .

Clearly, the map

IndCoh!
PreStklaft

→ RKE(indinfSchlaft)op↪(PreStklaft)op(IndCoh!
indinfSchlaft

)

is an isomorphism.

5.4.2. Hence, by Volume I, Chapter 8, Theorem 6.1.5, from Theorem 5.1.4, we
obtain the following theorem, which is for us the ultimate version of the formalism
of ind-coherent sheaves:

Theorem 5.4.3. There exists a uniquely defined functor

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

∶ Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont ,

equipped with isomorphisms

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

∣(PreStklaft)op ≃ IndCoh!
PreStklaft

and

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

∣Corr(indinfSchlaft)ind-proper
all;all

≃ IndCohCorr(indinfSchlaft)ind-proper
all;all

,

where the latter two isomorphisms are compatible in a natural sense.

150 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

5.4.4. The concrete meaning of Theorem 5.4.3 is analogous to that of Theo-
rem 5.1.4, with the difference that we can now consider the direct image functor
f IndCoh
∗ when f is an ind-inf-schematic map

f ∶ X1 → X2,

with X1,X2 being objects of PreStklaft, and not necessarily ind-inf-schemes. The
functor f IndCoh

∗ satisfies base change for Cartesian squares

X
′
1

g1
ÐÐÐÐ→ X1

f ′
×
×
×
Ö

×
×
×
Ö

f

X
′
2

g2
ÐÐÐÐ→ X2,

with vertical maps being ind-inf-schematic:

(f ′)IndCoh
∗ ○ g!

1 → g!
2 ○ f

IndCoh
∗ .

Moreover, for f ind-inf-schematic and ind-proper, the functor f IndCoh
∗ is the

left adjoint of f !. In this case the base change isomorphism comes by adjunction
from

(f ′)!
○ g!

2 ≃ g
!
1 ○ f

!.

If g2 is ind-inf-schematic and ind-proper, the base change isomorphism comes
by adjunction from

f IndCoh
∗ ○ (g1)

IndCoh
∗ ≃ (f ′)IndCoh

∗ ○ (g2)
IndCoh
∗ .

5.5. Open embeddings. The formalism of Theorem 5.4.3 contains the (f IndCoh
∗ , f !

)

adjunction for f proper.

However, it does not explicitly contain the (f !, f IndCoh
∗)-adjunction for f which

is an open embedding. In this subsection we will show that the latter follows
automatically.

5.5.1. Let IndCohCorr(PreStklaft)indinfsch;all
denote the restriction of the functor

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

to

Corr(PreStklaft)indinfsch;all ⊂ Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all .

We regard it as a functor of (∞,1)-categories

Corr(PreStklaft)indinfsch;all → DGCatcont .

Consider the (∞,2)-category Corr(PreStklaft)
open
indinfsch;all.

6. SELF-DUALITY AND MULTIPLICATIVE STRUCTURE 151

5.5.2. We claim:

Proposition 5.5.3. There exists a unique extension of IndCohCorr(PreStklaft)indinfsch;all

to a functor

IndCohCorr(PreStklaft)open
indinfsch;all

∶ Corr(PreStklaft)
open
indinfsch;all → (DGCat2 -Cat

cont)
2 -op

.

Proof. We start with the three classes of 1-morphisms in PreStklaft

indinfsch, all, isom,

and enlarge it to

indinfsch, all, open .

This enlargement satisfies the assumptions of Volume I, Chapter 8, Sect. 6.1.1.
Hence, if the functor IndCohCorr(PreStklaft)open

indinfsch;all
exists, then it is unique.

Furthermore, to prove the existence, it is sufficient to do so for the pair of
categories

Corr(PreStklaft)open;all ⊂ Corr(PreStklaft)
open
open;all,

and the functor

IndCohCorr(PreStklaft)open;all
∶= IndCohCorr(PreStklaft)indinfsch;all

∣Corr(PreStklaft)open;all.

To construct the sought-for functor

IndCohCorr(PreStklaft)open
open;all

∶ Corr(PreStklaft)
open
open;all → (DGCat2 -Cat

cont)
2 -op

we proceed as follows.

We start with the functor

IndCohCorr(Schaft)open;all
∶ Corr(Schaft)open;all → DGCat2 -Cat

cont ,

and we recall that by construction (see Volume I, Chapter 5, Sect. 2.1.2), it extends
to a functor

IndCohCorr(Schaft)open
open;all

∶ Corr(Schaft)open;all → (DGCat2 -Cat
cont)

2 -op
.

Now, the functor

IndCohCorr(PreStklaft)open
open;all

is obtained from IndCohCorr(Schaft)open
open;all

by Volume I, Chapter 8, Theorem 6.1.5

for the functor

Schaft ↪ PreStklaft .

�

6. Self-duality and multiplicative structure of IndCoh on ind-inf-schemes

In this section we will show how the formalism of IndCoh as a functor out of
the category of correspondences of ind-inf-schemes defines Serre duality on ind-inf-
schemes. This is parallel to Volume I, Chapter 5, Sect. 4.

6.1. The multiplicative structure. In this subsection we discuss a canonical
symmetric monoidal structure on IndCoh.

152 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

6.1.1. Recall that the functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)
proper
all;all → DGCat2 -Cat

cont

is endowed with a symmetric monoidal structure, see Volume I, Chapter 5, Theorem
4.1.2. Hence, the same is true for its restriction

IndCohCorr(Schaft)nil-closed
all;all

∶ Corr(Schaft)
nil-closed
all;all → DGCat2 -Cat

cont .

Applying Volume I, Chapter 9, Proposition 3.3.3, we obtain:

Corollary 6.1.2. The functor

IndCohCorr(indinfSchlaft)nil-closed
all;all

∶ Corr(indinfSchlaft)
nil-closed
all;all → DGCat2 -Cat

cont

carries a unique symmetric monoidal structure extending one on IndCohCorr(Schaft)nil-closed
all;all

.

Applying Volume I, Chapter 9, Proposition 3.1.2, from Corollary 6.1.2, we
obtain:

Corollary 6.1.3. The functor

IndCoh(indinfSchlaft)ind-proper
all;all

∶ Corr(indinfSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont

carries a unique symmetric monoidal structure extending one on IndCohCorr(Schaft)proper
all;all

.

6.2. Duality. In this subsection we show that the symmetric monoidal structure
on IndCoh gives rise to Serre duality. The idea is that an ind-inf-scheme X is
canonically self-dual as an object of the category of correspondences equipped with
its natural monoidal structure.

6.2.1. By restricting the functor IndCoh(indinfSchlaft)ind-proper
all;all

to

Corr(indinfSchlaft)all;all ⊂ Corr(indinfSchlaft)
ind-proper
all;all ,

we obtain a symmetric monoidal structure on the functor

IndCohCorr(indinfSchlaft)all;all
∶ Corr(indinfSchlaft)all;all → DGCatcont .

As in Volume I, Chapter 5, Theorem 4.2.5, we deduce:

Theorem 6.2.2. We have a commutative diagram of functors

(Corr(indinfSchlaft)all;all)
op

(IndCoh(indinfSchlaft)all;all
)op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatdualizable
cont)

op

$
×
×
×
Ö

×
×
×
Ö

dualization

Corr(indinfSchlaft)all;all

IndCoh(indinfSchlaft)all;all

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ DGCatdualizable
cont .

As in Volume I, Chapter 5, Sect. 4.2.2, the functor $ is the natural anti-
equivalence on the category Corr(indinfSchlaft)all;all corresponding to interchanging
the roles of vertical and horizontal arrows. The right vertical arrow is the functor
of passage to the dual category.

6. SELF-DUALITY AND MULTIPLICATIVE STRUCTURE 153

6.2.3. Let us explain the concrete meaning of Theorem 6.2.2. This is parallel to
Volume I, Chapter 5, Sect. 4.2.6.

For an individual object X ∈ indinfSchlaft it says that there is a natural self-
duality data on the category IndCoh(X), i.e.,

(6.1) DSerre
X ∶ IndCoh(X)

∨
≃ IndCoh(X).

Furthermore, for a map f ∶ X1 → X2, there is a canonical identification

(6.2) f !
≃ (f IndCoh

∗)
∨.

6.2.4. Below we shall write down explicitly the unit and counit functors

εX ∶ IndCoh(X)⊗ IndCoh(X)→ Vect and µX ∶ Vect→ IndCoh(X)⊗ IndCoh(X)

that define the identification (6.1).

Remark 6.2.5. We observe that the fact that the functors εX and µX do indeed
define an isomorphism (6.1) is easy to check directly. I.e., this does not require the
full statement of Theorem 6.2.2.

6.2.6. The pairing

εX ∶ IndCoh(X)⊗ IndCoh(X)→ Vect

is the composition

IndCoh(X)⊗ IndCoh(X) ≃ IndCoh(X ×X)
∆!

Ð→ IndCoh(X)

(pX)IndCoh
∗

Ð→ Vect .

Here pX is the map X → pt, so (pX)
IndCoh
∗ ≃ ΓIndCoh

(X ,−). The first map is
an isomorphism due to the fact that IndCoh(X) is dualizable as a DG category.

The unit functor

µX ∶ Vect→ IndCoh(X)⊗ IndCoh(X)

is the composition

Vect
p!
X
Ð→ IndCoh(X)

∆IndCoh
∗

Ð→ IndCoh(X ×X) ≃ IndCoh(X)⊗ IndCoh(X).

One can explicitly verify that (εX , µX) specified above define an identification

IndCoh(X)
∨
≃ IndCoh(X)

by calculating the composition

IndCoh(X)
Id⊗µX
Ð→ IndCoh(X)⊗ IndCoh(X)⊗ IndCoh(X)

εX⊗Id
Ð→ IndCoh(X).

Indeed, it can be calculated via the commutative diagram

IndCoh(X)
∆!

←ÐÐÐÐ IndCoh(X ×X)

p!
1

←ÐÐÐÐ IndCoh(X)

∆IndCoh
∗

×
×
×
Ö

×
×
×
Ö

(id×∆)IndCoh
∗

IndCoh(X ×X) ←ÐÐÐÐ

(∆×id)!
IndCoh(X ×X ×X)

(p2)IndCoh
∗

×
×
×
Ö

IndCoh(X),

154 3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

and the base chase isomorphism (5.1) isomorphs it with the identity functor. The
other composition is calculated in the same way by symmetry.

6.2.7. For the sake of completeness, let us explicitly perform the calculation that
defines an identification (6.2).

We can think of both functors as given by objects of

IndCoh(X1)⊗ IndCoh(X2) ≃ IndCoh(X1 ×X2)

and diagram chase shows that both are given by the object

(Γf)
IndCoh
∗ (ωX1),

where Γf ∶ X1 → X1 ×X2 is the graph of f , and

ωX1 ∶= p
!
X1

(k).

6.2.8. The datum of self-duality

DSerre
X ∶ IndCoh(X)

∨
≃ IndCoh(X)

is equivalent to that of an equivalence

(IndCoh(X)
c
)
op
→ IndCoh(X)

c.

We shall refer to the above functor as ‘Serre duality’ on X , and denote it by
DSerre
X .

From Theorem 5.1.4, isomorphism (6.2) and Volume I, Chapter 1, Proposition
7.3.5, we obtain:

Corollary 6.2.9. For an ind-proper map f ∶ X1 → X2 of ind-inf-schemes, we
have a commutative diagram

(IndCoh(X1)
c
)
op

DSerre
X1

ÐÐÐÐ→ IndCoh(X1)
c

(f IndCoh
∗)op

×
×
×
Ö

×
×
×
Ö

f IndCoh
∗

(IndCoh(X2)
c
)
op

DSerre
X2

ÐÐÐÐ→ IndCoh(X2)
c.

6.3. Convolution categories and algebras.
6.3.1. As in Volume I, Chapter 5, Sect. 4.1.5, from Corollary 6.1.3 we obtain that
the functor

IndCohCorr(PreStklaft)indinfsch&ind-proper
indinfsch;all

∶ Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont

also carries a canonical right-lax symmetric monoidal structure.

6.3.2. This allows to extend the formalism in Volume I, Chapter 5, Sect. 5 by
replacing

–the class of schematic quasi-compact maps by the class of ind-inf-schematic
maps;

-the class of schematic and proper maps by the class of maps that are ind-inf-
schematic and ind-proper.

CHAPTER 4

An appliction: crystals

Introduction

In this Chapter we will establish one of the goals indicated in the Introduction
to Part I: we will show that inf-schemes give a common framework for ind-coherent
sheaves and D-modules. In particular, we will show that the induction and forgetful
functors

(0.1) indX ∶ IndCoh(X)⇄ Dmod(X) ∶ oblvX

interact with the direct and inverse image functors in the expected way.

0.1. Let’s do D-modules! The usual definition of the category of D-modules on
a smooth affine scheme X is as the category

DiffX -mod,

where DiffX is the (classical) ring of Grothendieck operations.

This approach to D-modules is very explicit, and is indispensable for concrete
applications (e.g. to define regular D-modules and study the notion of holonomic-
ity). However, this approach is not particularly convenient for setting up the theory
from the point of view of higher category theory.

Here are some typical issues that become painful in this approach.

0.1.1. One often encounters the question of how to define the category of D-
modules on a singular scheme X? The usual answer is that we first assume that
X is affine, and choose an embedding X ↪ Y , where Y is smooth. Now, define
Dmod(X) to be Dmod(Y)X , i.e., the full subcategory of Dmod(Y) consisting of
objects with set-theoretic support on X.

Then, using Kashiwara’s lemma, one shows that this construction is canonically
independent of the choice of Y . For general X, one considers an affine Zariski cover
and glues the corresponding categories.

Note, however, that the words ‘choose an embedding X ↪ Y ’ mean that in the
very definition, we appeal to resolutions. From the homotopical point of view, this
exacts a substantial price and is too cumbersome to be convenient.

0.1.2. Another example is the definition of the direct image functor. For a mor-
phism f ∶X → Y between smooth affine schemes, one introduces an explicit object

DiffX,Y ∶ (DiffY ⊗Diffop
X)-mod,

which defines the desired functor

DiffX -mod→ DiffY -mod.

155

156 4. AN APPLICTION: CRYSTALS

When X and Y are not necessarily smooth, one again embeds this situation into
one where X and Y are smooth. When X and Y are non-affine, this is performed
locally on X and Y .

All of this can be made to work for an individual morphism: we can prove
the proper adjunction between pullbacks and pushforwards, and the base change
isomorphism. However, it is not clear how to establish the full functoriality of the
category D-mod in this way; namely, as a functor out of the category of correspon-
dences.

0.1.3. Another layer of complexity (=homotopical nuisance) arises when one wants
to construct D-modules together with the adjoint pair (0.1).

0.2. D-modules via crystals. In this book, we take a different approach to the
theory of D-modules. We define the category of D-modules as crystals, establish all
the needed functorialities, and then in the case of smooth schemes and morphisms
between them identify the resulting categories and functors with the classical ones
from the theory of D-modules.

0.2.1. By definition, for a laft prestack Z, the category of crystals on Z is

Crys(Z) ∶= IndCoh(ZdR),

where ZdR is the de Rham prestack of Z.

Let f ∶ Z1 → Z2 be a map of laft prestacks. Then !-pullback on IndCoh defines
a functor

f !
dR ∶ Crys(Z2)→ Crys(Z1).

This is the pullback functor for crystals.

0.2.2. Assume now that f is ind-nil-schematic, which means that the correspond-
ing morphism red

Z1 →
red
Z2 is ind-schematics. Then one (easily) sees that the

resulting morphism

(fdR) ∶ (Z1)dR → (Z2)dR

is ind-inf-schematic. Now, using Chapter 3, Sect. 4, we define the functor

fdR,∗ ∶ Crys(Z1)→ Crys(Z2)

to be the functor (fdR)∗. This is the de Rham direct image functor.

0.2.3. Taking Z1 = Z (so that red
Z is an ind-scheme) and Z2 = pt, we obtain the

functor of de Rham sections

ΓdR(Z,−) ∶ Crys(Z)→ Vect .

Moreover, the above constructions automatically extend to the data of a functor
out of a suitable (∞,2)-category of correspondences. Namely, we consider the
category PreStklaft equipped with the following classes of functors:

–‘horizontal’ maps are all maps in PreStklaft;

–‘vertical’ maps are those maps f that redf is ind-schematic (we call them ind-nil-
schematic);

–‘admissible’ maps are those vertical maps that are also ind-proper.

One shows that the assignment Z ↦ ZdR defines a functor

Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → Corr(PreStklaft)

indinfsch & ind-proper
indinfsch;all .

INTRODUCTION 157

Composing with the functor

IndCoh(PreStklaft)indinfsch&ind-proper
indinfsch;all

∶ Corr(PreStklaft)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont ,

we obtain a functor

CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

∶ Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont .

The above functor CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

is the desired expression

of functoriality of the assignment

Z ↦ Crys(Z).

0.2.4. Now suppose that Z ∈ PreStklaft admits deformation theory. One shows
that in the case the tautological map

pdR,Z ∶ Z → ZdR

is an inf-schematic nil-isomorphism. Hence, by Chapter 3, Prop. 3.1.2, the functor

p!
dR,Z ∶ Crys(Z)→ IndCoh(Z)

admits the left adjoint.

Thus, we obtain the desired adjoint pair:

inddR,Z ∶ IndCoh(Z)⇄ Crys(Z) ∶ oblvdR,Z .

0.2.5. But what does this have to do with D-modules? The basic observation, essen-
tially due to Grothendieck1, is that for a smooth scheme X, the category Crys(X),
together with the forgetful functor

ΨX ○ oblvdR,X ∶ Crys(X)→ QCoh(X),

is canonically equivalent to the category of right D-modules, together with its tau-
tological forgetful functor to QCoh(X).

We describe this identification in Sect. 4 of this Chapter. We also show that
the functors on the category of crystals (direct and inverse image for a map f ∶X →
Y) described above map to the corresponding functors for D-modules under this
identification.

This is thus our ansatz to the construction of the theory of D-modules: instead
of developing the theory of D-modules directly, we develop the theory of crystals,
and then identity it with D-modules when D-modules are conveniently defined;
namely, in the case of smooth schemes.

0.3. What else is done in this chapter?

1We learned it from A. Beilinson.

158 4. AN APPLICTION: CRYSTALS

0.3.1. In Sect. 1 we introduce the category of crystals Crys(Z), where Z ∈ PreStklaft.

The key observation here is the following: let f ∶ Z1 → Z2 be a map between
prestacks such that the induced map

red
Z1 →

red
Z2

is (ind)-schematic. Then we show that the resulting map

(Z1)dR → (Z2)dR

is (ind)-inf-schematic.

This observation, along with the fact that pushforward is defined on IndCoh
for (ind)-nil-schematic morphisms, is what makes the theory work. I.e., this is the
framework that allows to treat the de Rham pushfoward (in particular, de Rham
(co)homology) on the same footing as the O-module pushforward (in its IndCoh
variant).

We then establish some properties, expected from the theory of D-modules:

(i) For a closed embedding i ∶ Y ↪ Z, the functor idR,∗ ∶ IndCoh(Y) → IndCoh(Z)

is fully faithful;

(ii) If Z is an (ind)-nil-scheme, the category Crys(Z) is compactly generated and
has a reasonably behaved t-structure.

0.3.2. In Sect. 2 we apply the results of Chapter 3, Sect. 5 and 6 and construct
Crys as a functor out of the category of correspondences.

We show that when evaluated on ind-nil-schemes, this gives rise to the operation
of Verdier duality.

0.3.3. In Sect. 3 we study the functor of forgetting the crystal structure:

oblvdR,Z ∶ Crys(Z)→ IndCoh(Z),

which, in our framework, is just the pullback functor for the morphism

pdR,Z ∶ Z → ZdR.

The key observation is that if Z admits deformation-theory, then the map
pdR,Z is inf-schematic. Hence, in this case the functor oblvdR,Z admits a left

adjoint, given by (pdR,Z)
IndCoh
∗ . This left adjoint, denoted inddR,Z , is the functor

of induction from ind-coherent sheaves to crystals.

When Z =X is a smooth affine scheme, under the identification

Crys(X) ≃ (Diffop
X)-mod,

the functor inddR,Z corresponds to

F ↦ F ⊗
OX

DiffX .

We show that if Z is an ind-scheme, then the morphism pdR,Z is ind-schematic.
We use this fact to deduce that the functor inddR,Z is t-exact.

INTRODUCTION 159

0.3.4. In Sect. 3.3, we develop the theory of crystals relative to a given prestack
Y. Namely, for Z over Y, we set

Z/YdR ∶= ZdR ×
YdR

Y

and we set
/YCrys(Z) ∶= IndCoh(Z/YdR).

When Z = X and Y = Y are smooth affine schemes, and the map X → Y is
smooth, category /YCrys(Z) identifies with

(DiffX/Y)
op-mod,

where DiffX/Y is the (classical) ring of vertical differential operators (i.e., the sub-
ring of DiffX consisting of elements that commute with functions on Y).

If Z admits deformation theory relative to Y, then the morphism

p/YdR,Z ∶ Z → Z/YdR

is again inf-schematic, and hence the forgetful functor

(p/YdR,Z)
!
∶
/YCrys(Z)→ IndCoh(Z)

admits a left adjoint, given by (p/YdR,Z)
IndCoh
∗ .

0.3.5. In Sect. 4 we show how to identify the theory of crystals with D-modules
in the case of smooth schemes. Our exposition here is not self contained: we make
frequent references to [GaRo2].

We first consider the case of left D-modules, and we show that the category
Crysl(X) of left crystals on a smooth affine scheme X, defined as QCoh(XdR),
identifies with DiffX -mod.

We then show that the category of right crystals (i.e., the usual category of
crystals)

Crysr(X) ∶= Crys(X) ∶= IndCoh(XdR)

identifies with (DiffX)
op-mod.

Next, we show that the functor

ΥXdR
∶ QCoh(XdR)→ IndCoh(XdR)

that identifies Crysl(X) with Crysr(X) corresponds under the above equivalences

(0.2) Crysl(X) ≃ DiffX -mod and Crysr(X) ≃ (DiffX)
op-mod

with the functor

Crysl(X)→ Crysr(X), M↦M ⊗ det(T ∗(X))[dim(X)].

Finally, we show that for a map between f ∶ X → Y between smooth schemes,
under the identifications (0.2), the functor

f▲,l ∶ DiffY -mod→ DiffX -mod

from the theory of D-modules corresponds to pullback

f∗dR ∶ QCoh(YdR)→ QCoh(XdR),

and the functor

fDmod,∗ ∶ DiffX -mod→ DiffY -mod

160 4. AN APPLICTION: CRYSTALS

from the theory of D-modules corresponds to push-forward

fdR,∗ ∶ QCoh(XdR)→ QCoh(YdR).

1. Crystals on prestacks and inf-schemes

In this section we will reap the fruits of the work done in Chapter 3. Namely,
we will show how the theory of IndCoh gives rise to the theory of crystals.

1.1. The de Rham functor and crystals: recollections. The category Crys(X)

of crystals on a prestack X is defined to be IndCoh on the corresponding prestack
XdR. In this subsection we recall the functor X ↦ XdR and study its basic proper-
ties.

1.1.1. For Z ∈ PreStk, we denote by ZdR the corresponding de Rham prestack,
defined as

Maps(S,ZdR) ∶= Maps(redS,Z),

for S ∈ Schaff .

For a morphism f ∶ Z
1
→ Z

2, let fdR ∶ Z
1
dR → Z

2
dR denote the corresponding

morphism between deRham prestacks.

1.1.2. Note that the functor dR commutes both with limits and colimits.

Also, note that

ZdR ≃ (
red
Z)dR.

So, if a morphism f ∶ Z1 → Z2 is a nil-isomorphism (i.e., red
Z1 →

red
Z1 is an

isomorphism), then (Z1)dR → (Z2)dR is an isomorhism.

1.1.3. We claim:

Proposition 1.1.4. The functor dR takes PreStklaft to PreStklaft.

Proof. Let Z be an object of PreStklaft. We need to show that ZdR satisfies:

● It is convergent;
● For every n, the truncation ≤n

Z belongs to ≤nPreStklft.

The convergence of ZdR is obvious. To show that ≤n
Z ∈

≤nPreStklft, it suffices
to show that ZdR takes filtered limits in Schaff to colimits in Spc. However, this
follows from the fact that the functor

S ↦ redS, Schaff
→

redSchaff

preserves filtered limits, and the fact that red
Z ∈

redPreStklft.
�

1.2. Crystals. In this subsection we introduce the category of crystals.

1.2.1. Composing the functor dR ∶ PreStklaft → PreStklaft with

IndCoh!
PreStklaft

∶ (PreStklaft)
op
→ DGCatcont,

we obtain a functor denoted by

Crys!
PreStklaft

∶ (PreStklaft)
op
→ DGCatcont .

This is the functor which is denoted CrysrPreStklaft
in [GaRo2, Sect 2.3.2].

1. CRYSTALS ON PRESTACKS AND INF-SCHEMES 161

1.2.2. For Z ∈ PreStklaft we shall denote the value of Crys!
PreStklaft

on Z by

Crys(Z). For a morphism f ∶ Z1 → Z2 in PreStklaft, we shall denote by f !
dR

the resulting functor

Crys(Z2)→ Crys(Z1).

Note that if a morphism f ∶ Z1 → Z2 is a nil-isomorphism, then

f !
dR ∶ Crys(Z2)→ Crys(Z1)

is an equivalence.

1.2.3. For Z ∈ PreStk, we let pdR,Z denote the tautological projection:

Z → ZdR.

The map pdR,Z gives rise to a natural transformation of functors

oblvdR ∶ Crys!
PreStklaft

→ IndCoh!
PreStklaft

.

For a map f ∶ Z1 → Z2, we have a commutative square of functors:

Crys(Z1)
oblvdR,Z1
ÐÐÐÐÐÐ→ IndCoh(Z1)

f !
dR

Õ
×
×
×

Õ
×
×
×

f !

Crys(Z2)
oblvdR,Z2
ÐÐÐÐÐÐ→ IndCoh(Z2).

1.2.4. Finally, we make the following observation:

Proposition 1.2.5. For Z ∈ PreStklaft, the functor

Crys(Z)→ lim
Z∈(C/Z)op

Crys(Z)

is an equivalence, where C is any of the following categories:

redSchaff
ft ,

clSchaff
ft ,

<∞Schaff
ft , Schaff

aft,
redSchft,

clSchft,
<∞Schft, Schaft .

Proof. It is enough to show that the functor

dR ∶ PreStklaft → PreStklaft

is isomorphic to the left Kan extension of its restriction to C ⊂ PreStklaft for C as
above. It is sufficient to consider the case of C =

redSchaff
ft .

First, we note that the functor dR commutes with colimits. This implies that
dR is isomorphic to the left Kan extension of its restriction to <∞Schaff

aft. Hence, it
suffices to show that the functor

dR ∶ Schaff
aft → PreStklaft

is isomorphic to the left Kan extension of its restriction to redSchaff
ft .

In other words, we have to show that given Z ∈ Schaff
aft, S ∈ Schaff

aft and a map

redS → Z,

the category of its factorizations as

redS → Z ′
→ Z

with Z ′
∈

redSchaff , is contractible.

162 4. AN APPLICTION: CRYSTALS

However, the latter is obvious as the above category has a final object, namely,
Z ′

∶=
redZ.

�

1.3. Crystals and (ind)-nil-schemes. In this subsection we introduce the class
of prestacks that we call (ind)-nil-schemes, and study the category of crystals on
such prestacks. (Ind)-nil-schemes play the same role vis-à-vis Crys as (ind)-inf-
schemes do for IndCoh.

1.3.1. Consider the full subcategories

indnilSchlaft ∶= PreStklaft ×
redPreStklft

redindSch ⊂ PreStklaft

and
nilSchlaft ∶= PreStklaft ×

redPreStklft

redSch ⊂ PreStklaft,

where PreStklaft →
redPreStklft is the functor Z ↦ red

Z.

In other words, Z belongs to indnilSchlaft (resp., nilSchlaft) if and only if red
Z

is a reduced ind-scheme (resp., scheme).

For example, we have

infSchlaft ⊂ nilSchlaft and indinfSchlaft ⊂ indnilSchlaft .

We shall refer to objects of indnilSchlaft (resp., nilSchlaft) as ind-nil-schemes
(resp., nil-schemes).

1.3.2. We claim:

Lemma 1.3.3. The functor dR takes objects of indnilSchlaft (resp., nilSchlaft)
to indinfSchlaft (resp., infSchlaft).

Proof. We have
red

(ZdR) =
red
Z.

Now, we claim that for any Z ∈ PreStk, the corresponding ZdR admits deformation
theory. In fact, it admits an ∞-connective deformation theory: all of its cotangent
spaces are zero.

�

1.3.4. Recall from Chapter 2, Definitions 1.6.5(a), 1.6.7(c) and 1.6.11(c), the no-
tions of (ind)-schematic and (ind)-proper maps of prestacks, as well as (ind)-closed
embeddings of prestacks.

Definition 1.3.5.

(a) We shall say that a map of prestacks is (ind)-nil-schematic if the map of the
corresponding reduced prestacks is (ind)-schematic.

(b) We shall say that a map of prestacks is an nil-closed-embedding(ind)-nil-closed
embedding if the map of the corresponding reduced prestacks is an ind-closed em-
bedding.

Recall the notion of an (ind)-inf-schematic map of prestacks, see Chapter 2,
Definitions 3.1.5. We have:

Corollary 1.3.6. The functor dR takes (ind)-nil-schematic maps in PreStklaft

to (ind)-inf-schematic maps.

1. CRYSTALS ON PRESTACKS AND INF-SCHEMES 163

Proof. For a map of prestacks f ∶ Z1 → Z2 and S ∈ (Schaff
aft)/(Z2)dR

, the
Cartesian product

S ×
(Z2)dR

(Z1)dR

identifies with
S ×
SdR

(
redS ×

Z2

Z1)dR.

Now, we use Lemma 1.3.3 and the fact that the subactegory indinfSchlaft is pre-
served by finite limits.

�

1.3.7. We claim:

Lemma 1.3.8. Let f ∶ Z1 → Z2 be an ind-nil-proper map in PreStklaft. Then:

(a) The functor fdR,∗ ∶ Crys(Z1) → Crys(Z2), left adjoint to f !
dR, is well-defined,

and satisfies base change with respect to !-pullbacks.

(b) If f is an ind-nil-closed embedding, then fdR,∗ is fully faithful.

Proof. Point (a) follows from Corollary 1.3.6 and Chapter 3, Proposition
3.2.4.

To prove point (b), we need to show that the unit of the adjunction

IdCrys(Z1) → f !
dR ○ fdR,∗

is an isomorphism.

Consider the Cartesian square:

Z1 ×
Z2

Z1
p1

ÐÐÐÐ→ Z1

p2

×
×
×
Ö

×
×
×
Ö

Z1 ÐÐÐÐ→ Z2.

The above unit of the adjunction equals the composite map

IdCrys(Z1) ≃ (p2)dR,∗○(∆Z1)dR,∗○(∆Z1)
!
dR○(p1)

!
dR → (p2)dR,∗○(p1)

!
dR → f !

dR○fdR,∗,

where ∆Z1 is the diagonal map

Z1 → Z1 ×
Z2

Z1,

and second arrow is the co-unit of the ((∆Z1)dR,∗, (∆Z1)
!
dR)-adjunction.

Now, by base change,

(p2)dR,∗ ○ (p1)
!
dR → f !

dR ○ fdR,∗

is an isomorphism. Hence, it is enough to show that

(p2)dR,∗ ○ (∆Z1)dR,∗ ○ (∆Z1)
!
dR ○ (p1)

!
dR → (p2)dR,∗ ○ (p1)

!
dR

is an isomorphism as well. However, the map

(∆Z1)dR,∗ ○ (∆Z1)
!
dR → IdCrys(Z1 ×

Z2
Z1)

is an isomorphism, since (∆Z1)
!
dR is an equivalence (because the map ∆Z1 is a

nil-isomorphism).
�

164 4. AN APPLICTION: CRYSTALS

1.4. The functor of de Rham direct image. In this subsection we develop the
functor of de Rham direct image (a.k.a., pushforward) for crystals.

1.4.1. Recall the functor

IndCohindinfSchlaft
∶ indinfSchlaft → DGCatcont,

that sends a morphism f to the functor f IndCoh
∗ , see Chapter 3, Sect. 4.3.

Precomposing it with the functor

dR ∶ indnilSchlaft → indinfSchlaft

we obtain a functor

(1.1) CrysindnilSchlaft
∶ indnilSchlaft → DGCatcont .

1.4.2. For a morphism f ∶ Z1 → Z2 in indnilSchlaft we shall denote the resulting
functor

Crys(Z1)→ Crys(Z2)

by fdR,∗.

In other words,

fdR,∗ = (fdR)
IndCoh
∗ .

1.4.3. From Chapter 3, Corollary 5.2.3, we obtain:

Corollary 1.4.4. The restriction of the functor CrysindnilSchlaft
to the 1-full

subcategory

(indnilSchlaft)ind-proper ⊂ indnilSchlaft

is obtained by passing to left adjoints from the restriction functor Crys!
indnilSchlaft

to

((indnilSchlaft)ind-proper)
op

⊂ (indnilSchlaft)
op.

Remark 1.4.5. Note that we have used the notation fdR,∗ when f is ind-proper

earlier (in Lemma 1.3.8), to denote the left adjoint of f !
dR. The above corollary

implies that the notations are consistent.

1.5. Crystals on ind-nil-schemes as extended from schemes. The material
of this subsection will not be used in the sequel and is included for the sake of
completeness. We show that the theory of Crys on ind-nil-schemes can be obtained
by extending the same theory on schemes.

1.5.1. Consider the category redSchft, and consider the functors

Crys!
redSchft

∶ (
redSchft)

op
→ DGCatcont

and

CrysredSchft
∶

redSchft → DGCatcont .

From Proposition 1.2.5 we obtain:

Corollary 1.5.2. The natural map

Crys!
indnilSchlaft

→ RKE(redSchft)op↪(indnilSchlaft)op(Crys!
redSchft

)

is an isomorphism.

We are going to prove the following:

1. CRYSTALS ON PRESTACKS AND INF-SCHEMES 165

Proposition 1.5.3. The natural map

LKEredSchft↪indnilSchlaft
(CrysredSchft

)→ CrysindnilSchlaft

is an isomorphism.

The rest of this subsection is devoted to the proof of this proposition.

1.5.4. Consider the 1-full subcategory of indnilSchlaft equal to

(indnilSchlaft)nil-closed = PreStklaft ×
redPreStklft

(
redindSchlaft)closed.

I.e., we restrict 1-morphisms to be nil-closed maps.

It is enough to show that the map in Proposition 1.5.3 becomes an isomorphism
when restricted to the above subcategory. This follows by Chapter 3, Corollary 4.1.4
from Proposition 1.4.4 and the following statement:

Proposition 1.5.5.

(a) The map

((RKE(redSchft)op↪(indnilSchlaft)op) (Crys!
redSchft

)) ∣((indnilSchlaft)nil-closed)op →

→ RKE((redSchft)closed)op↪((indnilSchlaft)nil-closed)op(Crys!
redSchft

∣((redSchft)closed)op)

is an isomorphism.

(b) The map

LKE(redSchft)closed↪(indnilSchlaft)nil-closed
(CrysredSchft

∣(redSchft)closed
)→

→ (LKEredSchft↪indnilSchlaft
(CrysredSchft

)) ∣(indnilSchlaft)nil-closed

is an isomorphism.

Proof. Follows from the fact that for

Z ∈ indnilSchlaft,

the category

{f ∶ Z → Z, Z ∈
redSchft, f is nil-closed}

is cofinal in

{f ∶ Z → Z, Z ∈
redSchft},

by Chapter 2, Corollary 1.7.5(b)
�

1.6. Properties of the category of crystals on (ind)-nil-schemes. In this
subsection we study properties of the category Crys(Z) on a given object Z ∈

indnilSchlaft.

166 4. AN APPLICTION: CRYSTALS

1.6.1. We claim:

Proposition 1.6.2. The functor

Crys(Z)→ lim
f ∶Z→Z

Crys(Z)

is an equivalence, where the limit is taken over the index ∞-category

{f ∶ Z → Z, Z ∈
redSchft, f is nil-closed}.

For every f ∶ Z → Z as above, the corresponding functor

fdR,∗ ∶ Crys(Z)→ Crys(Z)

is fully faithful.

Proof. The first assertion follows from Proposition 1.2.5 for C =
redSchaff

ft and
Chapter 2, Corollary 1.7.5(b).

The second assertion follows from Lemma 1.3.8(b).
�

1.6.3. Compact generation. From Chapter 3, Corollary 3.2.2 and , we obtain:

Corollary 1.6.4. The category Crys(Z) is compactly generated.

From Proposition 1.6.2, combined with [DrGa2, Corollary 1.9.4 and Lemma
1.9.5], we have the following more explicit description of the subcategory

Crys(Z)
c
⊂ Crys(Z).

Corollary 1.6.5. Compact objects of Crys(Z) are those that can be obtained
as

fdR,∗(M), M ∈ Crys(Z)
c, Z ∈

redSchft and f is a nil-closed map Z → Z.

1.6.6. t-structure. According to Chapter 3, Sect. 3.4, the category Crys(Z) carries
a canonical t-structure. It is characterized by the following property:

M ∈ Crys(Z)
≥0
⇔ oblvdR,Z(M) ∈ IndCoh(Z)

≥0.

In addition, from Chapter 3, Corollary 3.4.4, we obtain:

Corollary 1.6.7.

(a) An object M ∈ Crys(Z) lies in Crys(Z)
≥0 if and only if for every nil-closed

map f ∶ Z → Z with Z ∈
redSchft we have

f !
dR(M) ∈ Crys(Z)

≥0.

(b) The category Crys(Z)
≤0 is generated under colimits by the essential images of

Crys(Z)
≤0 for f ∶ Z → Z with Z ∈

redSchft and f nil-closed.

2. Crystals as a functor out of the category of correspondences

In this section we extend the formalism of crystals to a functor out of the
category of correspondences.

2.1. Correspondences and the de Rham functor. In this subsection we show
that the de Rham functor turns (ind)-nil-schematic morphisms into (ind)-inf-schematic
ones.

2. CRYSTALS AS A FUNCTOR OUT OF THE CATEGORY OF CORRESPONDENCES 167

2.1.1. Recall that the functor dR commutes with Cartesian products. Combining
this observation with Lemma 1.3.6, we obtain that dR gives rise to a functor of
(∞,2)-categories:

Corr(dR)
ind-proper
indnilsch;all ∶ Corr(PreStklaft)

indnilsch & ind-proper
indnilsch;all → Corr(PreStklaft)

indinfsch & ind-proper
indinfsch;all .

Hence, from Chapter 3, Theorem 5.4.3 and Proposition 5.5.3, we obtain:

Theorem 2.1.2. There exists a canonically defined functor

CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

∶ Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont ,

equipped with an isomorphism

CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

∣(PreStklaft)op ≃ Crys!
PreStklaft

.

Furthermore, the restriction

CrysCorr(PreStklaft)indnilsch;all
∶= CrysCorr(PreStklaft)indnilsch&ind-proper

indnilsch;all
∣Corr(PreStklaft)indnilsch;all

uniquely extends to a functor

CrysCorr(PreStklaft)nil-open
indnilsch;all

∶ Corr(PreStklaft)
nil-open
indnilsch;all → (DGCat2 -Cat

cont)
2 -op

.

2.1.3. As in the case of Chapter 3, Theorem 5.5.3, the content of Theorem 2.1.2
is the existence of the functor

fdR,∗ ∶ Crys(Z1)→ Crys(Z2)

for ind-nil-schematic morphisms of prestacks f ∶ Z1 → Z2, and of the base change
isomorphisms compatible with proper and nil-open adjunctions. Namely, for a
Cartesian diagram of prestacks

Z
′
1

g1
ÐÐÐÐ→ Z1

f ′
×
×
×
Ö

×
×
×
Ö

f

Z
′
2

g2
ÐÐÐÐ→ Z2,

with f ind-nil-schematic, we have a canonical isomorphism

(2.1) f ′dR,∗ ○ g
!
1,dR

∼
→ g!

2,dR ○ fdR,∗.

Moreover, if f is ind-proper, then fdR,∗ is the left adjoint of f !
dR. Furthermore,

the isomorphism (2.1) is the one arising by adjunction if either fX or g2 is ind-
proper.

If f is a nil-open embedding (i.e., the map of the corresponding reduced prestacks
is an open embedding), then fdR,∗ is the right adjoint of f !

dR. Furthermore, the
isomorphism (2.1) is the one arising by adjunction if either fX or g2 is a nil-open
embedding.

168 4. AN APPLICTION: CRYSTALS

2.1.4. Now, let us restrict the functor CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

to

Corr(indnilSchlaft)
ind-proper
all;all ⊂ Corr(PreStklaft)

indnilsch & ind-proper
indnilsch;all .

We denote the resulting functor by CrysCorr(indnilSchlaft)ind-proper
all;all

. From Chap-

ter 3, Theorems 5.2.2 and 5.4.3 we obtain:

Corollary 2.1.5. The restriction of CrysCorr(indnilSchlaft)ind-proper
all;all

to

indnilSchlaft ⊂ Corr(indnilSchlaft)
ind-proper
all;all

identifies canonically with the functor CrysindnilSchlaft
of (1.1).

2.1.6. Further restricting along

Corr(nilSchaft)
proper
all;all → Corr(indnilSchlaft)

ind-proper
all;all ,

we obtain a functor

Crys(nilSchaft)proper
all;all

→ (DGCatcont)
2 -Cat

denoted by Crys(nilSchaft)proper
all;all

.

In particular, we obtain a functor

CrysnilSchaft
∶= Crys(Schaft)proper

all;all
∣nilSchaft

,

which is also isomorphic to

CrysindnilSchlaft
∣nilSchaft

.

2.2. The multiplicative structure of the functor of crystals. In this sub-
section we show how the formalism of crystals as a functor out of the category of
correspondences gives rise to Verdier duality.

2.2.1. Duality. From Chapter 3, Theorem 6.2.2, we obtain:

Theorem 2.2.2. We have a commutative diagram of functors

(Corr(indnilSchlaft)all;all)
op

(CrysCorr(indnilSchlaft)all;all
)op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatdualizable
cont)

op

$
×
×
×
Ö

×
×
×
Ö

dualization

Corr(indnilSchlaft)all;all

CrysCorr(indnilSchlaft)all;all

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ DGCatdualizable
cont .

2.2.3. Concretely, this theorem says that for Z ∈ indnilSchlaft there is a canonical
involutive equivalence

(2.2) DVerdier
Z ∶ Crys(Z)

∨
≃ Crys(Z),

and for a map f ∶ Z1 → Z2 in indnilSchlaft there is a canonical identification

f !
dR ≃ (fdR,∗)

∨.

2. CRYSTALS AS A FUNCTOR OUT OF THE CATEGORY OF CORRESPONDENCES 169

2.2.4. As in Chapter 3, Sect. 6.2.6, we can write the unit and counit maps

µZdR
∶ Vect→ Crys(Z)⊗Crys(Z) and εZdR

∶ Crys(Z)⊗Crys(Z)→ Vect

explicitly.

Namely, εZdR
is the composition

Crys(Z)⊗Crys(Z) ≃ Crys(Z ×Z)

∆!
Z.dR
Ð→ Crys(Z)

ΓdR(Z,−)
Ð→ Vect,

where

ΓdR(Z,−) ∶= (pZ)dR,∗,

and µZdR
is the composition

Vect
ωZdR
Ð→ Crys(Z)

(∆Z)dR,∗

Ð→ Crys(Z ×Z) ≃ Crys(Z)⊗Crys(Z).

2.2.5. Verdier duality. For Z ∈ indnilSchlaft, let DVerdier
Z denote the canonical equiv-

alence

(Crys(Z)
c
)
op
→ Crys(Z)

c,

corresponding to the isomorphism (2.2).

In other words,

DVerdier
Z = DSerre

ZdR
.

2.2.6. As a particular case of Chapter 3, Corollary 6.2.9, we obtain:

Corollary 2.2.7. Let f ∶ Z1 → Z2 be an ind-proper map in indnilSchlaft. Then
we have a commutative diagram:

(Crys(Z1)
c
)
op

DVerdier
Z1
ÐÐÐÐ→ Crys(Z1)

c

(fdR,∗)op
×
×
×
Ö

×
×
×
Ö

fdR,∗

(Crys(Z2)
c
)
op

DVerdier
Z2
ÐÐÐÐ→ Crys(Z2)

c.

In view of Corollary 1.6.5, the above corollary gives an expression of the Verdier
duality functor on Z ∈ indnilSchlaft in terms of that on schemes.

2.2.8. Convolution for crystals.

Returning to the entire (∞,2)-category Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all and

the corresponding functor

IndCohCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

,

we obtain, from Chapter 3, Sect. 6.3, that the functor

CrysCorr(PreStklaft)indnilsch&ind-proper
indnilsch;all

∶ Corr(PreStklaft)
indnilsch & ind-proper
indnilsch;all → DGCat2 -Cat

cont

carries a canonical right-lax symmetric monoidal structure.

As in Chapter 3, Sect. 6.3.2, we have:

(i) Given a Segal object R● of PreStklaft, with the target and composition maps
ind-nil-schematic, the category Crys(R) acquires a monoidal structure given by
convolution, and as such it acts on Crys(X) (here, as in Volume I, Chapter 5, Sect.
5.1.1, X =R

0 and R =R
1).

170 4. AN APPLICTION: CRYSTALS

(ii) If the composition map is ind-proper, then ωR ∈ Crys(R) acquires the structure
of an algebra in Crys(R). The action of this algebra on IndCoh(X), viewed as a
plain endo-functor, is given by

(pt)dR,∗ ○ (ps)
!
dR.

3. Inducing crystals

In this section we study the interaction between the functors IndCoh and Crys.

3.1. The functor of induction. In this subsection we show that the forgetful
functor

Crys(Z)→ IndCoh(Z)

admits a left adjoint, provided that Z is a prestack that admits deformation theory.

3.1.1. For an object Z ∈ PreStklaft consider the canonical map

pdR,Z ∶ Z → ZdR.

We claim:

Proposition 3.1.2. Suppose that Z admits deformation theory. Then the map
pdR,Z is an inf-schematic nil-isomorphism.

Proof. We need to show that for S ∈ (Schaff
aft)/ZdR

, the Cartesian product

(3.1) S ×
ZdR

Z

is an inf-scheme.

Clearly, the above Cartesian product belongs to PreStklaft, and its underlying
reduced prestack identifies with redS. Hence, it remains to show that (3.1) admits
deformation theory. This holds because the category PreStkdef-laft is closed under
finite limits.

�

3.1.3. From Proposition 3.1.2 and Chapter 3, Proposition 3.1.2(a) we obtain:

Corollary 3.1.4. Let Z be an object of PreStkdef-laft. Then the functor

oblvdR,Z ∶ Crys(Z)→ IndCoh(Z)

admits a left adjoint.

We denote the left adjoint to oblvdR,Z , whose existence is given by the above
corollary, by inddR,Z .

3.1.5. Thus, for Z ∈ PreStkdef-laft, we obtain an adjoint pair

(3.2) inddR,Z ∶ IndCoh(Z)⇄ Crys(Z) ∶ oblvdR,Z .

We claim:

Lemma 3.1.6. The pair (3.2) is monadic.

Proof. Since oblvdR,Z is continuous, we only need to check that it is conser-
vative. However, this follows from Chapter 3, Proposition 3.1.2(b). �

3. INDUCING CRYSTALS 171

3.1.7. The next corollary of Proposition 3.1.2 expresses the functoriality of the
operation of induction:

Corollary 3.1.8. There is a canonically defined natural transformation

inddR ∶ IndCoh(PreStklaft)indinfsch
∣(PreStkdef-laft)indinfsch

⇒ Crys(PreStklaft)indinfsch
∣(PreStkdef-laft)indinfsch

,

as functors

(PreStkdef-laft)indinf-sch → DGCatcont .

In particular, the above corollary says that for an ind-inf-schematic morphism
f ∶ Z1 → Z2 of objects of PreStkdef-laft, the following diagram of functors commutes:

IndCoh(Z1)
inddR,Z1
ÐÐÐÐÐ→ Crys(Z1)

f IndCoh
∗

×
×
×
Ö

×
×
×
Ö

fdR,∗

IndCoh(Z2)
inddR,Z2
ÐÐÐÐÐ→ Crys(Z2).

3.2. Induction on ind-inf-schemes. In this subsection, let Z be an object of
indinfSchlaft. We study the interaction of the induction functor with that of Serre
and Verdier dualities.

3.2.1. We have:

Lemma 3.2.2. The functor inddR,Z sends IndCoh(Z)
c to Crys(Z)

c.

Proof. Follows from the fact that the functor oblvdR,Z is continuous and
conservative.

�

3.2.3. Induction and duality. Let us apply isomorphism Chapter 3, Equation (6.2)
to the map

pdR,Z ∶ Z → ZdR.

We obtain:

Corollary 3.2.4. Under the isomorphisms

DSerre
Z ∶ IndCoh(Z)

∨
≃ IndCoh(Z) and DVerdier

Z ∶ Crys(Z)
∨
≃ Crys(Z),

we have a canonical identification

(oblvdR,Z)
∨
≃ inddR,Z .

In addition, by Chapter 3, Corollary 6.2.9

Corollary 3.2.5. The following diagram of functors commutes:

(IndCoh(Z)
c
)
op

DSerre
Z

ÐÐÐÐ→ IndCoh(Z)
c

(inddR,Z)op
×
×
×
Ö

×
×
×
Ö

inddR,Z

(Crys(Z)
c
)
op

DVerdier
Z
ÐÐÐÐ→ Crys(Z)

c.

172 4. AN APPLICTION: CRYSTALS

3.2.6. Induction and t-structure. Recall that by the definition of the t-structure on
Crys(Z), the functor oblvdR,Z is left t-exact. We claim:

Corollary 3.2.7. Assume that Z is an ind-scheme. Then the functor inddR,Z
is t-exact.

Proof. The fact that inddR,Z is right t-exact follows by adjunction. To show
that it is left t-exact we use Chapter 3, Lemma 3.4.6: we have to show that the
pdR,Z is ind-schematic.

Indeed, for S ∈ Schaff
aft and S → ZdR, the Cartesian product

S ×
ZdR

Z

identifies with the formal completion of S × Z along the graph of the map redS →
Z. �

3.3. Relative crystals. In this subsection we describe how the discussion of crys-
tals generalizes to the relative situation.

3.3.1. Let Y be a fixed object of PreStklaft. Consider the ∞-category

(PreStklaft)/Y

and the corresponding (∞,2)-category

Corr((PreStklaft)/Y)
indinfsch & ind-proper
indinfsch;all .

Restricting the functor IndCoh(PreStklaft)indinfsch&ind-proper
indinfsch;all

along the forgetful func-

tor
Corr((PreStklaft)/Y)

indinfsch & ind-proper
indinfsch;all → Corr(PreStklaft)

inf-proper
inf-sch;all ,

we obtain the functor

IndCohCorr((PreStklaft)/Y)indinfsch&ind-proper
indinfsch;all

∶ Corr((PreStklaft)/Y)
indinfsch & ind-proper
indinfsch;all → DGCat2 -Cat

cont ,

with properties specified by Chapter 3, Theorem 5.4.3.

In particular, let

IndCoh!
(PreStklaft)/Y ∶ ((PreStklaft)/Y)

op
→ DGCatcont

be the resulting functor.

3.3.2. The category (PreStklaft)/Y has an endo-functor, denoted by /YdR:

Z ↦ Z/YdR ∶= ZdR ×
YdR

Y.

Corollary 1.3.6 implies that the functor /YdR gives rise to a functor

((PreStklaft)/Y)indnilSch → ((PreStklaft)/Y)indinfsch.

Hence, /YdR induces a functor

(3.3) Corr((PreStklaft)/Y)
ind-proper
indnilsch;all → Corr((PreStklaft)/Y)

indinfsch & ind-proper
indinfsch;all .

Thus, precomposing IndCohCorr((PreStklaft)/Y)indinfsch&ind-proper
indinfsch;all

with /YdR, we ob-

tain the functor
/YCrysCorr((PreStklaft)/Y)ind-proper

indnilsch;all
∶ Corr((PreStklaft)/Y)

ind-proper
indnilsch;all → DGCat2 -Cat

cont .

3. INDUCING CRYSTALS 173

3.3.3. Let

/YCrys!
(PreStklaft)/Y ∶ ((PreStklaft)/Y)

op
→ DGCatcont

and
/YCrys((PreStklaft)/Y)indnilsch

∶ ((PreStklaft)/Y)indnilsch → DGCatcont

denote the corresponding functors obtained by restriction.

For a map Z1 → Z2 in (PreStklaft)indnilsch, we shall denote by f !
YdR and fYdR,∗

the corresponding functors

/YCrys(Z1)⇆
/YCrys(Z2).

These functors are adjoint if f is ind-proper/nil-open.

3.3.4. Let /Y indnilSchlaft denote the full subcategory of (PreStklaft)/Y given by

the preimage of (indinfSchlaft)/Y under the functor /YdR.

Restricting the functor /YCrysCorr((PreStklaft)/Y)ind-proper
indnilsch;all

to

Corr(/Y indnilSchlaft)
ind-proper
all;all ⊂ Corr((PreStklaft)/Y)

ind-proper
indnilsch;all,

we obtain the functor

/YCrysCorr(/Y indnilSchlaft)ind-proper
all;all

∶ Corr(/Y indnilSchlaft)
ind-proper
all;all → DGCat2 -Cat

cont .

Furthermore, for an object Z of /Y indnilSchlaft, the category /YCrys(Z) satis-
fies the following properties:

(1) The category /YCrys(Z) is compactly generated, and is self-dual in the
sense of Theorem 2.2.2.

(2) The category /YCrys(Z) carries a t-structure in which an object F is
coconnective if and only if its image under the forgetful functor

oblv/YdR,Z ∶
/YCrys(Z)→ IndCoh(Z)

is coconnective, for oblv/YdR,Z ∶= (p/YdR,Z)
!, where p/YdR,Z denotes the

canonical morphism

Z → Z/YdR.

(3) If Z admits deformation theory over Y (see Chapter 1, Sect. 7.1.6 for
what this means), then the morphism p/YdR,Z is an inf-schematic nil-
isomorphism, and hence the functor oblv/YdR,Z admits a left adjoint,
denoted ind/YdR,Z .

Remark 3.3.5. The essential difference between Crys and /YCrys is that for
Z ∈ (PreStklaft)/Y , the category /YCrys(Z) depends not just on the underlying
reduced prestack. E.g., for Z = Y,

/YCrys(Z) = IndCoh(Y).

174 4. AN APPLICTION: CRYSTALS

3.3.6. Assume for a moment that Y = Y is a smooth classical scheme, and Z = Z is
also a classical scheme smooth over Y . Then, as in [GaRo2, Sect. 4.7], one shows
that the category

/Y Crys(Z)

identifies with the DG category associated with the abelian category of quasi-
coherent sheaves of modules on Y with respect to the algebra of ‘vertical’ differential
operators, i.e., the subalgebra of Diff(Z) that consists of differential operators that
commute with OY .

4. Comparison with the classical theory of D-modules

In this section we will identify the theory of crystals as developed in the previous
sections with the theory of D-modules.

This section can be regarded as a companion to [GaRo2, Sects. 6 and 7], and
we shall assume the reader’s familiarity with the contents of loc.cit.

4.1. Left D-modules and left crystals. In this subsection we will recollect
(and rephrase) the contents of [GaRo2, Sect. 5]. Specifically, we will discuss the
equivalence between the category of left D-modules on a smooth scheme X and the
category of left crystals on X.

4.1.1. LetX be a classical scheme of finite type. Consider the category QCoh(X×X)
♡

and its full subcategory (QCoh(X × X)∆X
)
♡, consisting of objects that are set-

theoretically supported on the diagonal. Let

(QCoh(X ×X)∆X
)
♡
rel.flat ⊂ QCoh(X ×X)∆X

)
♡

be the full subcategory, consisting of objects that are X-flat with respect to both
projections

ps, pt ∶X ×X →X.

The category (QCoh(X ×X)∆X
)
♡
rel.flat has a naturally defined monoidal struc-

ture, given by convolution.

Moreover, we have a canonically defined fully faithful monoidal (!) functor

(4.1) (QCoh(X ×X)∆X
)
♡
rel.flat → QCoh(X ×X),

where QCoh(X ×X) is a monoidal category as in Volume I, Chapter 5, Sects. 5.2.3
and 5.3.3.

4.1.2. Now suppose that X is smooth. In this case, we have a canonically defined
object

DiffX ∈ AssocAlg ((QCoh(X ×X)∆X
)
♡
rel.flat)) ,

namely, the Grothendieck algebra of differential operators.

Composing (4.1) with the monoidal equivalence

QCoh(X ×X)→ Functcont(QCoh(X),QCoh(X)),

we obtain that DiffX gives rise to a monad on QCoh(X).

We consider the category DiffX -mod(QCoh(X)). It is equipped with a t-
structure, characterized by the property that the tautological forgetful functor
DiffX -mod(QCoh(X))→ QCoh(X) is t-exact.

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 175

The category Dmodl(X) of left D-modules on X is defined as the canonical DG

model of the derived category of the abelian category (DiffX -mod(QCoh(X)))
♡
.

As in [GaRo2, Proposition 4.7.3] one shows that the canonical functor

(4.2) Dmodl(X)→ DiffX -mod(QCoh(X))

is an equivalence.

4.1.3. Let X be any scheme almost of finite type. Recall the category

Crysl(X) ∶= QCoh(XdR),

see [GaRo2, Sect. 2.1]. It is equipped with a forgetful functor

oblvldR,X ∶ Crysl(X)→ QCoh(X).

Assume now that X is eventually coconnective. According to [GaRo2, Propo-

sition 3.4.11], in this case the functor oblvldR,X admits a left adjoint, denoted

indldR,X , and the resulting adjoint pair of functors

indldR,X ∶ QCoh(X)⇄ Crysl(X) ∶ oblvldR,X ,

is monadic.

The corresponding monad is given by an object

D
l
X ∈ AssocAlg(QCoh(X ×X)∆X

).

I.e., we have an equivalence

Crysl(X) ≃ D
l
X -mod(QCoh(X)).

4.1.4. Again, assume that X is smooth. In this case one easily shows (see, e.g.,
[GaRo2, Proposition 5.3.6]) that

D
l
X ∈ (QCoh(X ×X)∆X

)
♡
rel.flat.

Moreover, it is a classical fact (reproved for completeness in [GaRo2, Lemma
5.4.3]) that there is a canonical isomorphism in AssocAlg ((QCoh(X ×X)∆X

)
♡
rel.flat):

(4.3) D
l
X ≃ DiffX .

In particular, we obtain a canonical equivalence of categories

Dmodl(X) ≃ DiffX -mod(QCoh(X)) ≃ D
l
X -mod(QCoh(X)) ≃ Crysl(X),

compatible with the forgetful functors to QCoh(X).

We denote the resulting equivalence Dmodl(X)→ Crysl(X) by F lX .

176 4. AN APPLICTION: CRYSTALS

4.1.5. Let f ∶ X → Y be a morphism between smooth classical schemes. In the
classical theory of D-modules, one defines a functor

f▲,l ∶ Dmodl(Y)→ Dmodl(X)

that makes the diagram

(4.4)

Dmodl(Y)
f▲,l

ÐÐÐÐ→ Dmodl(X)

×
×
×
Ö

×
×
×
Ö

oblvldR,X

QCoh(Y)
f∗

ÐÐÐÐ→ QCoh(X)

commute.

Also recall (see [GaRo2, Sect. 2.1.2]) that for a map f ∶ X → Y between
arbitrary schemes almost of finite type, we have a functor

f †,l
∶ Crysl(Y)→ Crysl(X),

that makes the diagram

(4.5)

Crysl(Y)
f†,l

ÐÐÐÐ→ Crysl(X)

×
×
×
Ö

×
×
×
Ö

QCoh(Y)
f∗

ÐÐÐÐ→ QCoh(X)

commute.

The following can be established by a direct calculation:

Lemma 4.1.6. The following diagram of functors naturally commutes

Dmodl(Y)
f▲,l

ÐÐÐÐ→ Dmodl(X)

F lY

×
×
×
Ö

×
×
×
Ö

F lX

Crysl(X)
f†,l

ÐÐÐÐ→ Crysl(X),

in a way compatible with the forgeftul functors to QCoh(−).

4.2. Right D-modules and right crystals. In this subsection we will discuss
the equivalence between the category of right D-modules on a smooth scheme X,
and the category Crys(X), considered in the earlier sections of this Chapter.

4.2.1. Note that for any scheme X, the monoidal category QCoh(X ×X) carries a
canonical anti-involution, denoted σ, corresponding to the transposition acting on
X ×X.

In terms of the identification

QCoh(X ×X) ≃ Functcont(QCoh(X),QCoh(X)),

we have
σ(F) ≃ F ∨, F ∈ Functcont(QCoh(X),QCoh(X)),

where we use the canonical identification

Dnaive
X ∶ QCoh(X)

∨
≃ QCoh(X),

of Volume I, Chapter 6, Equation (4.2).

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 177

In particular for an algebra object A in QCoh(X ×X), we can regard σ(Aop
)

again as an algebra object in QCoh(X ×X), and we have

(4.6) (MA)
∨
≃Mσ(Aop),

where MB denotes the monad on QCoh(X), corresponding to an algebra object
B ∈ QCoh(X).

4.2.2. Let X be smooth. Consider the object

σ(Diffop
X) ∈ AssocAlg ((QCoh(X ×X)∆X

)
♡
rel.flat)) ,

and the corresponding category

σ(Diffop
X)-mod(QCoh(X)).

The category Dmodr(X) of right D-modules on X is defined as the canonical

DG model of the derived category of the abelian category (σ(Diffop
X)-mod(QCoh(X)))

♡
.

As in [GaRo2, Proposition 4.7.3] one shows that the canonical functor

(4.7) Dmodr(X)→ σ(Diffop
X)-mod(QCoh(X))

is an equivalence.

4.2.3. Let X be a scheme almost of finite type. For the duration of this section,
we will denote by

Crysr(X) ∶= Crys(X) ∶= IndCoh(XdR),

where the latter is defined as in Sect. 1.2.2, and by

indrdR,X ∶ IndCoh(X)⇄ Crysr(X) ∶ oblvrdR,X

the corresponding pair of adjoint functors from (3.2). I.e., we are adding the super-
script ‘r’ (for ‘right’) to the notation from Sect. 1.2.2 to emphasize the comparison
with right D-modules.

Let DrX be the object of AssocAlg(IndCoh(X ×X)∆X
), corresponding to the

monad

oblvrdR,X ○ indrdR,X

via the equivalence of monoidal categories

IndCoh(X ×X)→ Functcont(IndCoh(X), IndCoh(X)).

By Lemma 3.1.6, we have:

D
r
X -mod(IndCoh(X)) ≃ Crysr(X).

178 4. AN APPLICTION: CRYSTALS

4.2.4. Suppose that X is smooth. Recall that in this case the adjoint pairs

ΞX ∶ QCoh(X)⇄ IndCoh(X) ∶ ΨX

and

Ξ∨
X ∶ QCoh(X)⇄ IndCoh(X) ∶ Ψ∨

X = ΥX

are both equivalences.

In this case one shows as in [GaRo2, Sect. 5.5] that there is a canonical
equivalence of categories

(4.8) F rX ∶ Dmodr(X) ≃ Crysr(X),

that makes the diagram

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

×
×
×
Ö

×
×
×
Ö

oblvrdR,X

QCoh(X)
ΞX

ÐÐÐÐ→ IndCoh(X)

commute.

Remark 4.2.5. One can obtain the equivalence of (4.8) formally from the
corresponding computation for left D-modules.

Namely, taking into account the equivalences

(oblvldR,X ○ indldR,X)
∨-mod(QCoh(X)) ≃ σ(Diffop

X)-mod(QCoh(X)) ≃ Dmodr(X)

(where the first equivalence comes from (4.3) and (4.6)), and

(oblvrdR,X ○ indrdR,X)-mod(IndCoh(X)) ≃ Crysr(X),

it suffices to construct an isomorphism of the monads

(4.9) ΨX ○ (oblvrdR,X ○ indrdR,X) ○ΞX and (oblvldR,X ○ indldR,X)
∨,

acting on QCoh(X).

The latter isomorphism holds for any eventually coconnective X, and follows
from the isomorphism of monads

oblvldR,X ○ indldR,X ≃ Ξ∨
X ○ (oblvrdR,X ○ indrdR,X) ○Ψ∨

X ,

see [GaRo2, Lemma 3.4.9].

Remark 4.2.6. The monads in (4.9) correspond to the pair of adjoint functors

′indrdR,X ∶ QCoh(X)⇄ Crys(X) ∶
′oblvrdR,X

of [GaRo2, Sect. 4.6]. Furthermore, in terms of the

Dnaive
X ∶ QCoh(X)

∨
≃ QCoh(X) and DVerdier

X ∶ Crys(X)
∨
≃ Crys(X),

we have the isomorphisms

(
′indrdR,X)

∨
≃ oblvldR,X and (

′oblvrdR,X)
∨
≃ indldR,X .

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 179

4.3. Passage between left and right D-modules/crystals. In this subsection
we will compare the abstractly defined functor

ΥXdR
∶ Crysl(X)→ Crysr(X)

from Volume I, Chapter 6 and the ‘hands-on’ functor

Dmodl(X)→ Dmodr(X),

given by tensoring a given left D-module with the right D-module

det(T ∗(X))[dim(X)].

4.3.1. According to [GaRo2, Proposition 2.2.4], for any scheme X almost of finite
type we have a canonically defined equivalence

ΥXdR
∶ Crysl(X)→ Crysr(X),

that makes the diagram

Crysl(X)

ΥXdR
ÐÐÐÐ→ Crysr(X)

oblvldR,X

×
×
×
Ö

×
×
×
Ö

oblvrdR,X

QCoh(X)
ΥX

ÐÐÐÐ→ IndCoh(X)

commute.

Concretely, the functor ΥXdR
is the functor from Volume I, Chapter 6, Sect.

3.3.4 applied to XdR, and it is given by

M↦M⊗ ωXdR
,

where ⊗ is the action of QCoh(XdR) (= Crysl(X)) on IndCoh(XdR) (= Crysr(X)).

4.3.2. Now, suppose that X is a smooth classical scheme. Recall that in this case
there is a canonical equivalence

(4.10) Dmodl(X)→ Dmodr(X),

given by tensoring a given left D-module with the right D-module

ωDmod,X ∶= det(T ∗(X))[dim(X)].

We denote the above functor by ΥDmod,X .

4.3.3. We will prove:

Theorem 4.3.4. The following diagram of functors canonically commutes:

(4.11)

Dmodl(X)

F lX
ÐÐÐÐ→ Crysl(X)

ΥDmod,X

×
×
×
Ö

×
×
×
Ö

ΥXdR

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

.

By applying Theorem 4.3.4 to OX ∈ Dmodl(X), we obtain:

Corollary 4.3.5. There exists a canonical isomorphism in Crysr(X):

(4.12) F rX(ωDmod,X) ≃ ωXdR
.

180 4. AN APPLICTION: CRYSTALS

4.3.6. Applying the forgetful functor

oblvrdR,X ∶ Crysr(X)→ IndCoh(X),

to the isomorphism of (4.12), we obtain:

Corollary 4.3.7. There exists a canonical isomorphism in IndCoh(X):

(4.13) ΞX(det(T ∗(X))[dim(X)] ≃ ωX .

Note that latter corollary is the well-known identification of the abstractly
defined dualizing sheaf with the shifted line bundle of top forms.

Remark 4.3.8. The isomorphism (4.13) can be proved without involving D-
modules or crystals, by an argument along the same lines as that proving the
isomorphism (4.12) in Sect. 4.4 below. This argument is given in a more general
context in Chapter 8, Proposition 7.3.4.

4.4. Proof of Theorem 4.3.4.
4.4.1. First, we make the following observation, which follows from the construc-
tions:

Lemma 4.4.2. For M ∈ Dmodl(X) and N ∈ Dmodr(X) we have a canonical
isomorphism

F rX(M⊗N) ≃ F lX(M)⊗ F rX(N).

This lemma reduces the assertion of Theorem 4.3.4 to establishing the isomor-
phism (4.12).

4.4.3. Recall that for a map f ∶ X → Y between smooth schemes, one defines the
functor

f▲,r ∶ Dmodr(Y)→ Dmodr(X)

by requiring that the diagram

(4.14)

Dmodl(Y)
f▲,l

ÐÐÐÐ→ Dmodl(X)

ΥDmod,Y

×
×
×
Ö

×
×
×
Ö

ΥDmod,X

Dmodr(Y)
f▲,r

ÐÐÐÐ→ Dmodr(X)

commute.

Assume for the moment that f is a closed embedding of smooth schemes. Let

Dmodr(Y)X ⊂ Dmodr(Y)

be the full subcategory consisting of objects with set-theoretic support on X.

Recall that in this case we have Kashiwara’s lemma which says that the functor
f▲,r induces an equivalence Dmodr(Y)X → Dmodr(X).

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 181

4.4.4. For a morphism f ∶X → Y between schemes almost of finite type, let

f †,r
∶ Crysr(Y)→ Crysr(X)

be the corresponding pullback functor, see [GaRo2, Sect. 2.3.4], i.e., f †,r
= f !

dR.

Assume for the moment that f is a closed embedding. Let Crysr(Y)X ⊂

Crysr(Y) be the full subcategory consisting of objects with set-theoretic support
on X.

Recall (see [GaRo2, Proposition 2.5.6]) that in this case the functor f †,r in-
duces an equivalence Crysr(Y)X → Crysr(X).

4.4.5. Let f ∶ X → Y be a closed embedding of smooth classical schemes. The
next assertion also follows from the constructions:

Lemma 4.4.6. Under the equivalences

f▲,r ∶ Dmodr(Y)X → Dmodr(X) and f†,r
∶ Crysr(Y)X → Crys(X),

the diagram

Dmodr(Y)X

F rY
ÐÐÐÐ→ Crysr(Y)X

f▲,r
×
×
×
Ö

×
×
×
Ö

f†,r

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

commutes.

As a corollary, we obtain:

Corollary 4.4.7. For a closed embedding of smooth schemes f ∶ X → Y , the
diagram

Dmodr(Y)

F rY
ÐÐÐÐ→ Crysr(Y)

f▲,r
×
×
×
Ö

×
×
×
Ö

f†,r

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

commutes.

Proof. Follows from the fact that the functor f▲,r (resp., f †,r) factors through
the co-localization Dmodr(Y)→ Dmodr(Y)X (resp., Crysr(Y)→ Crysr(Y)X). �

4.4.8. We are finally ready to construct the isomorphism (4.12) and thereby prove
Theorem 4.3.4.

Consider the object

ωDmod,X ⊠ ωDmod,X = ωDmod,X×X ∈ Dmodr(X ×X).

Consider the isomorphism

(4.15) F rX ○∆▲,r
X (ωDmod,X×X) ≃ ∆†,r

○ F rX×X (ωDmod,X ⊠ ωDmod,X)

of Corollary 4.4.7.

On the one hand,

F rX ○∆▲,r
X (ωDmod,X×X) ≃ F rX ○∆▲,r

X ○ΥDmod,X×X(OX×X) ≃

≃ F rX ○ΥDmod,X ○∆▲,l
X (OX×X) ≃ F rX ○ΥDmod,X(OX) ≃ F rX(ωDmod,X).

182 4. AN APPLICTION: CRYSTALS

On the other hand,

∆†,r
○ F rX×X (ωDmod,X ⊠ ωDmod,X) ≃ ∆†,r

(F rX(ωDmod,X) ⊠ F rX(ωDmod,X)) ≃

≃ F rX(ωDmod,X)

!
⊗ F rX(ωDmod,X),

where
!
⊗ denotes the symmetric monoidal operation on Crysr(X), i.e., the

!
⊗ tensor

product on IndCoh(XdR).

Thus, from (4.15) we obtain an isomorphism

F rX(ωDmod,X) ≃ F rX(ωDmod,X)

!
⊗ F rX(ωDmod,X)

in Crysr(X).

Now, it is easy to see that F rX(ωDmod,X) is invertible as an object of the sym-
metric monoidal category Crysr(X).

This implies that F rX(ωDmod,X) is canonically isomorphic to the unit object,
i.e., ωXdR

, as required.

4.5. Identification of functors. In this subsection we will show that the pullback
and push-forward functors on crystals correspond to the pullback and push-forward
functors defined classically for D-modules.

4.5.1. We now show:

Proposition 4.5.2. Let f ∶ X → Y be a morphism between smooth schemes.
Then the diagram of functors

Dmodr(Y)
f▲,r

ÐÐÐÐ→ Dmodr(X)

F rY

×
×
×
Ö

×
×
×
Ö

F rX

Crysr(Y)
f†,r

ÐÐÐÐ→ Crysr(X)

canonically commutes.

Remark 4.5.3. It follows from the construction given below that when f is
a closed embedding, the isomorphism of functors of Proposition 4.5.2 identifies
canonically with one in Corollary 4.4.7.

Proof. Follows by combining the following five commutative diagrams:

Dmodl(Y)
f▲,l

ÐÐÐÐ→ Dmodl(X)

F lY

×
×
×
Ö

×
×
×
Ö

F lX

Crysl(Y)
f†,l

ÐÐÐÐ→ Crysl(X)

(of Lemma 4.1.6);

Dmodl(Y)
f▲,l

ÐÐÐÐ→ Dmodl(X)

ΥDmod,Y

×
×
×
Ö

×
×
×
Ö

ΥDmod,X

Dmodr(Y)
f▲,r

ÐÐÐÐ→ Dmodr(X)

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 183

(of diagram (4.14));

Crysl(Y)
f†,l

ÐÐÐÐ→ Crysl(X)

ΥYdR

×
×
×
Ö

×
×
×
Ö

ΥXdR

Crysr(Y)
f†,r

ÐÐÐÐ→ Crysr(X),

(of Volume I, Chapter 6, Sect. 3.3) and finally the diagrams (4.11) for X and Y ,
respectively.

�

4.5.4. Recall that for a map f ∶ X → Y between smooth schemes, we have a
canonically defined functor

fDmod,∗ ∶ Dmodr(X)→ Dmodr(Y).

For a smooth scheme X we let ΓDmod(X,−) denote the functor

Dmodr(X)→ Vect

equal to (pX)Dmod,∗.

Note that Verdier duality defines an equivalence

DVerdier
X ∶ Dmodr(X)

∨
→ Dmodr(X),

characterized by the fact that its unit and counit maps are

µDmod,X ∶ Vect
ωDmod,X

Ð→ Dmodr(X)

(∆X)Dmod,∗

Ð→ Dmodr(X×X) ≃ Dmodr(X)⊗Dmodr(X),

and

εDmod,X ∶ Dmodr(X)⊗Dmodr(X) ≃ Dmodr(X×X)

(∆X)▲,r
Ð→ Dmodr(X)

ΓDmod(X,−)
Ð→ Vect,

respectively.

4.5.5. We claim:

Proposition 4.5.6. The diagram of functors

Dmodr(X)
∨ DVerdier

X
ÐÐÐÐ→ Dmodr(X)

(F rX)∨
Õ
×
×
×

×
×
×
Ö

F rX

Crysr(X)
∨ DVerdier

X
ÐÐÐÐ→ Crysr(X)

canonically commutes.

Proof. It is enough to establish the commutation of the following diagram:

Vect
µDmod,X

ÐÐÐÐÐ→ Dmodr(X)⊗Dmodr(X)

Id
×
×
×
Ö

×
×
×
Ö

F rX⊗F
r
X

Vect
µXdR
ÐÐÐÐ→ Crysr(X)⊗Crysr(X).

184 4. AN APPLICTION: CRYSTALS

Recall the description of the functor εXdR
is Sect. 2.2.4. Thus, taking into

account the isomorphism (4.12), it suffices to show that the diagram

Dmodr(X)

(∆X)Dmod,∗

ÐÐÐÐÐÐÐ→ Dmodr(X ×X)

F rX

×
×
×
Ö

×
×
×
Ö

F rX×X

Crysr(X)

(∆X)dR,∗

ÐÐÐÐÐ→ Crysr(X ×X)

commutes.

However, this follows by adjunction from the commutation of the diagram

Dmodr(X)

(∆X)▲,r
←ÐÐÐÐÐ Dmodr(X ×X)

F rX

×
×
×
Ö

×
×
×
Ö

F rX×X

Crysr(X)

(∆X)†,r
←ÐÐÐÐ Crysr(X ×X),

while the latter commutes by Proposition 4.5.2.
�

As a consequence of Proposition 4.5.6, we obtain:

Corollary 4.5.7. For a smooth scheme X, the following diagram of functors
canonically commutes

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

ΓDmod(X,−)
×
×
×
Ö

×
×
×
Ö

ΓdR(X,−)

Vect
Id

ÐÐÐÐ→ Vect .

Proof. Obtained by passing to the dual functors in the commutative diagram

Dmodr(X)

F rX
ÐÐÐÐ→ Crysr(X)

ωDmod,X

Õ
×
×
×

Õ
×
×
×

ωXdR

Vect
Id

ÐÐÐÐ→ Vect .
�

4.5.8. Finally, we claim:

Proposition 4.5.9. For a map f ∶ X → Y between smooth schemes, the fol-
lowing diagram of functors canonically commutes:

Dmodr(X)

fDmod,∗

ÐÐÐÐ→ Dmodr(Y)

F rX

×
×
×
Ö

×
×
×
Ö

F rY

Crysr(X)

fdR,∗

ÐÐÐÐ→ Crysr(Y)

Proof. We factor the map f as

X
f1
→X × Y

f2
→ Y,

where f1 is the graph of f , and f2 is the projection to the second factor.

4. COMPARISON WITH THE CLASSICAL THEORY OF D-MODULES 185

Hence, it is enough to establish the commutativity of the diagrams

(4.16)

Dmodr(X)

(f1)Dmod,∗

ÐÐÐÐÐÐ→ Dmodr(X × Y)

F rX

×
×
×
Ö

×
×
×
Ö

F rX×Y

Crysr(X)

(f1)dR,∗

ÐÐÐÐÐ→ Crysr(X × Y)

and

(4.17)

Dmodr(X × Y)

(f2)Dmod,∗

ÐÐÐÐÐÐ→ Dmodr(Y)

F rX×Y

×
×
×
Ö

×
×
×
Ö

F rY

Crysr(X × Y)

(f2)dR,∗

ÐÐÐÐÐ→ Crysr(Y),

respectively.

Now, the commutation of (4.16) follows by adjunction from the commutation
of

Dmodr(X)

(f1)▲,r
←ÐÐÐÐ Dmodr(X × Y)

F rX

×
×
×
Ö

×
×
×
Ö

F rX×Y

Crysr(X)

(f1)†,r
←ÐÐÐÐ Crysr(X × Y),

given by Proposition 4.5.2.

To establish the commutatition of (4.17) we rewrite it as

Dmodr(X)⊗Dmodr(Y)

ΓDmod(X,−)⊗Id
ÐÐÐÐÐÐÐÐÐ→ Dmodr(Y)

F rX⊗F
r
Y

×
×
×
Ö

×
×
×
Ö

F rY

Crysr(X)⊗Dmodr(Y)

ΓdR(X,−)⊗Id
ÐÐÐÐÐÐÐ→ Crysr(Y),

and the result follows from Corollary 4.5.7.
�

Part II

Formal geometry

Introduction

1. What is formal geometry?

By ‘formal geometry’ we mean the study of the category, whose objects are
PreStklaft-def , and whose morphisms are nil-isomorphisms of prestacks.

In the course of this part, we will see that this category provides a convenient
and flexible framework for many geometric operations:

● Taking quotients with respect to a groupoid;
● Correspondence between group-objects (over a given base X) and Lie

algebras in the symmetric monoidal category IndCoh(X);
● Considering differential-geometric constructions such as Lie algebroids,

their universal enveloping algebras, Hodge filtration, etc.

One of the features of the theory presented in this part is that it is really very
general. E.g., when establishing the correspondence between formal groups over X
and Lie algebras in IndCoh(X), there are no additional conditions: we really take
all group-objects and all Lie algebras (no finiteness conditions).

1.1. We begin this part with the short Chapter IV.1 that discusses formal moduli
problems. The main theorem of this chapter says the following:

For an object X ∈ PreStklaft-def , consider the following two categories: one is
the category

FormModX / ∶= (PreStklaft-def)nil-isom from X .

I.e., it consists of prestacks locally almost of finite type that admit deformation
theory and receive a nil-isomorphism from X .

Another is the category FormGrpoid(X) of groupoid objects in (PreStklaft-def)nil-isom

acting on X (i.e., the groupoids whose 0-th space is X itself).

The Čech nerve construction defines a functor

(1.1) FormModX / → FormGrpoid(X).

Now, the main result of this chapter, Chapter 5, Theorem 2.3.2, says that the
functor (1.1) is an equivalence.

1.2. We denote by BX the functor inverse to (1.1). This is the functor of taking
the quotient with respect to a groupoid.

A feature of our proof of the equivalence (1.1) is that it is constructive. I.e.,
given a groupoid R● over X (i.e., R0

= X), we explicitly describe the prestack
BX (R

●
).

We note, however, that the natural map

∣R
●
∣→ BX (R

●
),

189

190 INTRODUCTION

is not an isomorphism, where ∣R
●
∣ is understood as a geometric realization in the

category PreStklaft. The problem is that ∣R
●
∣ understood in the above way will not

in general admit deformation theory.

1.3. By a formal moduli problem over a given object X ∈ PreStklaft we mean an
object

Y ∈ (PreStklaft)/X ,

such that the morphism Y → X is an inf-schematic nil-isomorphism. I.e., for any
S → X with S ∈

<∞Schaff
ft , the prestack S ×

X
Y should admit deformation theory and

the map
red

(S ×
X
Y)→

redS

should be an isomorphism.

Let FormMod/X denote the category of formal moduli problems over X .

By a formal group over X we mean an object of the category Grp(FormMod/X).
It follows formally from the equivalence (1.1) that the loop functor defines an equiv-
alence

ΩX ∶ Ptd(FormMod/X)→ Grp(FormMod/X).

We denote by BX the inverse equivalence. Thus, we obtain that any H ∈

Grp(FormMod/X) admits a classifying space

BX (H) ∈ Ptd(FormMod/X).

1.4. Let us add a comment here that explains the link between our theory and
that developed in [Lu6].

Suppose that X =X ∈
<∞Schaff

ft . We have the forgetful functors

FormModX/ → (PreStklaft)X/ and FormMod/X → (PreStklaft)/X

I.e., objects of the category FormModX/ (resp., FormMod/X) are prestacks (locally
almost of finite type) under X (resp., over X) satisfying a certain condition. I.e.,
at the end of the day, they are functors

(
<∞Schaff

ft)
op
→ Spc .

We show, however, that the information of an object of FormModX/ (resp.,
FormMod/X) is completely determined by the restriction of the corresponding func-
tor to a much smaller category. Namely, the category in question is

(1.2) ((
<∞Schaff

ft)nil-isom from X)
op

in the case of FormModX / and

(1.3) ((
<∞Schaff

ft)nil-isom to X)
op

in the case of FormMod/X .

I.e., in order to ‘know’ a formal moduli problem under X, it suffices to know
how it behaves on schemes infinitesimally close to X.

For example, if X = pt, the categories (1.2) and (1.3) both identify with the
category of connective k-algebras A with finite-dimensional total cohomologies, and
H0

(A) being local. So, functors out of this category (satisfying the appropriate

2. LIE ALGEBRAS 191

deformation theory condition) are indeed what is traditionally called a ‘formal
moduli problem’.

2. Lie algebras

In Chapter IV.2 we make a digression to discuss the general theory of Lie
algebras (in a symmetric monoidal DG category O).

The material from this chapter will be extensively used in Chapter IV.3, where
we study the relation between formal groups and Lie algebras.

2.1. The main actors in this chapter are the mutually adjoint functors

(2.1) Chevenh
∶ LieAlg(O)⇄ CocomCoalgaug

(O) ∶ coChevenh

that relate the category LieAlg(O) of Lie algebras in O to the category CocomCoalgaug
(O)

of augmented co-commutative co-algebras in O.

The main point is that the functors in (2.1) are not mutually inverse equiva-
lences. But they are close to be such.

2.2. We remind that the composition of Chevenh with the forgetful functor

oblvCocomaug ∶ CocomCoalgaug
(O)→O

is the the functor, denoted Chev, which is by definition the left adjoint to

trivLie ○ [−1] ∶ O→ LieAlg(O),

where trivLie is the functor of the ‘trivial Lie algebra’.

The composition of coChevenh with the forgetful functor

oblvLie ∶ LieAlg(O)→O

is the functor, denoted coChev, which is by definition the right adjoint to the functor

trivCocom ○ [1] ∶ O→ CocomCoalgaug
(O),

where trivCocom is the functor of the ‘trivial co-commutative co-algebra’.

In other words, the functor

[1] ○ coChev ∶ CocomCoalgaug
(O)→O

is the functor Prim of primitive elements.

2.3. Let us now describe the two main results of this chapter, Theorems 4.4.6 and
6.1.2.

Consider the composition

(2.2) Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomHopf(O).

Theorem 4.4.6 says that the functor (2.2) is fully faithful. I.e., although the

functor Chevenh fails to be fully faithful, if we compose it with loop functor and
retain the group structure, it becomes fully faithful.

Theorem 6.1.2 says that the functor (2.2) identifies canonically with the functor
UHopf of universal enveloping algebra (viewed as a Hopf algebra).

192 INTRODUCTION

2.4. Note also that the right adjoint of the functor (2.2) is a functor

(2.3) CocomHopf(O)→ LieAlg(O)

that makes the following diagram commutative:

CocomHopf(O)
oblvAssoc
ÐÐÐÐÐ→ CocomCoalgaug

(O)

×
×
×
Ö

×
×
×
Ö

Prim

LieAlg(O) ÐÐÐÐ→ O,

where oblvAssoc is the natural forgetful functor, and Prim is the functor of primitive
elements.

The above commutative diagram may be viewed as an ultimate answer to the
question of why the tangent space to a Lie group has a structure of Lie algebra:
because the tangent fiber of a co-commutative Hopf algebra, viewed as a mere
augmented co-commutative co-algebra, has a structure of Lie algebra.

The latter observation will be extensively used in the next chapter, i.e., Chap-
ter 7.

3. Formal groups vs. Lie algebras

In Chapter 7 we establish an equivalence between the category of formal groups
(over a given X ∈ PreStklaft) and the category LieAlg(IndCoh(X)).

3.1. Assume first that X = X ∈
<∞Schaff

ft . Our first step in defining the functors
that connect formal groups and Lie algebras in IndCoh(X) is to set up a kind of
‘covariant formal algebraic geometry’.

What we mean by this is that we define a pair of mutually adjoint functors

(3.1) DistrCocomaug

∶ Ptd(FormMod/X)⇄ CocomCoalgaug
(IndCoh(X)) ∶ Specinf .

The functor DistrCocomaug

sends an object (Y
f
→X) ∈ Ptd(FormMod/X) to

f IndCoh
∗ (ωY) ∈ IndCoh(X),

with the co-commutative co-algebra structure coming from the diagonal morphism
Y → Y ×

X
Y, and the augmentation from the section X → Y.

The functor Specinf is defined as the right adjoint of DistrCocomaug

.

We should warn the reader that the situation here, although formally analogous,
is not totally parallel to the usual algebraic geometry. In particular, the functor

DistrCocomaug

is not fully faithful.

3. FORMAL GROUPS VS. LIE ALGEBRAS 193

3.2. A basic example of an object in Ptd(FormMod/X) is a vector group, denoted
VectX(F), associated to F ∈ IndCoh(X).

For (X ′ g
→X) ∈ Ptd(<∞Schaff

ft)), we have

(3.2) Maps(X ′,VectX(F)) = MapsIndCoh(X)(Distr+(X ′
),F),

where

Distr+(X ′
) ∶= Fib(gIndCoh

∗ (ωX′)→ ωX).

One shows that

VectX(F) ≃ Specinf
(Sym(F)).

Note that formula (3.2) is parallel to the definition of the affine scheme V
associated to a finite-dimensional vector space V in algebraic geometry, i.e., V =

Spec(Sym(V ∗
)); namely, we have

Hom(X,V) ≃ Γ(X,OX)⊗ V.

3.3. We are now ready to describe the mutually inverse functors

(3.3) Lie ∶ Grp(FormMod/X)⇄ LieAlg(IndCoh(X)) ∶ exp .

The functor Lie is the composition of the functor

Grp(DistrCocomaug

) ∶ Grp(FormMod/X)→ Grp(CocomCoalgaug
(IndCoh(X))) =∶

= CocomHopf(IndCoh(X))

and the functor

CocomHopf(IndCoh(X))→ LieAlg(IndCoh(X))

of (2.3).

3.4. One shows that the composition

Grp(FormMod/X)
Lie
Ð→ LieAlg(IndCoh(X))

oblvLie
Ð→ IndCoh(X)

is the functor

Grp(FormMod/X)

oblvGrp

Ð→ Ptd(FormMod/X)

Y↦T (Y/X)∣X
Ð→ IndCoh(X).

I.e., the object of IndCoh(X) underlying the Lie algebra ofH ∈ Grp(FormMod/X)

is the tangent space of H at the origin, as it should be.

3.5. The functor exp is defined as the composition of

Grp(Chevenh
) ○ΩLie ∶ LieAlg(IndCoh(X))→ CocomHopf(IndCoh(X)) =

= Grp(CocomCoalgaug
(IndCoh(X)))

and the functor

Grp(Specinf
) ∶ Grp(CocomCoalgaug

(IndCoh(X)))→ Grp(FormMod/X).

Knowing the equivalence (3.3), one can interpret in its terms the adjunction
(3.1). Namely, it becomes the adjunction (2.1) for the category O = IndCoh(X).

194 INTRODUCTION

3.6. We note that it follows from Chapter 6, Theorem 4.2.2 that the composed
functor

oblvGrp ○ exp ∶ LieAlg(IndCoh(X))→ Ptd(FormMod/X)

is isomorphic to

LieAlg(IndCoh(X))
oblvLie
Ð→ IndCoh(X)

VectX(−)
Ð→ Ptd(FormMod/X).

I.e., the object of Ptd(FormMod/X) underlying a formal group H is canonically
isomorphic to the vector group VectX(T (H/X)∣X).

Using this fact, one shows that the functors exp, and hence Lie, are compatible
with base change with respect to X, and thus give rise to an equivalence

Lie ∶ Grp(FormMod/X)⇄ LieAlg(IndCoh(X)) ∶ exp

for any X ∈ PreStklaft.

4. Lie algebroids

In Chapter IV.4 we initiate the study of Lie algebroids.

4.1. Lie algebroids are defined classically as quasi-coherent sheaves with some
extra structure, while this structure involves a differential operator of order one.
Because the definition of Lie algebroids involves explicit formulas, it is difficult to
render it directly to the the world of derived algebraic geometry.

For this reason, we take a different approach and define Lie algebroids via
geometry. Namely, we let the category of Lie algebroids LieAlgbroid(X) on X ∈

PreStklaft-def be, by definition, equivalent to that of formal groupoids over X .

The reason why this definition has a chance to be reasonable is the equivalence
(3.3) between formal groups and Lie algebras.

Much of this chapter is devoted to the explanation of why Lie algebroids defined
in the above way really behave as Lie algebroids should.

4.2. We define the forgetful functor

oblvLieAlgbroid /T ∶ LieAlgbroid(X)→ IndCoh(X)/T (X),

that sends a Lie algebroid L to the underlying quasi-coherent sheaf oblvLieAlgbroid(L),
equipped with the anchor map

oblvLieAlgbroid(L)→ T (X).

We show that this functor is monadic; in particular, it admits a left adjoint,
denoted

freeLieAlgbroid ∶ IndCoh(X)/T (X) → LieAlgbroid(X).

We show that the endo-functor

oblvLieAlgbroid /T ○ freeLieAlgbroid

of IndCoh(X)/T (X) has the ‘right size’, i.e., what one expect from a reasonable
definition of Lie algebroids (it has a canonical filtration with the expected form of
the associated graded).

5. INFINITESIMAL DIFFERENTIAL GEOMETRY 195

4.3. Thus, we have the equivalences

(4.1) LieAlgbroid(X) ≃ FormGrpoid(X) ≃ FormModX / .

We show that the functor freeLieAlgbroid translates into the functor of the
square-zero extension

RealSqZ ∶ IndCoh(X)/T (X) → FormModX / .

4.4. The category of Lie algebroids on X is related to the category LieAlg(IndCoh(X))

by a pair of adjoint functors

(4.2) diag ∶ LieAlg(IndCoh(X))⇄ LieAlgbroid(X) ∶ ker-anch .

The meaning of the functor diag should be clear: a Lie algebra on X can be
viewed as a Lie algebroid with the trivial anchor map. The functor ker-anch sends
a Lie algebroid to the kernel of the anchor map.

We show that the adjoint pair (4.2) is also monadic. The corresponding monad

LieAlgbroid(X) ○ diag

on the category LieAlg(IndCoh(X)) is given by semi-direct product with the inertia
Lie algebra inertX (the Lie algebra of the inertia group InertX ∶= X ×

X×X
X).

We learned about this way of realizing Lie algebroids from J. Francis.

5. Infinitesimal differential geometry

In Chapter Chapter 9 we develop the ideas from Chapter 8 to set up construc-
tions of differential nature on objects X ∈ PreStklaft-def .

5.1. The key construction in Chapter 9 is that of deformation to the normal
bundle.

We start with (X → Y) ∈ FormModX / and we define an A1-family

(X ×A1
→ Yscaled)

of formal moduli problems under X . In doing so, we follow an idea that was
suggested to us by J. Lurie.

A crucial piece of structure that Yscaled has is that of left-lax equivariance with
respect to A1 that acts on itself by multiplication.

The structure of equivariance with respect to Gm ⊂ A1 implies that the fibers
Ya of Yscaled at 0 ≠ a ∈ A1 are all canonically isomorphic to X .

The fiber at 0 ∈ A1 identifies with VectX (T (X /Y)[1]), i.e., the formal version
of the total space of the normal to X inside Y.

The latter observation allows to reduce many isomorphism questions regarding
formal moduli problems to the simplest situation, when our moduli problem is a
vector group VectX (F) for F ∈ IndCoh(X).

196 INTRODUCTION

5.2. If X = X is a classical scheme, and Y is the formal completion of X in Y ,
where X → Y is a regular embedding, then Yscaled is the completion of X ×A1 in
the usual deformation of Y to the normal cone.

For the final object in the category FormModX /, i.e.,

X → XdR,

the deformation (XdR)scaled is the Dolbeault deformation of XdR to VectX (T (X)[1]).

5.3. The relevance of the A1 left-lax equivariant family Yscaled is the following:
functors from FormModX / with values in a DG category C will automatically up-
grade to functors with values in the category

CFil,≥0.

This is due to the equivalence

CFil,≥0
≃ (C⊗QCoh(A1

))
A1

left-lax ,

see Chapter 6, Lemma 2.5.5(a).

5.4. As a first application of the deformation Y ↝ Yscaled we construct a canonical
filtration on the universal enveloping algebra

U(L) ∈ AssocAlg(Functcont(IndCoh(X), IndCoh(X))

of a Lie algebroid L.

This approach to the filtration on the universal enveloping algebra is natural
from the point of view of classical algebraic geometry and smooth schemes: the
canonical filtration on the algebra of differential operators is closely related to the
Dolbeault deformation.

5.5. Another central construction in chapter Chapter 9 is that of the n-th infini-
tesimal neighborhood

X → X
(n)
→ Y

for Y ∈ FormModX /.

Again, this construction is not at all straightforward in the generality in which
we consider it: nil-isomorphisms between objects of PreStklaft-def .

We construct the n-th infinitesimal neighborhood inductively, with X (n) being
a square-zero extension of X (n−1) by means of Symn

(T (X /Y)[1]).

In the process of construction of this extension we crucially rely on the defor-
mation

Y ↝ Yscaled.

6. A SIMPLIFYING REMARK 197

5.6. We show that the natural map

colim
n
X

(n)
→ Y

is an isomorphism.

In particular, we obtain that the dualizing sheaf ω ∈ IndCoh(Y) has a canonical

filtration whose n-th term is the direct image of ωX (n) under X (n)
→ Y.

Translating to the language of Lie algebroids via (4.1), the above filtration can
be interpreted as the de Rham resolution of the unit module over a Lie algebroid
L, with the n-th associated graded being the induced module from

Symn
(oblvLieAlgebroid(L)).

For (X → XdR) ∈ FormModX / we recover the Hodge filtration on the unit
crystal (D-module) ωXdR

.

6. A simplifying remark

The theory of formal geometry developed in Part II uses in an essential way
the theory of ind-coherent sheaves on laft prestacks, in the form of the functor

(6.1) IndCoh!
PreStklaft

∶ (PreStklaft)
op
→ DGCatcont .

I.e., for the purposes of the present Part, we do not need IndCoh as a functor
out of the category of correspondences.

In order to construct (6.1) we only need the functor

IndCoh!
Schaft

∶ (Schaft)
op
→ DGCatcont,

and the latter can be constructed using the shortcut explained in Volume I, Chap-
ter 5, Sect. 4.3.

This is to say that the contents of Part II do not depend on the (heavy) material
from Volume I, Parts III and Appendix.

CHAPTER 5

Formal moduli

Introduction

In this Chapter we prove one of the main results of this book: the existence of
a well-defined procedure of taking a quotient with respect to a formal groupoid.

0.1. Groupoids and quotients.

0.1.1. First off, a groupoid in Spc is an object R●
∈ Spc∆op

that is a Segal space
such that all of its 1-morphisms are invertible. We shall say that R● acts on the
space X = R0. Sometimes we abuse the notation and instead of R● write just the
space R ∶= R1.

In other words, a groupoid acting on X is a space R, equipped with a pair of
projections

R

X X,

ps

~~

pt

and a multiplication map

R ×
pt,X,ps

R
m
→ R

over X ×X, satisfying a homotopy-coherent system of associativity conditions, and
such that the map

R ×
pt,X,ps

R
m,id
Ð→ R ×

pt,X,pt
R

is an isomorphism.

0.1.2. Given a map X → Y in PreStklaft, the Čech nerve construction gives rise to
a canonically defined groupoid R● acting on X with

R =X ×
Y
X.

The above construction is a functor from the category of spaces under X to
that of groupoids acting on X.

This functor admits a fully faithful left adjoint that sends R● to its geometric
realization Y = ∣R●

∣. The image of this left adjoint is the full subcategory consisting
of those X → Y that induce a surjection on π0.

199

200 5. FORMAL MODULI

0.1.3. The notion of groupoid makes sense in arbitrary ∞-category C with finite
limits, see [Lu1, Sect. 6.1.2].

Namely, given an object X ∈ C, a groupoid acting on X is a simplicial object
R● of C with R0

=X such that for any X ′
∈ C, the object

MapsC(X
′,R●

) ∈ Spc∆op

is a groupoid in spaces.

As in the case of C = Spc, given a map X → Y , we canonically attach to it its
Čech nerve, which is a groupoid acting on X.

However, the existence of the left adjoint can only be guaranteed if C has col-
imits. This left adjoint will be fully faithful if geometric realizations in C commute
with fiber products.

0.1.4. Thus, we obtain a well-defined notion of groupoid object R● in PreStklaft

acting on a given X ∈ PreStklaft.

Let X → Y be a map in PreStklaft. Taking its Čech nerve, we obtain a groupoid
R
●. The assignment

R
●
→ ∣R

●
∣

provides a fully faithful left adjoint.

0.2. Formal groupoids.
0.2.1. We now modify our problem: instead of the category PreStklaft, we now
consider the category PreStklaft-def . I.e., we impose the condition that our prestacks
admit deformation theory. In addition, we will restrict to maps between prestacks
that are nil-isomorphisms.

Groupoid objects in this context will be called formal groupoids; for a given X
we denote the category of formal groupoids over X by FormGrpoid(X).

Starting from X ∈ PreStklaft-def and an object R●
∈ FormGrpoid(X), it is not

true that the prestack ∣R
●
∣ admits deformation theory. So, the existence of a fully

faithful left adjoint to the Čech nerve construction is not so obvious in this case.

However, the main result of this chapter, Theorem 2.3.2 says:

Theorem 0.2.2. For X ∈ PreStklaft-def , the Čech nerve construction is an
equivalence between the category of Y ∈ PreStklaft-def equipped with a nil-isomorphism
X → Y and the category FormGrpoid(X).

In other words, this theorem says that, given a formal groupoid R acting on
X , there is a well-defined quotient

BX (R) ∈ (PreStklaft)X /,

such that BX (R) admits deformation theory and the map X → BX (R) is a nil-
isomorphism (it is then automatically inf-schematic).

INTRODUCTION 201

0.2.3. As a particular case of Theorem 0.2.2 we obtain that the loop functor

Y ↦ G ∶= X ×
Y
X

defines an equivalence between the category of Y ∈ PreStklaft, equipped with a pair
of inf-schematic nil-isomorphisms

X
i
→ Y

s
→ X , s ○ i = id

and that of group-objects in the category prestacks G equipped with an inf-schematic
nil-isomorphism G → X . We denote the latter category by Grp(Form/X), and refer
to its objects as formal groups over X .

Thus, to any G as above, we can attach its classifying prestack BX (G)

X
i
→ BX (G)

s
→ X

where i and s are inf-schematic nil-isomorphisms.

0.3. What else is done in this chapter? Let X be an object of Schaff
aft. We

introduce several notions of formal moduli problems associated with X, and we
relate them to notions developed in [Lu6].

0.3.1. A formal moduli problem over X is an inf-scheme Y equipped with a nil-
isomorphism Y →X.

Recall that, by definition, an inf-scheme is a prestack locally almost of finite
type. I.e., Y is encoded by a functor

((
<∞Schaff

ft)/X)
op
→ Spc.

In Proposition 1.2.2, we show that the data of Y is completely determined by
its values on a much smaller category: namely,

(
<∞Schaff

ft)nil-isom to X ⊂ (
<∞Schaff

ft)/X

that consists of those S →X that are nil-isomorphisms.

Moreover, the condition that Y admit deformation theory can also be expressed
via the resulting functor

((
<∞Schaff

ft)nil-isom to X)
op
→ Spc.

0.3.2. Note that when X = pt = Spec(k), the category (
<∞Schaff

ft)nil-isom to X is the
one opposite to that of connective commutative DG algebras A over k that have
finitely many cohomologies, and all of whose cohomologies are finite dimensional,
with H0

(A) local.

So, a formal moduli problem over pt is the same as a functor on the category
of such algebras, subject to some conditions that guarantee deformation theory.

202 5. FORMAL MODULI

0.3.3. Suppose now that X ∈
<∞Schaff

ft . In this case, we study the notion of formal
moduli problem under X. By definition, this is an inf-scheme Y, equipped with a
nil-isomorphism

X → Y.

We show that the data of such Y, viewed as a functor (
<∞Schaff

ft)
op
→ Spc, is

recovered from its values on a smaller category, namely the category

(
<∞Schaff

ft)nil-isom from X ⊂ (
<∞Schaff

ft)X/,

consisting of those X → S that are nil-isomorphisms.

0.3.4. Note that when X = pt, for an object Y ∈ PreStklaft to be a formal moduli
problem under X simply means that Y is an inf-scheme with red

Y = pt.

I.e., formal moduli problems under pt are the same as formal moduli problems
over pt.

1. Formal moduli problems

In this section we introduce the notions of formal moduli problem over and
under a given prestack X .

Let us note the following substantial difference between our set-up and that of
[Lu6] (in which the case X = pt):

In the context of loc.cit. a formal moduli problem is a functor on the cate-
gory of connective finite-dimensional commutative DG algebras over k, whose 0-th
cohomology is local.

By contrast, our formal moduli problems (for X = pt) are objects Y ∈ PreStklaft-def

with red
Y = pt, so they can be evaluated on connective commutative finite-dimensional

DG algebras over k. The two notions are related by the procedures of restriction and
left Kan extension; the fact that these two procedures are inverses of one another
is the consequence of Chapter 2, Corollary 4.4.6.

1.1. Formal moduli problems over a prestack. Unlike [Lu6], we define the
category of formal moduli problems over a given X to be a full subcategory in
(PreStklaft)/X . The equivalence of this definition and the one in loc. cit. will be
established in Sect. 1.2.

1.1.1. Let us fix X ∈ PreStklaft. We define

FormMod/X ⊂ (PreStklaft)/X

to be the full subcategory of spanned by those Y → X , for which the above map is:

● inf-schematic (see Chapter 2, Definition 3.1.5 for what this means);
● a nil-isomorphism (i.e., red

Y →
red
X is an isomorphism).

We shall refer to FormMod/X as the category of formal moduli problems over
X .

1.1.2. Let X ′ be an object of FormMod/X . We will use the notation

FormModX ′/ /X

to denote the category
(FormMod/X)X ′/.

1. FORMAL MODULI PROBLEMS 203

1.1.3. The following results easily from the definitions:

Lemma 1.1.4. Let Y → X be a map in PreStklaft. Then Y ∈ FormMod/X

if and only if for every S ∈
<∞Schaff

ft , the prestack S ×
X
Y is an infscheme and

red
(S ×
X
Y)→

redS is an isomorphism.

1.1.5. The following will be useful:

Lemma 1.1.6. The functor

FormMod/X → lim
(Z,x)∈((<∞Schaff

ft)/X)op
FormMod/Z

is an equivalence.

1.2. Situation over an affine scheme. In this subsection we will assume that
that X = X ∈ Schaff

aft. We will show that a formal moduli problem over X, viewed
as a functor

((
<∞Schaff

ft)/X)
op
→ Spc,

is completely determined by its value on those Z ∈ (
<∞Schaff

ft)/X for which redZ →
redX is an isomorphism.

Note that when X = pt, the category ((
<∞Schaff

ft)/X)
op is the same as that

of connective finite-dimensional commutative DG algebras over k, whose 0-th co-
homology is local. This brings us in contact with the defintion of formal moduli
problems in [Lu6].

1.2.1. We have:

Proposition 1.2.2.

(a) Every Y ∈ FormMod/X , viewed as a functor

((
<∞Schaff

ft)/X)
op
→ Spc,

is the left Kan extension of its restriction to the full subcategory

(1.1) ((
<∞Schaff

ft)nil-isom to X)
op

⊂ ((
<∞Schaff

ft)/X)
op.

(b) Let Ynil-isom be a presheaf on the category (
<∞Schaff

ft)nil-isom to X , satisfying:

● Ynil-isom(
redX) = ∗;

● For a push-out diagram S1 ⊔
S
S′ in (

<∞Schaff
ft)nil-isom to X , where S → S′

has a structure of square-zero extension, the resulting map

Ynil-isom(S1 ⊔
S
S′)→ Ynil-isom(S1) ×

Ynil-isom(S)
Ynil-isom(S′)

is an isomorphism.

Then if

Y ∈ (PreStklaft)/X

denotes the left Kan extension of Ynil-isom under (1.1), then Y ∈ FormMod/X .

(c) The assignments

Y ↦ Y ∣(<∞Schaff
ft)nil-isom to X

and Ynil-isom ↦ Y

are mutually inverse equivalences of categories.

204 5. FORMAL MODULI

Proof. Point (a) follows from Chapter 2, Corollary 4.3.4.

Point (b) follows from Chapter 2, Proposition 4.4.5.

Point (c) follows from Chapter 2, Corollary 4.4.6. �

1.2.3. The following assertion will be used extensively in Chapter 7:

Corollary 1.2.4. For Y ∈ FormMod/X , the map

colim
(Z,f)

f IndCoh
∗ (ωZ)→ ωY

is an isomorphism, where the colimit is taken over the category

((
<∞Schaff

)nil-isom to X)/Y .

Proof. By Proposition 1.2.2, the functor

((
<∞Schaff

)nil-isom to X)/Y → (
<∞Schaff

)/Y

is cofinal. Hence, the restriction functor

IndCoh(Y)→ lim
(Z,f)

IndCoh(Z)

is an isomorphism, where the limit is taken over the category ((
<∞Schaff

)nil-isom to X)/Y .

By Chapter 3, Corollary 4.3.4 and Volume I, Chapter 1, Proposition 2.5.7, we
obtain that the functors f IndCoh

∗ ∶ IndCoh(Z)→ IndCoh(Y) define an equivalence

colim
(Z,f)

IndCoh(Z)→ IndCoh(Y),

where the colimit is taken with respect to the (IndCoh,∗)-direct image functors.

In particular, we obtain that

ωY ≃ colim
(Z,f)

f IndCoh
∗ ○ f !

(ωY) ≃ colim
(Z,f)

f IndCoh
∗ (ωZ),

as required.
�

1.3. Formal moduli problems under a prestack. In this subsection we con-
sider a prestack

X ∈ PreStklaft-def .

We will consider another paradigm for formal moduli problems, by looking at
prestacks under X .

1.3.1. We define the category FormModX / to be the full subcategory of (PreStklaft)X /
spanned by those X → Y, for which:

● Y ∈ PreStklaft-def ;
● The map X → Y is a nil-isomorphism.

Note that since in the above definition, the map X → Y is automatically inf-
schematic, and so realizes X as an object of FormMod/Y .

1. FORMAL MODULI PROBLEMS 205

1.3.2. Let X ′ be an object of FormModX /. Note that the category

(FormModX /)/X ′

identifies with

FormModX / /X ′

from Sect. 1.1.2.

1.3.3. Note that when X = pt, there is no difference between FormModX / and
FormMod/X .

1.4. Formal moduli problems under an affine scheme. In this subsection
we specialize to the case when

X =X ∈
<∞Schaff

ft .

We will show that a formal moduli problem Y under X, viewed as a functor

(
<∞Schaff

ft)
op
→ Spc,

is completely determined by its value on the category of affine schemes Z, equipped
with a nil-isomorphism X → Z.

1.4.1. Let

(
<∞Schaff

ft)nil-isom from X ⊂ (
<∞Schaff

ft)X/

be the full subcategory formed by those f ∶X → Z, for which f is a nil-isomorphism.

For a prestack Y under X, consider the functor

Y ∣(<∞Schaff
ft)nil-isom from X

×
Maps(X,Y)

∗ ∶ (
<∞Schaff

ft)nil-isom from X → Spc

that sends X → S to

Maps(S,Y) ×
Maps(X,Y)

∗.

We claim:

Proposition 1.4.2.

(a) For Y ∈ FormModX/, viewed as a functor

(
<∞Schaff

ft)
op
→ Spc,

the map

LKE((<∞Schaff
ft)nil-isom from X)op→(<∞Schaff

ft)op(Y ∣(<∞Schaff
ft)nil-isom from X

×
Maps(X,Y)

∗)→ Y

is an isomorphism.

(b) Let Ynil-isom be a presheaf on (
<∞Schaff

ft)nil-isom from X , satisfying:

● Ynil-isom(X) = ∗;

● For a push-out diagram S1 ⊔
S
S′ in (

<∞Schaff
ft)nil-isom from X , where S → S′

has a structure of square-zero extension, the resulting map

Ynil-isom(S1 ⊔
S
S′)→ Ynil-isom(S1) ×

Ynil-isom(S)
Ynil-isom(S′)

is an isomorphism.

206 5. FORMAL MODULI

Then if Y ∈ PreStklaft denotes the left Kan extension of Ynil-isom under

((
<∞Schaff

ft)nil-isom from X)
op
→ (

<∞Schaff
ft)

op,

then the canonical map X → Y makes Y into an object of FormModX/.

(c) The assignments

Y ↦ Y ∣(<∞Schaff
ft)nil-isom from X

×
Maps(X,Y)

∗ and Ynil-isom ↦ Y

are mutually inverse equivalences of categories.

Proof. Applying Chapter 2, Corollary 4.3.4, Proposition 4.4.5 and Corollary
4.4.6, it is enough to evaluate the functor Y as in the proposition on the subcategory

(
<∞Schaff

ft) ×
redSchaff

ft

{
redX}.

The assertion of the proposition follows now from the fact that the forgetful
functor

(
<∞Schaff

ft)nil-isom from X → (
<∞Schaff

ft) ×
redSchaff

ft

{
redX}

admits a left adjoint, given by

S ↦ S ⊔
redX

X.

�

1.4.3. As a corollary, we obtain:

Corollary 1.4.4. For Y ∈ FormModX/, the map

colim
(Z,f)

f IndCoh
∗ (ωZ)→ ωY

is an isomorphism, where the colimit is taken over the category

((
<∞Schaff

)nil-isom from X)/Y .

Proof. Same as that of Corollary 1.2.4. �

1.5. The pointed case. For X ∈ PreStklaft we consider the category

Ptd(FormMod/X) = FormModX / /X

of pointed objects in FormMod/X .

1.5.1. By definition, Ptd(FormMod/X) is the category of diagrams

(π ∶ Y ⇄ X ∶ s), π ○ s = id

with the map π being an inf-schematic nil-isomorphism.

Note also that if X ∈ PreStklaft-def , then

Ptd(FormMod/X) ≃ (Ptd(FormModX /)/X .

Combining Propositions 1.2.2 and 1.4.2, we obtain:

1. FORMAL MODULI PROBLEMS 207

Corollary 1.5.2. For X ∈
<∞Schaff

ft we have:

(a) Any Y ∈ Ptd(FormMod/X), viewed as a functor

((
<∞Schaff

ft)/X)
op
→ Spc,

receives an isomorphism from the left Kan extension along

(Ptd((<∞Schaff
)nil-isom to X))

op
→ ((

<∞Schaff
ft)/X)

op

of

YPtd((<∞Schaff)nil-isom to X) ×
Maps(X,Y)

∗.

(b) Let Ynil-isom be a presheaf on Ptd((<∞Schaff
)nil-isom to X), satisfying:

● Ynil-isom(X) = ∗;

● For a push-out diagram S1⊔
S
S′ in Ptd((<∞Schaff

)nil-isom to X), where S → S′

has a structure of square-zero extension, the resulting map

Ynil-isom(S1 ⊔
S
S′)→ Ynil-isom(S1) ×

Ynil-isom(S)
Ynil-isom(S′)

is an isomorphism.

Then if Y ∈ (PreStklaft)/X denotes the left Kan extension of Ynil-isom along

(Ptd((<∞Schaff
)nil-isom to X))

op
→ ((

<∞Schaff
ft)/X)

op,

then the canonical map X → Y makes Y into an object of Ptd(FormMod/X).

(c) The assignments

Y ↦ Y ∣Ptd((<∞Schaff)nil-isom to X) ×
Maps(X,Y)

∗ and Ynil-isom ↦ Y

are mutually inverse equivalences of categories.

Remark 1.5.3. The informal meaning of this corollary is that in order to
‘know’ an object Y ∈ Ptd(FormMod/X) as a prestack, it is is enough to test it
on affine schemes S, equipped with a nil-isomorphism to X and a section of this
nil-isomorphisms.

1.5.4. As in the case of Corollary 1.2.4, from Corollary 1.5.2, we obtain:

Corollary 1.5.5. For Y ∈ Ptd(FormMod/X), the map

colim
(Z,f)

f IndCoh
∗ (ωZ)→ ωY

is an isomorphism, where the colimit is taken over the category

(Ptd((<∞Schaff
)nil-isom to X))/Y .

1.6. Formal groups. In this subsection we let X be an object of PreStklaft, and
we introduce formal groups over X as group-objects in the category of formal moduli
problems.

In Chapter 7 we will show that the category of formal groups identifes with
that of Lie algebras in IndCoh(X), thereby generalizing the main result in [Lu6].

208 5. FORMAL MODULI

1.6.1. Let Monoid(FormMod/X) be the category of monoid-objects in Ptd(FormMod/X),
and let

Grp(FormMod/X) ⊂ Monoid(FormMod/X)

be the full subcategory spanned by group-like objects.

Lemma 1.6.2. The inclusion Grp(FormMod/X) ⊂ Monoid(FormMod/X) is an
equivalence.

Proof. We need to show that for H ∈ Monoid(FormMod/X) the map

H ×
X
H →H ×

X
H, (h1, h2)↦ (h1, h1 ⋅ h2)

is an isomorphism.

This follows from Chapter 1, Corollary 8.3.6, applied to the Cartesian square

H

h↦(1,h)
ÐÐÐÐ→ H ×

X
H

id
×
×
×
Ö

×
×
×
Ö

(h1,h2)↦(h1,h1⋅h2)

H

h↦(1,h)
ÐÐÐÐ→ H ×

X
H.

�

1.6.3. We have a naturally defined functor

(1.2) ΩX ∶ Ptd(FormMod/X)→ Grp(FormMod/X), Y ↦ X ×
Y
X .

In Sect. 2.3.4 we will prove:

Theorem 1.6.4. The functor ΩX of (1.2) is an equivalence.

In what follows we shall denote by BX the functor

Grp(FormMod/X)→ Ptd(FormMod/X),

inverse to ΩX .

1.6.5. Combining Theorem 1.6.4 with Chapter 7, Corollary 3.6.3 (which will be
proved independently), we obtain:

Corollary 1.6.6. The category Ptd(FormMod/X) contains sifted colimits,
and the functor

(X → Y → X)↦ T (X /Y) ∶ Ptd(FormMod/X)→ IndCoh(X)

preserves sifted colimits.

Remark 1.6.7. Note, however, that the forgetful functor

Ptd(FormMod/X)→ Ptd((PreStklaft)/X)

does not preserve sifted colimits.

2. GROUPOIDS 209

1.6.8. Assume for a moment that X ∈ PreStklaft-def . Consider the category FormModX /.
We note that even before we knew that the category FormModX / contains sifted
colimits, we could conclude that forgetful functor

(X → Y → X)↦ (X → Y) ∶ Ptd(FormMod/X)→ FormModX /

preserves colimits. This follows from the fact that the above functor admits a right
adjoint, given by

(X → Y
′
)↦ (X → X ×

XdR

Y
′
).

2. Groupoids

In this section we introduce the notion of formal groupoid over a given object
X ∈ PreStklaft. We show that if X admits deformation theory, then there is a well-
defined procedure of taking a quotient by a formal groupoid, that produces another
object of PreStklaft-def .

2.1. Digression: groupoids and groups over spaces. In this subsection we
review the definition of the notion of groupoid acting on a space in the category
Spc.

2.1.1. Given a space X, recall the category Grpoid(X) of groupoids acting on
X (see [Lu1], Sect. 6.1.2). By definition, Grpoid(X) is a full subcategory in the
category of simplicial spaces, equipped with an identification of the space of 0-
simplices with X. A simplicial object R● belongs to Grpoid(X) if the following two
conditions are satisfied:

● For every n ≥ 2, the map

Rn → R1
×
X
... ×
X
R1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

is an isomorphism. 1

● The map R2
→ R1

×
X
R1, given by the product of the maps [1]→ [2]

0↦ 0,1↦ 1 and 0↦ 0,1↦ 2,

is an isomorphism.

We shall symbolically depict a groupoid via a diagram

R

X X,

ps

~~

pt

(2.1)

while properly we should be thinking about the entire simplicial object R● of Spc
with R0

=X and R1
= R.

The category Grpoid(X) contains an initial object, the identity groupoid, where
all Ri =X. We shall denote it by diagX .

The category Grpoid(X) also contains a final object, namely X ×X.

1If we impose just this condition, the corresponding category is that of Segal objects (a.k.a.

category-objects) acting on X, denoted Seg(X).

210 5. FORMAL MODULI

2.1.2. The following assertion will be used repeatedly:

Lemma 2.1.3. The forgetful functor Grpoid(X) → Spc that sends a groupoid
to Rn for any n preserves sifted colimits.

Proof. Follows from the fact that if I is a sifted index category and

i↦ R●
i

is an I family of objects of Grpoid(X), the map

colim
i

(R1
i ×
X
... ×
X
R1
i)→ (colim

i
R1
i) ×

X
... ×
X

(colim
i

R1
i)

is an isomorphism.
�

2.1.4. Given a groupoid R acting on X we can consider the quotient space

X/R ∶= ∣R●
∣,

which receives a natural map from X:

X = R0
→ ∣R●

∣→X/R.

Vice versa, given a space Y under X, we construct the groupoid over X by
R ∶=X ×

Y
X, i.e., R● is the Čech nerve of the above map X → Y .

It is clear that the two functors

Grpoid(X)⇄ SpcX/

are adjoint to one another.

We have:

Lemma 2.1.5. The above two functors define equivalences between the category
Grpoid(X) and the full subcategory SpcX/,surj of SpcX/ spanned by objects i ∶X →
Y , for which the map i is surjective on π0.

2.1.6. Given a space X, consider the category

Grp(Spc/X),

of group-objects in the category of spaces over X. We have:

Grp(Spc/X) ≃ Grpoid(X)/diagX
,

where diagX ∈ Grpoid(X) is the identity groupoid.

Consider also the category Ptd(Spc/X), which is the same as the category of
of retraction diagrams

(2.2) i ∶X ⇄ Y ∶ s, s ○ i ≃ idX .

We will also use the notation

SpcX/ /X

for the above category.

We have a natural functor

(2.3) Grp(Spc/X)→ Ptd(Spc/X),

2. GROUPOIDS 211

given by

G↦ BX(G),

where BX(G) is the relative classifying space over X.

We also have the adjoint loop functor

ΩX ∶ Ptd(Spc/X)→ Grp(Spc/X).

Lemma 2.1.7. The functors BX and ΩX define an equivalence between Grp(Spc/X)

and the full subcategory Ptd(Spc/X)isom of Ptd(Spc/X), spanned by those objects

i ∶X ⇄ Y ∶ s

for which the map i is an isomorphism on π0.

Note that the condition on an object (i ∶X ⇄ Y ∶ s) ∈ Ptd(Spc/X) to belong to

Ptd(Spc/X)isom ⊂ Ptd(Spc/X)

is equivalent to the map i being a surjection on π0.

2.2. Groupoids in formal geometry. In this subsection we render the set-up
of Sect. 2.1 into the context of algebraic geometry.

2.2.1. The definitions of Sect. 2.1 carry over automatically to the algebro-geometric
setting. For X ∈ PreStklaft, we consider the categories

(PreStklaft)/X , Ptd((PreStklaft)/X), Grp((PreStklaft)/X), Grpoidlaft(X), and Seglaft(X)

and their full subcategories

FormMod/X , Ptd(FormMod/X), Grp(FormMod/X), FormGrpoid(X), and FormSeg(X)

formed by objects that are formal as prestacks over X .

Note, however, that as in Lemma 1.6.2, one shows that the inclusion

FormGrpoid(X)↪ FormSeg(X)

is an equivalence.

2.2.2. Examples. Let X → Y be a map between objects of PreStklaft. To it we
attach the object of Grpoidlaft(X), namely, the Čech nerve of this map. Thus, the
corresponding

R⇉ X

is given by

X ×
Y
X .

If the above map X → Y is an inf-schematic nil-isomorphism, thenR ∈ FormGrpoid(X).

212 5. FORMAL MODULI

2.2.3. As in Lemma 2.1.3, we obtain:

Corollary 2.2.4. The category FormGrpoid(X) contains sifted colimits, and
the functors

FormGrpoid(X)→ FormModX /, FormGrpoid(X)⇉ Ptd(FormMod/X)

and

FormGrpoid(X)→ IndCoh(X)

that send a groupoid to

(X
unit
→ R), (X

unit
⇄
ps
R), (X

unit
⇄
pt
R),

and T (X /R), respectively, commute with sifted colimits.

Proof. Let I be a filtered index category and

i↦R●
i

be an I-family of objects of FormGrpoid(X). It follows from Corollary 1.6.6,
Sect. 1.6.8 and Chapter 1, Proposition 8.3.2 that for any n, the colimit

colim
i

(R
1
i ×X

... ×
X
R

1
i)

exists and the map

colim
i

(R
1
i ×X

... ×
X
R

1
i)→ (colim

i
R

1
i) ×X

... ×
X

(colim
i
R

1
i)

is an isomorphism.
�

2.2.5. Ind-coherent sheaves equivariant with respect to a groupoid. Let X ∈ PreStklaft;
let R be an object of FormGrpoid(X), and let R● be the corresponding simplicial
object of PreStklaft. We define the category

IndCoh(X)
R

of ind-coherent sheaves equivariant with respect to a R to be

Tot(IndCoh(R●
)).

By Chapter 3, Proposition 3.3.3(b), we have:

Proposition 2.2.6. Let R be the formal groupoid corresponding to a map
X → Y in PreStklaft, which is an inf-schematic nil-isomorphism X → Y. Then the
pullback functor defines an equivalence

IndCoh(Y)→ IndCoh(X)
R.

2.3. Taking the quotient by a formal groupoid. In this subsection we state
one of the main results of this book: namely that in the world of prestacks admitting
deformation theory there is a well-defined procedure of taking the quotient by a
formal groupoid.

2. GROUPOIDS 213

2.3.1. Assume that X ∈ PreStklaft-def . Recall the category FormModX /, see Sect. 1.3.1.
We have a naturally defined functor

(2.4) FormModX / → FormGrpoid(X),

namely, Y ↦ X ×
Y
X , see Sect. 2.2.2.

The main result of this section is the following:

Theorem 2.3.2. The functor (2.4) is an equivalence.

2.3.3. An example. Let X → Y be a map in PreStklaft-def . Consider the formal
completion Y∧X of Y along X , i.e.,

Y
∧
X ∶= XdR ×

YdR

Y.

Then the map X → Y∧X defines an object of FormModX /.

Consider the groupoid
X ×
Y
X ,

(see Sect. 2.2.2) and its formal completion along the diagonal map,

(X ×
Y
X)

∧.

It is easy to see that
(X ×

Y
X)

∧
≃ X ×

Y∧
X

X ,

where the latter is an object of FormGrpoid(X) by Sect. 2.2.2.

Thus, the formal completion Y∧X can be recovered from (X ×
Y
X)

∧ by taking the

functor inverse to that in Theorem 2.3.2.

2.3.4. Note that Theorem 2.3.2 implies Theorem 1.6.4:

Proof. To prove Theorem 1.6.4 we can assume that X ∈ Schaff
aft. In particular,

we can assume that X ∈ PreStklaft-def . Then the required assertion follows from
Theorem 2.3.2 by noting that

Grp(FormModX) = FormGrpoid(X)/diagX
,

and
Ptd(FormMod/X) = (FormModX /)/X .

�

2.3.5. As another formal consequence of Theorem 2.3.2, combined with Corol-
lary 2.2.4, we obtain:

Corollary 2.3.6. The category FormModX / contains sifted colimits, and the
functor

FormModX / → IndCoh(X), (X → Y)↦ T (X /Y)

commutes with sifted colimits.

We emphasize again that the forgetful functor

FormModX / → (PreStklaft)X /

does not commute with sifted colimits.

However, from Chapter 1, Corollary 7.2.8, we obtain:

214 5. FORMAL MODULI

Corollary 2.3.7. The forgetful functor

FormModX / → (PreStklaft)X /

commutes with filtered colimits.

2.4. Constructing the classifying space of a groupoid. In this subsection
we will begin the proof of Theorem 2.3.2. In fact, we will explicitly construct the
inverse functor.

2.4.1. For R ∈ FormGrpoid(X) we define an object BX (R) ∈ PreStklaft as follows:

For Z ∈
<∞Schaff

ft , we let Maps(Z,BX (R)) be the groupoid consisting of the
following data:

{(Z̃ → Z) ∈ FormMod/Z , Z̃ → X , a map of groupoids Z̃ ×
Z
Z̃ →R},

where we require that the diagram

Z̃ ×
Z
Z̃ ÐÐÐÐ→ R

×
×
×
Ö

×
×
×
Ö

Z̃ ÐÐÐÐ→ X

be Cartesian, where the vertical arrows are either of the projections.

2.4.2. We have a tautological map X → BX (R) that sends Z → X to

Z̃ ∶= Z ×
X
R,

where the fiber product Z ×
X
R is formed using the map p1 ∶ R → X , and the map

Z ×
X
R→ X corresponds to p2 ∶R→ X .

2.4.3. Let us show that the map X → BX (R) makes X into an object of FormMod/BX (R).
Indeed, for a given map Z → BX (R), the fiber product

Z ×
BX (R)

X

identifies with Z̃.

The latter observation also implies that

(2.5) X ×
BX (R)

X ≃R.

2.4.4. We claim that it suffices to show that the objectBX (R) belongs to PreStklaft-def .
Indeed, let us assume this for the moment and conclude the proof of the theorem.

First, (2.5) implies that the construction

(2.6) R↦ BX (R)

is a right inverse to the functor (2.4). In particular, the functor (2.4) is essentially
surjective.

For Y ∈ FormModX / we have a tautological map

(2.7) Y → BX (X ×
Y
X),

given by (X → Y) ∈ FormMod/Y , which becomes an isomorphism after applying
the functor (2.4). Hence, by Chapter 1, Proposition 8.3.2, the map (2.7) is an

2. GROUPOIDS 215

isomorphism. Hence, the construction (2.6) is also the left inverse of the functor
(2.4).

We will now show that the functor (2.4) is fully faithful, thereby finishing the
proof of Theorem 2.3.2. (The caveat here is that it is not clear a priori that the
construction (2.6) is a functor2.)

2.4.5. Given Y1,Y2 ∈ FormModX /, we will explicitly construct an inverse to the
map

(2.8) MapsFormModX/
(Y1,Y2)→MapsFormGrpoid(X)(R1,R2),

where Ri = X ×
Yi
X . Note that we already know that Yi ≃ BX (Ri).

First, it follows from the construction (2.6) that for Z ∈ PreStklaft-def , the
groupoid of maps Z → BX (R) admits the same description as in Sect. 2.4.1 with
Z replaced by Z.

Thus, given a point in MapsFormGrpoid(X)(R1,R2), we need to produce an

object B̃X (R1) ∈ FormGrpoid/BX (R1), a map B̃X (R1)→ X and a map of groupoids

B̃X (R1) ×
BX (R1)

B̃X (R1)→R2,

making the corresponding diagrams Cartesian.

Note, however, that R1 ×
X
R2 can be viewed as a groupoid acting on R2. We

set

B̃X (R1) ∶= BR2(R1 ×
X
R2).

It is easy to check that B̃X (R1) has all the required pieces of structure. More-
over, it follows from the construction that the resulting map

MapsFormGrpoid(X)(R1,R2)→MapsFormModX/
(Y1,Y2)

is indeed the inverse of (2.8).

2.5. Verification of deformation theory. In this subsection we will prove that
the object BX (R) ∈ PreStklaft constructed in Sect. 2.4.1, admits deformation the-
ory.

2.5.1. Let Z be an object of Z ∈
<∞Schaff

ft , equipped with a map to BX (R). We will
now construct a certain object of Pro(QCoh(Z)

−
)laft, which we will later identify

with the pro-cotangent space to BX (R) at our given point Z → BX (R).

Consider the Čech nerve Z̃● of the corresponding map Z̃ → Z, and consider
the resulting map of simplicial prestacks

Z̃
●
→R

●.

Let

T ∗(Z̃●/R●
) ∈ Tot (Pro(QCoh(Z̃●)−)fake

laft)

be the corresponding relative pro-cotangent complex (see Chapter 1, Sect. 4.3.1),
which receives a canonically defined map from the pullback of T ∗(Z).

2We are grateful to Y. Zhao for pointing this out to us.

216 5. FORMAL MODULI

By nil-descent for Pro(QCoh(−)−)fake
laft with respect to Z̃ → Z (see Chapter 3,

Corollary 3.3.5), we obtain that T ∗(Z̃●/R●
) gives rise to a canonically defined

object, denoted,
′T ∗(Z/BX (R)) ∈ Pro(QCoh(Z)

−
)laft,

which receives a map from T ∗(Z). Set

′T ∗(BX (R))∣Z ∶= Fib (T ∗(Z)→
′T ∗(Z/BX (R))) .

We will show that the above object

′T ∗(BX (R))∣Z ∈ Pro(QCoh(Z)
−
)laft,

identifies with the pro-cotangent space of BX (R) at the above point Z → BX (R).

2.5.2. We need to show that, given a square-zero extension Z ↪ Z ′, corresponding
to

γ ∶ T ∗(Z)→ I[1], I ∈ Coh(Z)
≤0,

the groupoid of extensions of the initial map Z → BX (R) to a map Z ′
→ BX (R),

identifies canonically with groupoid of factorizations of γ as

T ∗(Z)→
′T ∗(Z/BX (R))∣Z → I[1].

This will show that BX (R) admits pro-cotangent spaces that are indeed identi-
fied with ones constructed in Sect. 2.5.1, and that BX (R) is infinitesimally cohesive.
The fact that BX (R) admits a pro-cotangent complex (i.e., that the formation of
pro-cotangent spaces is compatible with pullback) will follow from the construction
in Sect. 2.5.1.

2.5.3. For Z ↪ Z ′ as above, by Chapter 1, Proposition 10.3.5, the datum of a
prestack Z ′ → Z ′, equipped with a Cartesian diagram

Z̃ ÐÐÐÐ→ Z̃
′

×
×
×
Ö

×
×
×
Ö

Z ÐÐÐÐ→ Z ′

is equivalent to that of a map T ∗(Z̃)→ I ∣Z̃[1] (in the category Pro(QCoh(Z̃)
−
)
fake
laft),

and a homotopy between the composition

T ∗(Z)∣Z̃ → T ∗(Z̃)→ I ∣Z̃[1]

and γ∣Z̃ . Moreover, by Chapter 1, Proposition 10.4.2, such Z ′ is automatically an
inf-scheme.

The same discussion applies to each term of the Čech nerve Z̃●.

Furthermore, by Chapter 1, Proposition 10.2.6 the datum of a compatible sys-
tem of maps from the Čech nerve Z̃ ′● to R●, extending the initial system Z̃● →R●,
is equivalent to a compatible system of factorizations of the resulting maps

T ∗(Z̃●)→ I ∣Z̃●[1]

as

T ∗(Z̃●)→ T ∗(Z̃●/R●
)→ I ∣Z̃●[1].

2. GROUPOIDS 217

2.5.4. Hence, we obtain that the datum of extension of the initial map Z → BX (R)

to a map Z ′
→ BX (R) is equivalent to that of a compatible family of maps

T ∗(Z̃●/R●
)→ I ∣Z̃●[1],

and homotopies between

T ∗(Z)∣Z̃● → T ∗(Z̃●/R●
)→ I ∣Z̃●[1]

and γ∣Z̃● .

By nil-descent for Pro(QCoh(−)−)fake
laft with respect to Z̃ → Z, the latter datum

is equivalent to that of factorizations of γ as

T ∗(Z)→
′T ∗(Z/BX (R))∣Z → I[1],

as desired.

CHAPTER 6

Lie algebras and co-commutative co-algebras

Introduction

0.1. Why does this chapter exist? Only a small portion of this chapter consists
of original mathematics: if anything, it would be Theorem 6.1.2 (that expresses the
functor of universal enveloping Lie algebra in terms of the Chevalley functor), and
perhaps also Theorem 2.9.4 (that computes primitives in ‘fake’ co-free co-algebras).

Our main intention in writing this chapter was to provide a reference point
for Chapter 7, where we will study the relation between moduli problems and Lie
algebras.

0.1.1. The main actors in our study of Lie algebras will be the pair of mutually
adjoint functors

(0.1) Chevenh
∶ LieAlg(O)⇄ CocomCoalgaug

(O) ∶ coChevenh

that connect Lie algebras and augmented co-commutative co-algebras in a given
symmetric monoidal category O. (In our applications in the subsequent chapters

we will take O = IndCoh(X), where X ∈ PreStklaft, equipped with the
!
⊗ symmetric

monoidal structure.)

The difficulty here (and what makes the game interesting) is that the above
functors are not fully faithful, but they are close to being such.

For example, we conjecture that the unit and the co-unit of the adjunction

Id→ coChevenh
○Chevenh and Chevenh

○ coChevenh
→ Id

become isomorphisms when evaluated on the essential image of coChevenh and
Chevenh, respectively.

We will now describe the two main results of this chapter.

0.1.2. One is Theorem 4.2.4, which is a particular case of the more general Theo-
rem 2.9.4. It says that the unit of the adjunction

Id→ coChevenh
○Chevenh

is an isomorphism, when evaluated on any trivial Lie algebra.

As a consequence we deduce (see Theorem 4.4.6) that if we precompose the
Chevalley functor with the loop functor

ΩLie ∶ LieAlg(O)→ Grp(LieAlg(O)),

and view the result as a functor

Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O),

the latter will be fully faithful.

219

220 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

A key observation here is that for a Lie algebra h, if we view ΩLie(h) again
as a mere Lie algebra (i.e., disregard the Lie algebra structure), then it will be
canonically trivialized (see Proposition 1.7.2). The latter result is true for any
operad1.

0.1.3. The second main result of this chapter is Theorem 6.1.2:

It says that the functor

Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O),

considered above identifies canonically with the functor that assigns to a Lie algebra
its universal enveloping algebra, considered as a co-commutative Hopf algebra.

0.2. What else is done in this chapter?
0.2.1. In Sect. 1 we give an overview of the general theory of algebras over operads.

We show that for a given operad P, a P-algebra B can be canonically lifted
to non-negatively filtered P-algebra BFil, such that its associated graded is trivial.
This construction implies that many functors from the category of P-algebras admit
filtered versions, whose associated graded is easy to control.

In addition, we prove the above-mentioned fact that the loop functor followed by
the forgetful functor on the category of P-algebras canonically produces trivial P-
algebras. As an application we give a simple proof of the fact that the stabilization
of the category of P-algebras (in a symmetric monoidal DG category O) identifies
with O itself.

0.2.2. In Sect. 2 we review the theory of Koszul duality between algebras over an
operad and co-algebras over the Koszul dual operad.

One of the key points is that there are two inequivalent notions of co-algebra
over a co-operad. One is the usual notion of co-algebra (which in the example of the
co-commutative co-operad corresponds to augmented co-commutative co-algebras).
And another is that of ind-nilpotent co-algebra. There is a naturally defined functor
(denoted res⋆→∗) from the category of the latter (denoted Q -Coalgind-nilp

(O)) to
the category of the former (denoted Q -Coalg(O)), and we conjecture that this
functor is fully faithful.

The forgetful functor oblvind-nilp
Q ∶ Q -Coalgind-nilp

(O) → O admits a right

adjoint, denoted cofreeind-nilp
Q . Composing with the functor

res⋆→∗ ∶ Q -Coalgind-nilp
(O)→ Q -Coalg(O),

we obtain the functor that we denote by

cofreefake
Q ∶ O→ Q -Coalg(O).

For example, for Q = Cocomaug, the functor cofreefake
Q is the functor of sym-

metric co-algebra V ↦ Sym(V).

1In this generality we learned this fact, along with its proof, from M. Kontsevich.

INTRODUCTION 221

If we knew that the functor res⋆→∗ was fully faithful, we would know that for
V,W ∈ O the composite map

(0.2) MapsO(W,V) ≃ MapsO(oblvind-nilp
Q ○ trivind-nilp

Q (W), V) ≃

≃ MapsQ -Coalgind-nilp(O)(triv
ind-nilp
Q (W),cofreeind-nilp

Q (V))→

→MapsQ -Coalg(O)(res⋆→∗ ○ trivind-nilp
Q (W), res⋆→∗ ○ cofreeind-nilp

Q (V)) ≃

≃ MapsQ -Coalg(O)(trivQ(W),cofreefake
Q (V))

is an isomorphism.

Unfortunately, we do not know whether res⋆→∗ is fully faithful. However,
we prove, and this is one of the key technical assertions, that for a certain class
of co-operads (that includes Cocomaug and Coassocaug) that map in (0.2) is an
isomorphism. This is Theorem 2.9.4.

0.2.3. In Sect. 3 we specialize the context of Koszul duality to the case of associa-
tive algebras.

0.2.4. In Sect. 4 we prove Theorem 4.4.6, mentioned above, which says that the
functor

Grp(coChevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O),

is fully faithful.

We study the functor

CocomBialg(O)

Monoid(coChevenh)
Ð→ Monoid(LieAlg(O)) ≃ Grp(LieAlg(O))

BLie
Ð→ LieAlg(O),

right adjoint to Grp(coChevenh
) ○ΩLie.

We show that it fits into a commutative diagram

CocomBialg(O)
oblvAssoc
ÐÐÐÐÐ→ CocomCoalgaug

(O)

BLie○Monoid(coChevenh)
×
×
×
Ö

×
×
×
Ö

PrimCocomaug

LieAlg(O)
oblvLie
ÐÐÐÐ→ O.

I.e., we obtain that when we apply the functor

PrimCocomaug ∶ CocomCoalgaug
(O)→O

to an object of CocomBialg(O), the result has a natural structure of Lie algebra.

This can be regarded as an ‘ultimate explanation’ of why the tangent space
to a Lie group at the origin has a structure of Lie algebra (one that does not use
explicit formulas).

0.2.5. In Sect. 5 we recall the basic constructions associated with the functor of
universal enveloping algebra of a Lie algebra.

In Sect. 6 we prove the second main result of this chapter, described in Sect. 0.1.3
above.

In Sect. 7 we give an interpretation of an equivalence

h-mod ≃ U(h)-mod

222 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

(here h is a Lie algebra) in terms of the incarnation of UHopf
(h) as

Grp(Chevenh
) ○Ω(h).

0.2.6. In Sect. A we prove Theorem 2.9.4 described in Sect. 0.2.1.

In Sect. B, we prove the PBW theorem in the setting of higher algebra.

0.2.7. In Sect. C we address the following issue: co-commutative bialgebras can
be defined in two ways: as associative algebras in the category of co-commutative
co-algebras or as co-commutative co-algebras in the category of associative algebras.

In the setting of higher algebra it is not obvious that these two definitions lead
to the same object. However, in Proposition C.1.3 we prove that they in fact do.

1. Algebras over operads

In this section, we review the general theory of algebras over operads.

For the purposes of this chapter, we will regard operads as algebras in the
category of symmetric sequences. We review this notion in Sect. 1.1.

In this section, we also review the notions of filtered and graded objects in a DG
category. We show that algebras over operads have a canonical filtration and, as a
result, various functors on the category of algebras over an operad obtain canonical
filtrations.

Finally, for an operad P, we consider group objects in the category of P-
algebras. We show that the underlying P-algebra of a group object in the category
of P-algebras is canonically a trivial P-algebra.

1.1. Operads and algebras. In this subsection we introduce operads and alge-
bras over them (in a given DG category).

1.1.1. Let VectΣ denote the category of symmetric sequences. As a DG category,
we have:

VectΣ
∶= Π
n≥1

Rep(Σn),

i.e., consists of objects

P ∶= {P(n) ∈ Rep(Σn), n ≥ 1}.

The category VectΣ has a canonical symmetric monoidal structure such that
it is the free symmetric monoidal DG category on a single object. It follows by
the (∞,2)-categorical Yoneda lemma Volume I, Chapter 11, Proposition 6.3.7 that

VectΣ is the category of endomorphisms of the functor

DGCat2-Cat,SymMon
cont → 1-Cat

Hence, the category VectΣ is endowed with another natural (non-symmetric)
monoidal structure, called the composition monoidal structure, corresponding to
composition of functors. The unit object

1VectΣ ∈ VectΣ

is the one given by

1VectΣ(1) = k, 1VectΣ(n) = 0 for n > 1.

1. ALGEBRAS OVER OPERADS 223

Let O be a symmetric monoidal DG category. The category O is then a module
category for VectΣ (with the composition monoidal structure). Explicitly, given an

object P ∈ VectΣ and V ∈ O, the action of P on V is given by the formula

P ⋆ V ∶= ⊕
n≥1

(P(n)⊗ V ⊗n
)

Σn
.

1.1.2. A (unital) operad is by definition a unital associative algebra in VectΣ with
respect to the composition monoidal structure.

Convention: Unless explicitly stated otherwise, we will only consider operads P,
for which the unit map defines an isomorphism k → P(1). In particular, such

operads, viewed as associative algebras in VectΣ, are automatically augmented.

1.1.3. For an operad P ∈ AssocAlg(VectΣ
), the category of P -Alg(O) of P-

algebras in O is by definition the category P-mod(O).

We shall denote by

freeP ∶ O⇄ P -Alg(O) ∶ oblvP

the resulting pair of adjoint functors.

The functor oblvP is conservative, and being a right adjoint, it preserves limits.

The composite functor oblvP ○ freeP is given by

V ↦ P ⋆ V = ⊕
n≥1

(P(n)⊗ V ⊗n
)

Σn
.

In particular, it preserves sifted colimits. Thus, the monad on O, defined by P,
preserves sifted colimits. Hence, the forgetful functor oblvP also preserves sifted
colimits.

1.1.4. The augmentation on P gives rise to a functor

trivP ∶ O→ P -Alg(O),

which is a right inverse on oblvP .

1.1.5. We will consider the following operads: Assocaug, Comaug and Lie. By
definition

Assocaug
(n) = kΣn , Comaug

(n) = k.

By definition

Assocaug -Alg(O) =∶ AssocAlgaug
(O) and Comaug -Alg(O) =∶ ComAlgaug

(O)

are the categories of unital augmented (equivalently, non-unital) associative and
commutative algebras in O, respectively2.

We will also consider the operad Lie; this is the classical Lie operad, where we
set by definition Lie(1) = k. We have

Lie -Alg(O) =∶ LieAlg(O);

this the category of Lie algebras in O.

2Note that in the interpretation as augmented algebras, the forgetful functor oblvP corre-
sponds to taking the augmentation ideal.

224 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

1.2. Tensoring a P-algebra by a commutative algebra. Let h be a Lie alge-
bra and A is a commutative algebra. Then the vector space h⊗A has a canonical
structure of a Lie algebra given by [h1 ⊗ a1, h2 ⊗ a2] = [h1, h2]⊗ (a1 ⋅ a2).

In this subsection, we describe the following generalization of this construction.
Let O be a symmetric monoidal category, and let A be a commutative algebra in
O. For an operad P, let B be a P-algebra in O. We will show that the object
A⊗B has a canonical structure of a P-algebra.

Remark 1.2.1. This construction has the following generalization (which we
will not need in the sequel). The category of operads has a symmetric monoidal
structure characterized by the property that if A is a P-algebra and B is aQ-algebra
then A ⊗B is a (P ⊗Q)-algebra. The commutative operad is the unit object for
this symmetric monoidal structure.

1.2.2. Let Φ ∶ O→O′ be a homomorphism of symmetric monoidal DG categories.
Then Φ induces a (strict) functor between module categories for the monoidal

category VectΣ.

In particular, for any operad P, the functor Φ induces a functor

(1.1) Φ ∶ P -Alg(O)→ P -Alg(O′
)

that makes the diagrams

(1.2)

P -Alg(O)
Φ

ÐÐÐÐ→ P -Alg(O′
)

oblvP
×
×
×
Ö

×
×
×
Ö

oblvP

O
Φ

ÐÐÐÐ→ O′

and

(1.3)

P -Alg(O)
Φ

ÐÐÐÐ→ P -Alg(O′
)

freeP
Õ
×
×
×

Õ
×
×
×

freeP

O
Φ

ÐÐÐÐ→ O′

commute.

1.2.3. Consider the right adjoint3 ΦR of Φ (where we view the latter as a functor
between mere DG categories).

The functor ΦR has a natural structure of right-lax functor of module categories
over VectΣ. In particular, it induces a functor

ΦR ∶ P -Alg(O′
)→ P -Alg(O),

right adjoint to (1.1).

By passing to right adjoints in (1.3), we obtain a commutative diagram

(1.4)

P -Alg(O)
ΦR

←ÐÐÐÐ P -Alg(O′
)

oblvP
×
×
×
Ö

×
×
×
Ö

oblvP

O
ΦR

←ÐÐÐÐ O′.

3Here we do not even need to require that this right adjoint be continuous.

1. ALGEBRAS OVER OPERADS 225

1.2.4. Let now A be a commutative algebra in O. Set O′
∶= A-mod(O). The

composition
ΦR ○Φ ∶ O→O

is the functor of tensor product by A.

By the above, this functor admits a natural structure of right-lax functor of
module categories over VectΣ. In particular, we obtain a well-defined functor

A⊗ − ∶ P -Alg(O)→ P -Alg(O),

that makes the diagram

P -Alg(O)
A⊗−
ÐÐÐÐ→ P -Alg(O′

)

oblvP
×
×
×
Ö

×
×
×
Ö

oblvP

O
A⊗−
ÐÐÐÐ→ O′

commute.

1.2.5. Note that the construction

(1.5) A↝ A⊗ − ∶ P -Alg(O)→ P -Alg(O)

is functorial in A, so we obtain a functor

ComAlg(O) ×P -Alg(O)→ P -Alg(O).

For the sequel, we note the following:

Lemma 1.2.6. The functor (1.5) commutes with finite limits in each variable.

Proof. It is enough to prove the assertion after applying the functor oblvP ,
and then it becomes obvious, because the functor

− ⊗ − ∶ O ×O→O

commutes with finite limits in each variable.
�

1.3. Digression: filtered and graded objects. In this subsection we will make
a digression and fix some notation pertaining to filtered and graded objects in a
DG category.

1.3.1. For a DG category C, we let CFil (resp., CFil,≥0, CFil,≤0) denote the cate-
gory of filtered (resp., non-negatively filtered, non-positively filtered) objects. By
definition,

CFil
∶= Funct(Z,C), CFil,≥0

∶= Funct(Z≥0,C), CFil,≤0
∶= Funct(Z≤0,C),

where Z is viewed as an ordered set and hence a category.

We have the natural restriction functors

CFil,≥0
←CFil

→CFil,≤0.

The above functors both admit left adjoints, given by left Kan extension. The
essential image of CFil,≥0 in CFil consists of functors sending the negative integers
to 0. Then essential image of CFil,≤0 in CFil consists of functors that take the
constant value on Z≥0. Thus, we obtain the usual embeddings

CFil,≥0
↪CFil

↩CFil,≤0.

226 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

The functor of ‘forgetting the filtration’

oblvFil ∶ C
Fil
→C

is by definition the functor

colim
Z

∶ Funct(Z,C)→C.

1.3.2. Consider also the category

Cgr
∶= CZ,

and its subcategories

Cgr,≥0
⊂ Cgr

⊃ Cgr,≤0.

We have the functor of forgetting the grading oblvgr ∶ C
gr
→C, given by

⊕
Z
∶ CZ

→C.

For n ∈ Z we let

(deg = n) ∶ C→Cgr

the functor that creates an object concentrated in degree n. Sometimes, we will
also use the notation

V deg=n
∶= (deg = n)(V).

1.3.3. We have a canonically defined functor

(1.6) (gr→ Fil) ∶ Cgr
→CFil,

given by left Kan extension along

(1.7) ZSpc
→ Z.

(I.e., the target Z is considered as a category with respect to its natural order,
while the source copy is considered as a groupoid.)

Explicitly, if an object of Cgr is given by n ↝ Vn, the corresponding object of
CFil is given by

n↝ ⊕
n′≤n

Vn′ .

The functor (gr→ Fil) admits a right adjoint, denoted Rees, given by restriction
along (1.7).

1.3.4. We now consider the functor of associated graded

ass-gr ∶ CFil
→Cgr,

given by

n↦ coFib(Vn−1 → Vn).

It is a basic (and obvious) fact that the functor ass-gr is conservative when
restricted to CFil,≥0.

We have the following (evident) isomorphism of endo-functors of Cgr:

ass-gr ○(gr→ Fil) ≃ Id .

1. ALGEBRAS OVER OPERADS 227

1.3.5. The above constructions are functorial with respect to C. In particular, if
O is a (symmetric) monoidal category, then so are OFil and Ogr, and each of the
functors

ass-gr ∶ OFil
→Ogr, (gr→ Fil) ∶ Ogr

→OFil and (deg = 0) ∶ O→Ogr

has a natural (symmetric) monoidal structure.

1.4. Adding a filtration. Suppose that A is an augmented associative algebra.
In this case, A has a canonical filtration given by An = 0 for n < 0, A0 = k and
An = A for n ≥ 1. The corresponding associated graded algebra is given by the
square zero extension (i.e. trivial augmented associative algebra) k⊕A+, where A+

is the augmentation ideas of A.

In this subsection, we describe a generalization of this construction. Namely,
we show that any4

P-algebra has a canonical lift to a filtered P-algebra such that
the associated graded is the trivial P-algebra. Roughly speaking, at the level of the
corresponding Rees algebras, this construction amounts to scaling all the operations
to zero.

This is a technically important tool as it allows to reduce many statements
about P-algebras to trivial P-algebras.

1.4.1. Consider the commutative algebra A ∶= k ⊕ k; we endow it with an aug-
mentation, given by projection on the first copy of k. We also endow it with a
non-negative filtration by setting

An =

⎧
⎪⎪
⎨
⎪⎪
⎩

A for n ≥ 1

k for n = 0.

By Sect. 1.2, we can regard the assignment

B ↦ A⊗B

as a functor

P -Alg(O)→ P -Alg(OFil,≥0
).

Using the augmentation on A, we obtain a natural transformation

A⊗B → B.

Here we abuse the notation slightly, and denote simply byB the object of P -Alg(OFil,≥0
)

that should properly be denoted by (gr→ Fil)(Bdeg=0
).

1.4.2. We define the functor

AddFil ∶ P -Alg(O)→ P -Alg(OFil,≥0
)

by:

B ↦ Fib(A⊗B → B) ∶= (A⊗B) ×
B
{0}.

Sometimes, we will also use the notation

BFil
∶= AddFil(B).

4Recall our conventions for operads!

228 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

1.4.3. Since oblvFil(A) = k × k, by Lemma 1.2.6, we obtain an isomorphism of
functors:

oblvFil(A⊗B) ≃ B ×B.

From here, we obtain that the isomorphism of functors

oblvFil ○AddFil ≃ Id .

So, the assignment

B ↝ BFil

can be viewed as a canonical lift of B ∈ P -Alg(O) to an object of P -Alg(OFil,≥0
).

1.4.4. The following diagram commutes by construction:

P -Alg(O)
AddFil
ÐÐÐÐ→ P -Alg(OFil,≥0

)

trivP
Õ
×
×
×

trivP
Õ
×
×
×

O
deg=1
ÐÐÐÐ→ Ogr,≥0 (gr→Fil)

ÐÐÐÐÐ→ OFil,≥0.

The following diagram also commutes:

P -Alg(O)
AddFil
ÐÐÐÐ→ P -Alg(OFil,≥0

)

oblvP
×
×
×
Ö

oblvP
×
×
×
Ö

O
deg=1
ÐÐÐÐ→ Ogr,≥0 (gr→Fil)

ÐÐÐÐÐ→ OFil,≥0.

1.4.5. We now claim:

Proposition 1.4.6. The functor

ass-gr ○AddFil ∶ P -Alg(O)→ P -Alg(Ogr,≥0
)

is canonically isomorphic to trivP ○ (deg = 1) ○ oblvP , i.e.,

P -Alg(O)
oblvP
Ð→ O

(deg=1)
Ð→ Ogr,≥0 trivP

Ð→ P -Alg(Ogr,≥0
).

Let us repeat the statement of Proposition 1.4.6 in words. It says that for
B ∈ P -Alg(O), the associated graded of BFil is canonically trivial.

Proof. We need to show that the functor P -Alg(O)→ P -Alg(Ogr,≥0
), given

by
B ↦ Fib(ass-gr(A)⊗B → B)

is canonically isomorphic to

B ↦ trivP(oblvP(B)
deg=1

).

We will deduce this from a particular property of the canonical action of VectΣ

on O from Sect. 1.1.1:

Note that ass-gr(A) ≃ k[ε]/ε2, where deg(ε) = 1. Consider the functor

(1.8) V ↦ Fib(k[ε]/ε2 ⊗ V deg=0
→ V deg=0

), O→Ogr,≥0,

as a right-lax functor of modules categories over VectΣ.

For a symmetric monoidal category O′ let us denote by O′
triv the same DG

category (i.e., O′), but equipped with the trivial action of VectΣ, i.e., the action

1. ALGEBRAS OVER OPERADS 229

that factors through the projection on the degree 1 component VectΣ
→ Vect. Note

that the identity functor on O′ can be made into a right-lax functor of modules
categories over VectΣ for both

(1.9) O′
→O′

triv

and

(1.10) O′
triv →O′.

With these notations, the observation is that the functor (1.8) canonically fac-
tors as a composition

O
(1.9)
Ð→ Otriv

(deg=1)
Ð→ (Ogr,≥0

)triv
(1.10)
Ð→ Ogr,≥0.

Indeed, this follows for reasons of degree since the functor (1.8) sends V to
V deg=1.

�

1.5. Filtered objects arising from P-algebras. The construction in this sub-
section expresses the following idea: many functors from the category of P-algebras
in O to O itself automatically lift to functors with values in the category of filtered
objects in O.

The typical examples of this phenomenon that we will consider are the functors
of universal envelope or Chevalley complex of a Lie algebra (see Sect. 2.5 for the
latter example).

1.5.1. Let C be a functor

DGCatSymMon
→ 1-Cat,

and let Φ be a natural transformation

O ↝ P -Alg(O)

Φ∣O
→ C(O).

We observe that the natural transformation Φ automatically upgrades to a
natural transformation, denoted ΦFil,

O ↝ P -Alg(O)→ C(OFil,≥0
).

Indeed, we let ΦFil
∣O ∶ P -Alg(O)→ C(OFil,≥0

) be the composition

P -Alg(O)
AddFil
Ð→ P -Alg(OFil,≥0

)

Φ∣
OFil,≥0

Ð→ C(OFil,≥0
).

1.5.2. Note that we have the following commutative diagram:

P -Alg(O)

ΦFil∣O
ÐÐÐÐ→ C(OFil,≥0

)

Id
×
×
×
Ö

×
×
×
Ö

oblvFil

P -Alg(O)

Φ∣O
ÐÐÐÐ→ C(O).

230 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

The next diagram commutes due to Proposition 1.4.6:

(1.11)

P -Alg(O)

ΦFil∣O
ÐÐÐÐ→ C(OFil,≥0

)

oblvP
×
×
×
Ö

×
×
×
Ö

ass-gr

O C(Ogr,≥0
)

(deg=1)
×
×
×
Ö

Õ
×
×
×

Φ∣Ogr,≥0

Ogr,≥0 trivP
ÐÐÐÐ→ P -Alg(Ogr,≥0

)

In addition, we have the following commutative diagram

O
trivP
ÐÐÐÐ→ P -Alg(O)

(deg=1)
×
×
×
Ö

×
×
×
Ö

ΦFil∣O

Ogr,≥0
C(OFil,≥0

)

trivP
×
×
×
Ö

Õ
×
×
×

gr→Fil

P -Alg(Ogr,≥0
)

Φ∣Ogr,≥0

ÐÐÐÐ→ C(Ogr,≥0
).

1.6. Group objects in the category of P-algebras. In this subsection we show
that the category of P-algebras has the feature that the functors of taking the loop
space and the classifying space of a group-object are mutually inverse equivalences
of categories.

1.6.1. Consider the categories

Grp(P -Alg(O)) ⊂ Monoid(P -Alg(O)).

We claim:

Lemma 1.6.2. The inclusion Grp(P -Alg(O)) ⊂ Monoid(P -Alg(O)) is an equiv-
alence.

Proof. The inclusion Grp(C) ⊂ Monoid(C) is an equivalence for any pointed
category C, for which a map c1 → c2 is an isomorphism whenever c1 ×

c2

∗→ ∗ is:

Namely, recall that a monoid object c ∈ C is a group object if and only if the
map

(p1,m) ∶ c1 ∶= c × c→ c × c =∶ c2

is an isomorphism. However, if C is pointed, the canonical map ∗ → c is the unit;
therefore, the natural map c1 ×

c2

∗→ ∗ is an isomorphism.

�

1. ALGEBRAS OVER OPERADS 231

1.6.3. Consider now the pair of adjoint functors:

(1.12) BP ∶ Grp(P -Alg(O))⇄ P -Alg(O) ∶ ΩP .

We claim:

Proposition 1.6.4. The functors (1.12) are mutually inverse equivalences.

Proof. We have to show that the natural transformations

Id→ ΩP ○BP and BP ○ΩP → Id

are isomorphisms.

It is enough to show that the resulting natural transformations

oblvP → oblvP ○ΩP ○BP and oblvP ○BP ○ΩP → oblvP

are isomorphisms.

The following diagram commutes tautologically

Grp(P -Alg(O))
ΩP

←ÐÐÐÐ P -Alg(O)

oblvP○oblvGrp

×
×
×
Ö

×
×
×
Ö

oblvP

O
[−1]
←ÐÐÐÐ O,

because the functor oblvP commutes with limits.

The next diagram, obtained from one above by passing to left adjoints along
the horizontal arrows,

Grp(P -Alg(O))
BP

ÐÐÐÐ→ P -Alg(O)

oblvP○oblvGrp

×
×
×
Ö

×
×
×
Ö

oblvP

O
[1]

ÐÐÐÐ→ O

also commutes, because oblvP commutes with sifted colimits.

This implies the required assertion.
�

1.7. Forgetting the group structure. In this subsection we show the following:
if we consider a group-object of the category of P-algebras, and forget the group
structure, then the resulting P-algebra is canonically trivial.

1.7.1. We will prove:

Proposition 1.7.2. The composite functor

oblvGrp ○ΩP ∶ P -Alg(O)→ P -Alg(O)

is canonically isomorphic to

trivP ○ [−1] ○ oblvP .

Combining with Proposition 1.6.4, we obtain:

232 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

Corollary 1.7.3. The functor

oblvGrp ∶ Grp(P -Alg(O))→ P -Alg(O)

is canonically isomorphic to

trivP ○ oblvP ○ oblvGrp.

The rest of this subsection is devoted to the proof of Proposition 1.7.2. The idea
of the proof, explained to us by M. Kontsevich, is to interpret the composite functor
oblvGrp ○ΩP as tensor product by a certain (non-unital) commutative algebra.

1.7.4. Step 1. Consider the commutative augmented algebra A in Vect equal to

trivComaug(k[−1]).

I.e., A = k[−1]⊕ k, with the multiplication on k[−1] is trivial. We claim that that
there exists a canonical isomorphism of endo-functors of P -Alg(O)

oblvGrp ○ΩP(B) ≃ Fib(A⊗B → B).

Indeed, take A′
= k × k, so that A ∶= k ×

A′
k. By Lemma 1.2.6, the pullback

diagram of commutative algebras

(1.13)

A ÐÐÐÐ→ k
×
×
×
Ö

×
×
×
Ö

k ÐÐÐÐ→ A′

gives rise to a pullback diagram in P -Alg(O),

A⊗B ÐÐÐÐ→ B
×
×
×
Ö

×
×
×
Ö

diag

B
diag
ÐÐÐÐ→ B ×B,

functorially in B ∈ P -Alg(O).

The projection on the second factor defines an augmentation A′
→ k, thereby

allowing to view (1.13) as a diagram over k. From here we obtain a pullback
diagram

Fib(A⊗B → B) ÐÐÐÐ→ Fib(B → B)

×
×
×
Ö

×
×
×
Ö

Fib(B → B) ÐÐÐÐ→ Fib(B ×B → B),

i.e., we obtain a pullback diagram

Fib(A⊗B → B) ÐÐÐÐ→ 0
×
×
×
Ö

×
×
×
Ö

0 ÐÐÐÐ→ B,

as desired.

1. ALGEBRAS OVER OPERADS 233

1.7.5. Step 2. Thus, to prove Proposition 1.7.2 we need to establish a canonical
isomorphism of functors

(1.14) Fib(A⊗B → B) ≃ trivP(oblvP(B)[−1]), B ∈ P -Alg(O).

This repeats the argument of Proposition 1.4.6.

1.8. Stabilization. In this subsection we use Proposition 1.7.2 to give a simple
proof of the fact that the stabilization of the category of P-algebras (in a symmetric
monoidal DG category O) identifies with O itself.

1.8.1. For an ∞-category C, let ComMonoid(C) denote the category of commu-
tative monoids in C, see Volume I, Chapter 1, Sect. 3.3.3.

Recall also that if C is stable, the forgetful functor

ComMonoid(C)→C

is an equivalence.

1.8.2. Let O be a symmetric monoidal DG category. We regard it a mere ∞-
category, and consider the corresponding category ComMonoid(O). Since O is
stable, by the above we have ComMonoid(O) ≃ O.

Since the functor trivP commutes with limits (and, in particular, products), it
induces a functor

(1.15) O ≃ ComMonoid(O)

ComMonoid(trivP)
Ð→ ComMonoid(P -Alg(O)).

We will prove:

Proposition 1.8.3. The functor (1.15) is an equivalence.

The above proposition can be reformulated as a commutative diagram

O
trivP
ÐÐÐÐ→ P -Alg(O)

∼
×
×
×
Ö

×
×
×
Ö

Id

ComMonoid(P -Alg(O))
oblvComMonoid
ÐÐÐÐÐÐÐÐ→ P -Alg(O).

Hence, we obtain:

Corollary 1.8.4. The functor

coPrimP ∶ P -Alg(O)→O,

left adjoint to trivP (see Sect. 2.4.1 below), identifies O with the stabilization of
P -Alg(O).

Proof of Proposition 1.8.3. Since the functor oblvP preserves limits (and,
in particular, products), it induces a functor

ComMonoid(P -Alg(O))

ComMonoid(oblvP)
Ð→ ComMonoid(O).

We claim that the functors ComMonoid(oblvP) and ComMonoid(trivP) are
inverses of each other.

The fact that the composition ComMonoid(oblvP) ○ ComMonoid(trivP) is
isomorphic to the identity functor follows from the fact that oblvP ○ trivP ≃ Id.

234 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

To prove that the other composition is isomorphic to the identity functor, we
proceed as follows. Recall that for any ∞-category C, the forgetful functor

ComMonoid(Monoid(C))

ComMonoid(oblvMonoid)
Ð→ ComMonoid(C)

is an equivalence, see [Lu2, Theorem 5.1.2.2].

Hence, it suffices to construct an isomorphism between the composition

ComMonoid(Monoid(P -Alg(O)))

ComMonoid(oblvMonoid)
Ð→ ComMonoid(P -Alg(O))→

ComMonoid(oblvP)
Ð→ ComMonoid(O)

ComMonoid(trivP)
Ð→ ComMonoid(P -Alg(O))

and

ComMonoid(Monoid(P -Alg(O)))

ComMonoid(oblvMonoid)
Ð→ ComMonoid(P -Alg(O)).

However, this follows by applying ComMonoid to the isomorphism between

Monoid(P -Alg(O)))
oblvMonoid
Ð→ P -Alg(O)

oblvP
Ð→ O

trivP
Ð→ P -Alg(O)

and

Monoid(P -Alg(O))
oblvMonoid
Ð→ P -Alg(O),

the latter given by Corollary 1.7.3.
�

1.8.5. We can use Proposition 1.7.2 also to describe the co-stabilization of P -Alg(O),
i.e., the stabilization of P -Alg(O)

op.

Proposition 1.8.6. The suspension functor ΣP on P -Alg(O) identifies with

freeP ○ [1] ○ coPrimP ,

where coPrimP is as in Sect. 2.4.1.

Proof. Follows by adjunction from Proposition 1.7.2.
�

Corollary 1.8.7. The functor

(freeP)
op
∶ Oop

→ (P -Alg(O))
op

identifies Oop with the stabilization of (P -Alg(O))
op.

Proof. We have to show that the functor (freeP)
op identifies Oop with the

category of spectrum objects in (P -Alg(O))
op, i.e., with the category of sequences

A0 ≃ Ω(A1), A1 ≃ Ω(A2)..., Ai ∈ (P -Alg(O))
op,

where Ω is the loop functor on (freeP)
op, i.e., when we regard Ai as P-algebras in

O, we have

A0 ≃ ΣP(A1), A1 ≃ ΣP(A2)...

We claim that any such sequence is canonically of the form

(1.16) Ai = freeP ○ [−i] ○ coPrimP(A0).

Indeed, it follows from Proposition 1.8.6 that for every i ≥ 0 we have

(1.17) Ai ≃ freeP ○ [1] ○ coPrimP(Ai+1),

2. KOSZUL DUALITY 235

hence

coPrimP(Ai+1) ≃ coPrimP(Ai)[−1],

and hence

(1.18) coPrimP(Ai+1) ≃ coPrimP(A0)[−(i + 1)].

Combining (1.18) and (1.17) we obtain (1.16).
�

2. Koszul duality

In this section we review the general theory of Koszul duality that relates
algebras over an operad with co-algebras over the Koszul dual co-operads.

The main point of this section is that there are two inequivalent notions of co-
algebra over a co-operad: the usual one, and what we call a ind-nilpotent co-algebra.
There is a forgetful functor from the latter to the former, which we conjecture to
be fully faithful.

The Koszul duality functors naturally connect P-algebras and ind-nilpotent co-
algebras for P∨. We propose some conjectures to the effect of what fully-faithfulness
properties we can expect from the Koszul duality functors.

2.1. Co-operads. In this subsection we introduce the notion of co-operad. There
are no surprises here, but there will be some when we will consider the corresponding
notion of co-algebra over a co-operad.

2.1.1. By a co-operad we shall mean a co-associative co-algebra object in VectΣ.

As in the case of operads (see Sect. 1.1.2), we will only consider co-operads
Q for which the co-unit defines an isomorphism Q(1) → k. (In particular, all our
co-operads are augmented.)

2.1.2. Let VectΣ
f.d. ⊂ VectΣ be the full subcategory spanned by those objects P,

for which P(n) ∈ Vect is finite-dimensional in each cohomological degree for every
n.

Term-wise dualization P ↦ P∗ defines a monoidal equivalence

(VectΣ
f.d.)

op
→ VectΣ

f.d. .

In particular, it defines an anti-equivalence between the subcategories of oper-
ads and co-operads that belong to VectΣ

f.d..

2.1.3. We set

Coassocaug
∶= (Assocaug

)
∗.

This is the co-operad responsible for unital and augmented (or, equivalently, non-
unital) co-associative co-algebras.

We set

Cocomaug
∶= (Comaug

)
∗.

This is the co-operad responsible for unital and augmented (or, equivalently, non-
unital) co-commutative co-algebras.

236 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

2.2. Ind-nilpotent co-algebras over a co-operad. It turns out that there are
two (and, outside of characteristic 0, four) inequivalent notions of co-algebra over
a given co-operad. In this subsection we will study one of them: the notion of
ind-nilpotent co-algebra.

2.2.1. Recall the action of VectΣ on O, considered in Sect. 1.1.1.

Let Q be a co-operad. By definition, the category

Q -Coalgind-nilp
(O)

is that of Q-comodules in O with respect to the ⋆-action.

Remark 2.2.2. Modules for the above monad should be more properly called
‘ind-nilpotent co-algebras with divided powers’, see [FraG, Sect. 3.5]. However,
we shall omit the reference to divided powers from the notation because we are
working over a field of characteristic zero.

2.2.3. We have the pair of adjoint functors

oblvind-nilp
Q ∶ Q -Coalgind-nilp

(O)⇄O ∶ cofreeind-nilp
Q ,

with oblvind-nilp
Q being co-monadic. In particular, oblvind-nilp

Q is conservative, pre-

serves all colimits and totalizations of oblvind-nilp
Q -split co-simplicial objects.

2.2.4. The augmentation on Q gives rise to a functor

trivind-nilp
Q ∶ O→ Q -Coalgind-nilp

(O),

right inverse to oblvind-nilp
Q .

2.3. The Koszul dual (co)-operad. In this subsection we introduce the Koszul
duality functor that relates operads and co-operads.

2.3.1. Let O′ be a (not necessarily symmetric) monoidal category with limits and
colimits. We will assume that the monoidal operation on O′ commutes with sifted
colimits in each variable (but not not necessarily all colimits).

In this case we have a pair of mutually adjoint functors

(2.1) Barenh
∶ AssocAlgaug

(O′
)⇄ CoassocCoalgaug

(O′
) ∶ coBarenh,

referred to as Koszul duality, see Sect. 3.2.7 below.

(Note, however, that since the monoidal operation on O′ is not assumed to com-
mute with coproducts, augmented associatove/co-associative algebras/co-algebras
in O′ are not the same as algebras/co-algebras over the AssocAlgaug-operad.)

We apply this to O′
∶= VectΣ. In this case, the resulting functors

Barenh
∶ Operads⇄ coOperads ∶ coBarenh

are mutually inverse equivalences. One can prove this by adapting the argument of
[FraG, Proposition 4.1.2].

2. KOSZUL DUALITY 237

2.3.2. Let P be an operad. We denote

P
∨
∶= Barenh

(P),

and for a co-operad Q we denote

Q
∨
∶= coBarenh

(Q).

If P ∈ VectΣ
f.d., then P∨ has the same property, and vice versa.

2.3.3. It is known that

(Coassocaug
)
∨
≃ Assocaug

[−1],

and hence

(Assocaug
)
∨
≃ Coassocaug

[1].

It is also known that

(Cocomaug
)
∨
≃ Lie[−1],

and hence

Lie∨ ≃ Cocomaug
[1].

2.4. Koszul duality functors. In this subsection we will define the operation
central for this section (and the entire chapter): the functors of Koszul duality that
relate algebras over an operad to co-algebras over the Koszul dual co-operad.

The exposition here follows closely [FraG, Sect. 3].

2.4.1. Let P be an operad. Recall the functor

trivP ∶ O→ P -Alg(O).

It preserves limits (since its composition with the conservative limit-preserving
functor oblvP does). Hence, by the Adjoint Functor Theorem, it admits a left
adjoint:

coPrimP ∶ P -Alg(O)→O.

By adjunction,

coPrimP ○freeP ≃ Id .

2.4.2. We calculate the functor coPrimP as the Bar-construction of the augmented
associative algebra P in AssocAlg(VectΣ

) acting on a P-module in O:

coPrimP ≃ Bar(P,−).

It follows from the definition of the Koszul duality functor that for an operad
P we have a canonical isomorphism of co-monads acting on O:

coPrimP ○trivP ≃ P
∨
⋆ −,

see [FraG, Lemma 3.3.4] (or Sect. 7.1.3 later in this chapter).

238 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

2.4.3. Hence, we obtain that the functor coPrimP canonically lifts to a functor

coPrimenh,ind-nilp
P ∶ P -Alg(O)→ Q -Coalgind-nilp

(O),

where Q = P
∨, so that

coPrimP ≃ oblvind-nilp
Q ○ coPrimenh,ind-nilp

P ,

and

(2.2) coPrimenh,ind-nilp
P ○trivP ≃ cofreeind-nilp

Q ,

see [FraG, Corollary 3.3.5 and Sect. 3.3.6].

We also have:

(2.3) coPrimenh,ind-nilp
P ○freeP ≃ trivind-nilp

Q

2.5. A digression: the filtered version. In this subsection we observe that the

functors coPrimP and Φ = coPrimenh,ind-nilp
P naturally admit filtered versions.

2.5.1. In the context of Sect. 1.5 let us take

(i) C(O) = O, Φ = coPrimP .

(ii) C(O) = P
∨ -Coalgind-nilp

(O), Φ = coPrimenh,ind-nilp
P .

2.5.2. Thus, we obtain that the functor

coPrimP ∶ P -Alg(O)→O

canonically lifts to a functor

coPrimFil
P ∶ P -Alg(O)→OFil,≥0,

and the functor

coPrimenh,ind-nilp
P ∶ P -Alg(O)→ P

∨ -Coalgind-nilp
(O)

canonically lifts to a functor

coPrimenh,ind-nilp,Fil
P ∶ P -Alg(O)→ P

∨ -Coalgind-nilp
(OFil,≥0

)

so that
coPrimFil

P ≃ oblvind-nilp
P∨ ○ coPrimenh,ind-nilp,Fil

P .

We have a canonical isomorphism

(2.4) ass-gr ○ coPrimenh,ind-nilp,Fil
P ≃ cofreeind-nilp

P∨ ○ (deg = 1) ○ oblvP ,

as functors P -Alg(O)→ P
∨ -Coalgind-nilp

(Ogr,≥0
).

Remark 2.5.3. One can show that the composite functor

coPrimenh,ind-nilp,Fil
P ○trivP ∶ O→ P

∨ -Coalgind-nilp
(OFil,≥0

)

identifies canonically with

(gr→ Fil) ○ cofreeind-nilp
P∨ ○ (deg = 1).

2.6. The adjoint Koszul duality functors. In this subsection we describe the
construction of the adjoint Koszul duality functor: it goes from the category of
(ind-nilpotent) co-algebras over a given co-operad Q to the category of algebras
over the Koszul dual of Q.

2. KOSZUL DUALITY 239

2.6.1. Let Q be a co-operad. The functor trivind-nilp
Q preserves colimits, since its

composition with oblvind-nilp
Q does. Hence, by the Adjoint Functor Theorem, it

admits a right adjoint

Primind-nilp
Q ∶ Q -Coalgind-nilp

(O)→O.

By adjunction, Primind-nilp
Q ○cofreeind-nilp

Q ≃ Id.

2.6.2. We calculate the functor Primind-nilp
P as the coBar-construction of the aug-

mented co-associative co-algebraQ in CoassocCoalg(VectΣ
) acting on aQ-comodule

in O:
Primind-nilp

Q ≃ coBar(Q,−).

In addition, for a co-operad Q, we have a canonical morphism (but not an
isomorphism) of monads

(2.5) (Q
∨
⋆ −)→ Primind-nilp

Q ○trivind-nilp
Q ,

see [FraG, Lemma 3.3.9].

2.6.3. Hence, we obtain that the functor Primind-nilp
Q canonically lifts to a functor

Primenh,ind-nilp
Q ∶ Q -Coalgind-nilp

(O)→ P -Alg(O),

where P = Q
∨, so that

Primind-nilp
Q ≃ oblvP ○Primenh,ind-nilp

Q ,

see [FraG, Corollary 3.3.11], and

Primenh,ind-nilp
Q ○cofreeind-nilp

Q ≃ trivP .

The map (2.5) gives rise to a natural transformation of functors O→ P -Alg(O),
namely,

freeP → Primenh,ind-nilp
Q ○trivind-nilp

Q .

2.6.4. Furthermore, according to [FraG, Corollary 3.3.13] the functors

(2.6) coPrimenh,ind-nilp
P ∶ P -Alg(O)⇄ Q -Coalgind-nilp

(O) ∶ Primenh,ind-nilp
Q

are mutually adjoint.

2.6.5. The following is part of [FraG, Conjecture 3.4.5]:

Conjecture 2.6.6. The functor

Primenh,ind-nilp
Q ∶ Q -Coalgind-nilp

(O)→ P -Alg(O)

is fully faithful.

In the sequel, we will relate Conjecture 2.6.6 to several other plausible conjec-
tures, see Sect. 2.11.

Remark 2.6.7. Added in November 2021: It turns out that Conjecture 2.6.6
is false. Namely, the co-unit map

coPrimenh,ind-nilp
P ○Primenh,ind-nilp

Q → Id

fails to be an isomorphism for P = Comaug (and so Q is the shifted Lie operad),
when evaluated on

A ∶= trivind-nilp
Q (V),

240 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

where V is an infinite-dimensional vector space. We are grateful to J. Lurie for
pointing this out to us.

Indeed, in this case Primenh,ind-nilp
Q (A) is the completed polynomial algebra on

the vector space V as generators, and its classical cotangent space has a non-trivial
kernel when mapping to V .

2.7. (Usual) co-algebras over a co-operad. In this subsection we will define
another notion of co-algebra over a given co-operad. It is this notion that in the
case of CoAssocaug (resp., Cocomaug) recovers co-associative co-algebras (resp., co-
commutative co-algebras).

2.7.1. We have another right-lax action of VectΣ on O, given by

P ∗ V = Π
n≥1

(P(n)⊗ V ⊗n
)
Σn .

2.7.2. For a co-operad Q, the category Q -Coalg(O) of augmented Q-co-algebras
is that of Q-co-modules in O with respect to the ∗-action.

Remark 2.7.3. Note, however, that since the ∗-action of VectΣ on O is only
right-lax, the functor O→O, defined by Q, is not a co-monad.

2.7.4. For example, forQ = Coassocaug, we obtain the usual category CoassocCoalgaug
(O)

of co-unital augmented (or, equivalently, non co-unital) co-associative co-algebras.

Similarly, for Q = Cocomaug, we obtain the usual category CocomCoalgaug
(O)

of co-unital augmented (or, equivalently, non co-unital) co-commutative co-algebras.

2.7.5. We let

oblvQ ∶ Q -Coalg(O)→O

denote the corresponding forgetful functor.

The functor oblvQ is conservative and preserves all colimits (in fact, one can
show that oblvQ admits a right adjoint, but it is not easy to describe this right
adjoint explicitly).

In addition, it is known that the functor oblvQ commutes with totalizations
of oblvQ-split co-simplicial objects.

Remark 2.7.6. From the above it follows that the functor

oblvQ ∶ Q -Coalg(O)→O

is co-monadic. Yet, as was noted in Remark 2.7.3, the corresponding endo-functor
of O is not the one, given by the ∗-action of Q.

2.7.7. The augmentation on Q defines the functor

trivQ ∶ O→ Q -Coalg(O),

right inverse to oblvQ.

The functor trivQ preserves colimits, since its composition with oblvQ does.
Hence, the functor trivQ admits a right adjoint

PrimQ ∶ Q -Coalg(O)→O.

In Sect. A.2 we will describe the functor PrimQ a little more explicitly.

2. KOSZUL DUALITY 241

2.8. Relation between two types of co-algebras. In this subsection we will
study the relationship between the notions of co-algebra over a co-operad and that
of ind-nilpotent co-algebra.

2.8.1. Note that we have the following natural transformation between the two
right-lax actions of VectΣ on O:

(2.7) P ⋆ V → P ∗ V.

Remark 2.8.2. Note that the natural transformation (2.7) involves the oper-
ation of averaging with respect to symmetric groups, see [FraG, Sect. 3.5.5].

2.8.3. The natural transformation (2.7) gives rise to the forgetful functor

(2.8) res⋆→∗ ∶ Q -Coalgind-nilp
(O)→ Q -Coalg(O).

We propose5:

Conjecture 2.8.4. The functor

res⋆→∗ ∶ Q -Coalgind-nilp
(O)→ Q -Coalg(O)

of (2.8) is fully faithful.

2.8.5. We have:

(2.9) oblvQ ○ res⋆→∗ ≃ oblvind-nilp
Q , Q -Coalgind-nilp

(O)→O

and

(2.10) trivQ ≃ res⋆→∗ ○ trivind-nilp
Q , O→ Q -Coalg(O).

We shall denote

cofreefake
Q ∶= res⋆→∗ ○ cofreeind-nilp

Q ∶ O→ Q -Coalg(O).

2.8.6. Let P ∶= Q
∨ be the Koszul dual operad. We denote

coPrimenh
P ∶= res⋆→∗ ○ coPrimenh,ind-nilp

P , P -Alg(O)→ Q -Coalg(O).

By (2.2), we have

(2.11) coPrimenh
P ○trivP ≃ cofreefake

Q

and by (2.3), we have

(2.12) coPrimenh
P ○freeP ≃ trivQ.

5In [FraG, Remark 3.5.3] it was erroneously stated that the authors knew how to prove this
statement. Unfortunately, this turned out not be the case.

242 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

2.8.7. It follows from (2.9) that the functor res⋆→∗ commutes with colimits. Hence,
it admits a right adjoint, denoted (res⋆→∗)R.

We define

(2.13) Primenh
Q ∶= Primenh,ind-nilp

Q ○(res⋆→∗)R ∶ Q -Coalg(O)→ P -Alg(O).

By adjunction, the functors

coPrimenh
P ∶ P -Alg(O)⇄ Q -Coalg(O) ∶ Primenh

Q

form an adjoint pair.

By passing to right adjoints in (2.10), we obtain an isomorphism:

(2.14) PrimQ ≃ Primind-nilp
Q ○(res⋆→∗)R,

and applying the definition of Primenh
Q

oblvQ ○Primenh
Q ≃ PrimQ .

2.8.8. We propose the following variant of Conjecture 2.6.6:

Conjecture 2.8.9.

(a) The unit of the adjunction

Id→ Primenh
Q ○ coPrimenh

P

is an isomorphism, when evaluated on objects lying in the essential image of the
functor Primenh

Q .

(b) The co-unit of the adjunction

coPrimenh
P ○Primenh

Q → Id

is an isomorphism, when evaluated on objects lying in the essential image of the
functor coPrimenh

P .

Remark 2.8.10. Added in November 2021: just like Conjecture 2.6.6, the same
counterexample disproves point (b) of Conjecture 2.8.9.

As of now, point (a) of Conjecture 2.8.9 still stands, but we are highly dubious
of its validity.

2.9. Calculation of primitives. In this subsection we will be concerned with the
functor

PrimQ ○cofreefake
Q ∶ O→O,

where we recall that cofreefake
Q is the functor

res⋆→∗ ○ cofreeind-nilp
Q ∶ O→ Q -Coalgind-nilp

(O).

2. KOSZUL DUALITY 243

2.9.1. Consider the unit of the adjunction

Id→ (res⋆→∗)R ○ res⋆→∗.

Composing with Primenh,ind-nilp
Q and pre-composing with cofreefake

Q , we obtain
a natural transformation

trivP ≃ Primenh,ind-nilp
Q ○cofreeind-nilp

Q →

→ Primenh,ind-nilp
Q ○(res⋆→∗)R ○ res⋆→∗ ○ cofreeind-nilp

Q ≃ Primenh
Q ○cofreefake

Q ,

where P ∶= Q
∨. I.e., we have a natural transformation:

(2.15) trivP → Primenh
Q ○cofreefake

Q , O→ P -Alg(O).

Composing further with the forgetful functor oblvP

(2.16) Id→ PrimQ ○cofreefake
Q ,

as endo-functors of O.

2.9.2. The following conjecture follows tautologically from Conjecture 2.8.4:

Conjecture 2.9.3. Then the natural transformation (2.16) is an isomorphism.

Since the functor oblvP is conservative, Conjecture 2.9.3 is equivalent to the
natural transformation (2.15) being an isomorphism.

In Sect. A we will prove:

Theorem 2.9.4. Conjecture 2.9.3 holds if the co-operad Q is such that Q and
Q
∨
[1] are both classical and finite-dimensional.

2.10. Some implications. In this subsection we will assume that Conjecture 2.9.3
holds for a given co-operad Q (in particular, it applies to Q ∶= Cocomaug and
Q ∶= Coassocaug), and derive some corollaries.

2.10.1. Note that the fact that the natural transformation (2.16) is an isomorphism
can be reformulated as saying that the functor res⋆→∗ induces an isomorphism

(2.17) MapsQ -Coalgind-nilp(O) (triv
ind-nilp
Q (V),cofreeind-nilp

Q (W))→

→MapsQ -Coalg(O) (trivQ(V),cofreefake
Q (W))

is an isomorphism for any V,W ∈ O.

2.10.2. We claim:

Proposition 2.10.3. The functor res⋆→∗ defines an isomorphism

MapsQ -Coalgind-nilp(O) (triv
ind-nilp
Q (V),A)→MapsQ -Coalg(O) (trivQ(V), res⋆→∗(A))

for any V ∈ O and A ∈ Q -Coalgind-nilp
(O).

Proof. For the proof we will need the following lemma:

Lemma 2.10.4. The functor res⋆→∗ preserves totalizations of co-simplicial ob-

jects that are oblvind-nilp
Q -split.

244 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

Proof. Follows from the combination of the following three facts:

(1) the functor oblvind-nilp
Q commutes with totalizations of oblvind-nilp

Q -split co-
implicial objects;

(2) the functor res⋆→∗ sends oblvind-nilp
Q -split co-simplicial objects to co-simplicial

objects that are oblvQ-split;

(3) the functor oblvQ commutes with totalizations of oblvQ-split co-implicial ob-
jects. �

Now, the assertion of the proposition follows from the fact that every object

A ∈ Q -Coalgind-nilp
(O)

can be written as such a totalization as in Lemma 2.10.4, whose terms are objects

of the form cofreeind-nilp
Q (W) for W ∈ O. �

Corollary 2.10.5.

(a) The natural transformation Primind-nilp
Q → PrimQ ○res⋆→∗ is an isomorphism.

(b) Primenh,ind-nilp
Q → Primenh

Q ○res⋆→∗ is an isomorphism.

2.10.6. As another corollary of Proposition 2.10.3, we obtain:

Corollary 2.10.7. The functor res⋆→∗ defines an isomorphism

MapsQ -Coalgind-nilp(O) (A
′,A)→MapsQ -Coalg(O) (res⋆→∗(A′

), res⋆→∗(A))

for any A′ lying in the essential image of the functor coPrimenh,ind-nilp
P , where P ∶=

Q
∨.

Proof. Follows from the fact that any object of P -Alg(O) can be written as
a colimit of ones of the form freeP(V), while

coPrimenh,ind-nilp
P ○freeP(V) ≃ trivind-nilp

Q (V).

�

2.11. Some implications between the conjectures. In this subsection we con-
tinue to assume that Q is such that Conjecture 2.9.3 holds. We will prove that
Conjecture 2.6.6 implies Conjectures 2.8.4 and 2.8.9.

2.11.1. First, we claim:

Theorem 2.11.2. Conjecture 2.6.6 (for the co-operad Q) implies Conjecture 2.8.4.

Proof. Taking into account Corollary 2.10.7, it suffices to know that the func-
tor

coPrimenh,ind-nilp
P ∶ P -Alg(O)→ Q -Coalgind-nilp

(O)

is essentially surjective. However, the latter follows from Conjecture 2.6.6. �

3. ASSOCIATIVE ALGEBRAS 245

2.11.3. Next, we claim:

Theorem 2.11.4. Conjecture 2.6.6 (for the co-operad Q) implies Conjecture 2.8.9.

Proof. For point (b) of Conjecture 2.8.9, we claim that a stronger statement
follows from Conjecture 2.6.6. Namely, we claim that the natural transformation

coPrimenh
P ○Primenh

Q → Id

is an isomorphism on the essential image of res⋆→∗. Indeed, the composition

res⋆→∗ ○ coPrimenh,ind-nilp
P ○Primenh,ind-nilp

Q ≃ coPrimenh
P ○Primenh,ind-nilp

Q →

→ coPrimenh
P ○Primenh

Q ○res⋆→∗ → res⋆→∗

equals the natural transformation obtained from the co-unit of the adjunction

coPrimenh,ind-nilp
P ○Primenh,ind-nilp

Q → Id

by composing with res⋆→∗. Hence, it is an isomorphism, by assumption.

Now, the second arrow in the above composition is an isomorphism by Corol-
lary 2.10.5(b). Hence, so is the third arrow.

The unit of the adjunction

Id→ Primenh
Q ○ coPrimenh

P

identifies with the composition

Id→ Primenh,ind-nilp
Q ○ coPrimenh,ind-nilp

P →

→ Primenh,ind-nilp
Q ○(res⋆→∗)R ○ res⋆→∗ ○ coPrimenh,ind-nilp

P ≃ Primenh
Q ○ coPrimenh

P .

Now, since we already know that Conjecture 2.6.6 implies Conjecture 2.8.4, it
suffices to show that the map

Id→ Primenh,ind-nilp
Q ○ coPrimenh,ind-nilp

P

is an isomorphism on the essential image of Primenh,ind-nilp
Q . However, this is a

formal consequence of the fact that Primenh,ind-nilp
Q is fully faithful.

�

3. Associative algebras

In this section we specialize the notions from Sects. 1 and 2 to the case of the
associative operads, and point out some specifics.

In particular, we will see that the (augmented) associative operad is self Koszul-
dual and we will give more explicit descriptions of the Koszul duality functors
between augmented associative algebras and co-algebras.

3.1. Associative algebras and co-algebras. In this subsection we recall some
basic concepts related to the notion of associative algebra in a given monoidal
category.

246 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

3.1.1. Let O be a monoidal category. We let AssocAlg(O) denote the category
of unital associative algebras in O. We let oblvAssoc denote the forgetful functor
AssocAlg(O) → O. The functor oblvAssoc is conservative and commutes with
limits.

Since 1O ∈ O is the initial object in AssocAlg(O), the functor oblvAssoc canon-
ically factors as

AssocAlg(O)→O1O/ →O.

We will denote the resulting functor AssocAlg(O)→O1O/ by oblvAssoc,1/.

3.1.2. Assume that O admits colimits, and that the monoidal operation preserves
sifted colimits in each variable. Then the category AssocAlg(O) also admits col-
imits, and the functor oblvAssoc commutes sifted colimits, see [Lu2, Proposition
3.2.3.1].

Moreover, in this case oblvAssoc admits a left adjoint, denoted

freeAssoc ∶ O→ AssocAlg(O).

When the monoidal operation on O commutes with coproducts, the composi-
tion oblvAssoc ○ freeAssoc is canonically isomorphic to the functor

V ↦ ⊔
n≥0

V ⊗n,

see [Lu2, Proposition 4.1.1.14].

Remark 3.1.3. Note that the adjoint pair

freeAssoc ∶ O⇄ AssocAlg(O) ∶ oblvAssoc

does not fit into the paradigm of algebras over operads as defined in Sect. 1.1.2.
This is because in our definition of operads we did not allow 0-ary operations.

3.1.4. Assume that O is symmetric monoidal. In this case, the category AssocAlg(O)

has a natural symmetric monoidal structure (given by tensor product) and the
functor oblvAssoc is naturally symmetric monoidal, see Volume I, Chapter 1, Sect.
3.3.5.

Since the initial object of AssocAlg(O), i.e., 1O, is the unit of AssocAlg(O)

with respect to its symmetric monoidal structure, the identity functor on AssocAlg(O)

has a natural right-lax symmetric monoidal structure, when considered as a func-
tor from AssocAlg(O) equipped with the tensor product structure to AssocAlg(O)

equipped with the co-Cartesian symmetric monoidal structure.

I.e., we have a compatible system of natural transformations:

(3.1) A1 ⊔ ... ⊔An → A1 ⊗ ...⊗An,

given as the coproduct of the maps

Ai ≃ 1O ⊗ ...⊗Ai ⊗ ...⊗ 1O → A1 ⊗ ...⊗An.

3.1.5. Let O = C be a category with finite limits, viewed as a symmetric monoidal
category with respect to the Cartesian symmetric monoidal structure. In this case
we have, by definition,

AssocAlg(C) = Monoid(C).

3. ASSOCIATIVE ALGEBRAS 247

3.1.6. Let AssocAlgaug
(O) denote the category (AssocAlg(O))/1O

. This is the
category of augmented associative algebras on O. The category AssocAlgaug

(O)

has several forgetful functors, denoted

oblvAssoc, oblvAssoc,1/, oblvAssoc,/1, oblvAssoc,1/ /1,

with values in

O, O1O/, O/1O
, O1O/ /1O

,

respectively.

3.1.7. In this sub-subsection, we shall assume that O is a symmetric monoidal DG
category. (In particular, the monoidal operation on O commutes with all colimits.)

We have a canonical equivalence

(3.2) AssocAlgaug
(O) ≃ Assocaug -Alg(O),

where the latter is the category of algebras over the Assocaug operad. Thus, we
obtain yet another forgetful functor

oblvAssocAlg,+ ∶ AssocAlgaug
(O)→O,

equal in the notion of Sect. 1.1.3 to oblvAssocaug . It equals the composition of
oblvAssoc,1/ /1 with the functor O1O/ /1O

→O, inverse to the equivalence

(3.3) V ↦ 1O ⊕ V, O→O1O/ /1O
,

i.e. it is given by the fiber of the augmentation map V → 1O.

The functor freeAssoc is naturally isomorphic to the composition

O
freeAssocAlgaug

Ð→ AssocAlgaug
(O)→ AssocAlg(O),

where the second arrow is the forgetful functor.

3.1.8. By reversing the arrows, we obtain the corresponding definitions and pieces
of notation of co-associative co-algebras.

3.1.9. The following observation will be used repeatedly. Let O = C be as in
Sect. 3.1.5. Then the forgetful functor

oblvCoassoc ∶ Coassoc(C)→C

is an equivalence, see [Lu2, Proposition 2.4.3.9].

Informally, every object c of C canonically lifts to one in Coassoc(C) via the
diagonal map

c→ c × c.

3.2. The Bar construction. In this section we let O be a monoidal category
with limits and colimits.

We will review the general Bar-construction that relates augmented associative
algebras and co-algebras in O.

248 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

3.2.1. We have a canonically defined functor

Bar● ∶ AssocAlgaug
(O)→O∆op

,

see [Lu2, Sect. 5.2.2].

The functor Bar● lifts to a functor

Bar●1/ /1 ∶ AssocAlgaug
(O)→ (O∆op

)1O/ /1O
,

where 1O ∈ O∆op

is the constant simplicial object with value 1O.

If the monoidal structure on O is symmetric, then the above functors have a
natural symmetric monoidal structure.

3.2.2. We define the functors

Bar1/ /1 ∶ AssocAlgaug
(O)→O1O/ /1O

and Bar ∶ AssocAlgaug
(O)→O

to be the compositions of Bar●1/ /1 (resp., Bar●) with the functor of colimit over ∆op

(a.k.a, geometric realization)

O∆op

→O.

If the monoidal structure on O is symmetric, then the symmetric monoidal
structure on Bar●1/ /1 (resp., Bar●) induces one on Bar1/ /1 (resp., Bar).

3.2.3. The functor Bar1/ /1 can be also thought of as follows:

We have a naturally defined functor

trivAssocaug ∶ O1O/ /1O
→ AssocAlgaug

(O).

The functor Bar1/ /1 is the left adjoint of the composition

trivAssocaug ○ΩO1O/ /1O
.

3.2.4. Suppose for a moment that the monoidal structure on O is Cartesian. Then

AssocAlgaug
(O) = Monoid(O),

and the corresponding functor

Bar● ∶ Monoid(O)→O∆op

is fully faithful, see [Lu2, Proposition 4.1.2.6].

Its essential image consists of those simplicial objects n ↦ V n, for which the
maps for every n the maps

[1]→ [n], ({0}↦ {i − 1},{1}↦ {i}), i = 1, ..., n

define an isomorphism

V n → (V 1
)
×n.

The functor Bar identifies with the classifying space functor

B ∶ Monoid(O)→O.

3. ASSOCIATIVE ALGEBRAS 249

3.2.5. A key feature of the functor

Bar1/ /1 ∶ AssocAlgaug
(O)→O1O/ /1O

is that it canonically lifts to a functor

Barenh
∶ AssocAlgaug

(O)→ CoassocCoalgaug
(O),

i.e.,

Bar1/ /1 ≃ oblvCoassoc,1/ /1 ○Barenh,

see [Lu2, Theorem 5.2.2.17].

If O is symmetric, then the functor Barenh also acquires a left-lax symmet-
ric monoidal structure, extending that on Bar1/ /1. This structure is strict if the
monoidal operation on O preserves colimits.

3.2.6. Reversing the arrows, we obtain the corresponding functors

coBar●1/ /1 ∶ CoassocCoalgaug
(O)→ (O∆

)1O/ /1O
,

coBar● ∶ CoassocCoalgaug
(O)→O∆,

coBar1/ /1 ∶ CoassocCoalgaug
(O)→O1O/ /1O

,

coBar ∶ CoassocCoalgaug
(O)→O,

and

coBarenh
∶ CoassocCoalgaug

(O)→ AssocAlgaug
(O).

3.2.7. It is another basic fact that the functors

(3.4) Barenh
∶ AssocAlgaug

(O)⇄ CoassocCoalgaug
(O) ∶ coBarenh

form an adjoint pair.

In general, neither of the functors (3.4) is fully faithful.

3.3. Koszul duality functors: associative case. In this subsection we let O
be a symmetric monoidal DG category.

We will specialize the paradigm of Koszul duality functors

coPrimenh
P ∶ P -Alg(O)⇄ P

∨ -Coalg(O) ∶ Primenh
P∨

to the case P = Assocaug.

3.3.1. According to Sect. 3.2, we have a canonically defined functor

Bar1/ /1 ∶ AssocAlgaug
(O)→O1O/ /1O

.

Let

Bar/1, Bar1/

and Bar+ denote the composition of Bar1/ /1 with the functors

O1O/ /1O
→O/1O

, O1O/ /1O
→O1O/

and

O ≃ O1O/ /1O
, V ↦ 1O ⊕ V,

respectively.

By Sect. 3.2.3, the functor Bar+ is the left adjoint to the functor

O→ AssocAlgaug
(O), trivAssocAlgaug ○ [−1].

250 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

I.e.,

Bar+ ≃ [1] ○ coPrimAssocaug .

3.3.2. Similarly, we have the functors

coBar/1, coBar1/, coBar and coBar+,

where coBar+ is the right adjoint to the functor

O→ CoassocCoalgaug
(O), trivCoassocCoalgaug ○ [1].

Hence,

coBar+ ≃ [−1] ○PrimCoassocaug .

3.3.3. As was mentioned in Sect. 2.3.3, we have canonical isomorphisms of operads

(3.5) (Coassocaug
)
∨
≃ Assocaug

[−1].

Hence, the functors Bar1/ /1 and coBar1/ /1 lift to functors

Barenh
∶ AssocAlgaug

(O)→ CoassocCoalgaug
(O), Bar1/ /1 ≃ oblvCoassoc,1/ /1○Barenh

and

coBarenh
∶ CoassocCoalgaug

(O)→ AssocAlgaug
(O), coBar1/ /1 ≃ oblvAssoc,1/ /1○coBarenh,

respectively.

3.3.4. It is a basic feature of the isomorphism (3.5) that the above functors Barenh

and coBarenh are canonically the same as those in Sect. 3.2.5.

In particular, the functors

Barenh
∶ AssocAlgaug

(O)⇄ CoassocCoalgaug
(O) ∶ coBarenh

are mutually adjoint, and the functor

Barenh
∶ AssocAlgaug

(O)→ CoassocCoalgaug
(O)

is naturally symmetric monoidal.

By adjunction, we obtain that the functor coBarenh is naturally right-lax sym-
metric monoidal.

4. Lie algebras and co-commutative co-algebras

In this section we study of the relationship between Lie algebras and co-
commutative co-algebras.

The main result of this section is Theorem 4.4.6, which says that, although
the Chevalley functor from Lie algebras to co-commutative co-algebras is not fully
faithful, its cousin, obtained by first looping our Lie algebra, and regarding the
output as a co-commutative Hopf algebra, is fully faithful.

4.1. Koszul duality functors: commutative vs. Lie case. In this subsection
we continue to suppose that O is a symmetric monoidal DG category. We will
specialize the paradim of Koszul duality functors

coPrimenh
P ∶ P -Alg(O)⇄ P

∨ -Coalg(O) ∶ Primenh
P∨

to the case P = Lie.

4. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS 251

4.1.1. First, we remark that the discussion in Sect. 3.1 renders verbatim to the
situation when instead of associative algebras on O we talk about (co-)commutative
(co-)algebras.

We note, however, the following feature of the symmetric monoidal structure
on ComAlg(O): the corresponding natural transformations (3.1) are isomorphisms.

I.e., the symmetric monoidal structure on ComAlg(O), given by tensor product,
equals the co-Cartesian symmetric monoidal structure, see Volume I, Chapter 1,
Sect. 3.3.6. Similarly, the symmetric monoidal structure on CocomCoalg(O), given
by tensor product, equals the Cartesian symmetric monoidal structure.

Note that the forgetful functors

resCom→Assoc
∶ ComAlg(O)→ AssocAlg(O)

and

resCocom→Coassoc
∶ CocomCoalg(O)→ CoassocCoalg(O)

both have a natural symmetric monoidal structure.

4.1.2. We let Chev+ denote the functor

LieAlg(O)→O, [1] ○ coPrimLie .

I.e., this is the functor, left adjoint to the functor

O→ LieAlg(O), trivLie ○ [−1].

We let

Chev1/ /1 ∶ LieAlg(O)→O1O/ /1O

denote the composition of Chev+ with the equivalence (3.3).

Composing further with the forgetful functors from O1O/ /1O
, we obtain the

corresponding functors, denoted

Chev/1, Chev1/, Chev,

from LieAlg(O) to

O/1O
, O1O/, O,

respectively.

4.1.3. We denote by coChev the functor

CocomCoalgaug
(O)→O, [−1] ○PrimCocomaug .

I.e., this is the functor, right adjoint to the functor

O→ CocomCoalgaug
(O), trivCocomaug ○ [1].

252 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

4.1.4. As was mentioned in Sect. 2.3.3, we have canonical isomorphisms of operads

(4.1) (Cocomaug
)
∨
≃ Lie[−1].

Hence, the functors Chev1/ /1 and coChev lift to functors

Chevenh
∶ LieAlg(O)→ CocomCoalgaug

(O), Chev1/ /1 ≃ oblvCocom,1/ /1○Chevenh

and

coChevenh
∶ CocomCoalgaug

(O)→ LieAlg(O), coChev ≃ oblvLie ○ coChevenh,

respectively.

Furthermore, the functors

Chevenh
∶ LieAlg(O)⇄ CocomCoalgaug

(O) ∶ coChevenh

are mutually adjoint.

In particular, we obtain a canonical natural transformation

Id→ coChevenh
○Chevenh,

and by applying the forgetful functor oblvLie, also the natural transformation

(4.2) [1] ○ oblvLie → PrimCocomaug ○Chevenh .

4.1.5. The functor

Chevenh
∶ LieAlg(O)→ CocomCoalgaug

(O)

has a natural left-lax symmetric monoidal structure, when we consider both cate-
gories as endowed with Cartesian symmetric monoidal structure. (Recall, however,
that the Cartesian symmetric monoidal structure on CocomCoalgaug

(O) equals one
given by the tensor product, see Sect. 4.1.1.)

In particular, we obtain that the functor

Chev ∶ LieAlg(O)→O

inherits a left-lax symmetric monoidal structure.

In Sect. 4.2.6 we will prove:

Lemma 4.1.6. The left-lax symmetric monoidal structure on Chevenh is strict.

Corollary 4.1.7. The left-lax symmetric monoidal structure on Chev is strict.

4.2. The symmetric co-algebra. The symmetric (co)algebra construction

V ↝ ⊕
n≥0

Symn
(V)

is ubiquitous in algebra.

In this subsection we initiate its study in its incarnation as a co-commutative
co-algebra.

4.2.1. We denote by

Sym ∶ O→ CocomCoalgaug
(O)

the functor cofreefake
Cocomaug , see Sect. 2.8.5 for the notation.

4. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS 253

4.2.2. Let us denote by Sym (resp., Sym+) the functor of O → O equal to the

composition oblvCocom ○ Sym (resp., oblvCocom,+ ○ Sym).

By definition, the endo-functor Sym+ of O is one given by

V ↦ Cocomaug
⋆V.

Explicitly,

Sym(V) = ⊕
n≥0

Symn
(V) and Sym+(V) = ⊕

n≥1
Symn

(V).

4.2.3. By (2.11) we have

(4.3) Chevenh
○trivLie ○ [−1] ≃ Sym,

and
Chev ○trivLie ○ [−1] ≃ Sym.

By adjunction from (4.3), we obtain canonical natural transformations

(4.4) trivLie ○ [−1]→ coChevenh
○Sym, O→ LieAlg(O)

and by applying oblvLie the natural transformation

(4.5) Id→ PrimCocomaug ○Sym .

By Theorem 2.9.4, we have:

Theorem 4.2.4. The natural transformation (4.4) is an isomorphism.

Corollary 4.2.5. The natural transformation (4.5) is an isomorphism.

4.2.6. Proof of Lemma 4.1.6. We need to show that for h1,h2 ∈ LieAlg(O), the
map

Chevenh
(h1 × h2)→ Chevenh

(h1) ⊔Chevenh
(h2) ≃ Chevenh

(h1)⊗Chevenh
(h2)

is an isomorphism.

By Sect. 2.5.2, the above map lifts to a map

Chevenh,Fil
(h1 × h2)→ Chevenh,Fil

(h1)⊗Chevenh,Fil
(h2),

and it suffices to show that this map is an isomorphism in CocomCoalg(OFil,≥0
).

Since the functor ass-gr is conservative on non-negatively graded objects, in
order to show that the latter map is an isomorphism, it suffices to show that the
induced map

ass-gr ○Chevenh,Fil
(h1 × h2)→ ass-gr ○Chevenh,Fil

(h1)⊗ ass-gr ○Chevenh,Fil
(h2)

is an isomorphism in CocomCoalg(Ogr,≥0
).

By (2.4), the latter map identifies with the canonical map

Symgr
(oblvLie(h1)⊕ oblvLie(h2)) ≃ Symgr

(oblvLie(h1 × h2))→

→ Symgr
(oblvLie(h1))⊗ Symgr

(oblvLie(h2)),

where
Symgr

∶ O→ CocomCoalg(Ogr,≥0
)

is the graded version of the functor Sym of Sect. 4.2.1, i.e.,

Symgr
= Sym ○(deg = 1).

254 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

Now, the fact that for V1, V2 ∈ O the map

Symgr
(V1 ⊕ V2)→ Symgr

(V1)⊗ Symgr
(V2)

is an isomorphism, is straightforward.
�

4.3. Chevalley complex and the loop functor. The principal actor in this
chapter will be the functor6

Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O).

We will see (Theorem 4.4.6) that, unlike the functor Chevenh, the above functor
is fully faithful (i.e., looping helps to preserve structure).

4.3.1. Recall that by Lemma 4.1.6, the functor

Chevenh
∶ LieAlg(O)→ CocomCoalgaug

(O)

has a symmetric monoidal structure, when we consider both LieAlg(O) and CocomCoalgaug
(O)

as symmetric monoidal categories with respect to Cartesian product.

In particular, we obtain that Chevenh gives rise to a functor

Grp(Chevenh
) ∶ Grp(LieAlg(O)) ≃ Monoid(LieAlg(O))→

→Monoid(CocomCoalgaug
(O)) =∶ CocomBialg(O).

Moreover, its essential image automatically lies in

CocomHopf(O) ∶= Grp(CocomCoalgaug
(O)) ⊂

⊂ Monoid(CocomCoalgaug
(O)) = CocomBialg(O).

4.3.2. Consider now the composite functor

oblvMonoid ○Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomCoalgaug

(O).

We claim:

Proposition 4.3.3. The functor oblvMonoid ○ Grp(Chevenh
) ○ ΩLie identifies

canonically with Sym ○oblvLie.

Proof. First, we note that we have a tautological isomorphism

oblvMonoid ○Grp(Chevenh
) ○ΩLie ≃ Chevenh

○oblvGrp ○ΩLie.

Now, by Proposition 1.7.2, we have

oblvGrp ○ΩLie ≃ trivLie ○ [−1] ○ oblvLie,

so

Chevenh
○oblvGrp ○ΩLie ≃ Chevenh

○trivLie ○ [−1] ○ oblvLie ≃ Sym ○oblvLie.

�

6As we will see in Sect. 6, the functor Grp(Chevenh) ○ΩLie identifies with another familiar
functor, namely, that of the universal enveloping algebra.

4. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS 255

4.4. Primitives in bialgebras. Let h be a Lie algebra. Then the universal en-
veloping algebra U(h) is naturally a cocommutative Hopf algebra. Moreover, h can
be recovered as the subspace of primitive elements of U(h).

In this subsection, we will give a higher algebra version of this statement. We
show that the space of primitives of a cocommutative bi-algebra has a canonical
structure of a Lie algebra and that it gives a left inverse to the functor Grp(Chevenh

)○

ΩLie, (while the latter identifies with the universal enveloping algebra by Theo-
rem 6.1.2).

The key actor in this subsection we be the functor right adjoint to

Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O).

We will see that this right adjoint provides a lift of the functor

PrimCocomaug ○oblvMonoid ∶ CocomBialg(O)→O

to a functor

CocomBialg(O)→ LieAlg(O).

4.4.1. Consider again the functor

coChevenh
∶ CocomCoalgaug

(O)→ LieAlg(O).

Being the right adjoint of a symmetric monoidal functor (namely, Chevenh),

the functor coChevenh acquires a natural right-lax symmetric monoidal structure.
In particular, it gives rise to a functor, denoted Monoid(coChevenh

):

CocomBialg(O) = Monoid(CocomCoalgaug
(O))→Monoid(LieAlg(O)) ≃ Grp(LieAlg(O)).

By construction, the functor Monoid(coChevenh
) is the right adjoint of the

functor

Grp(LieAlg(O))

Grp(Chevenh)
Ð→ Grp(CocomCoalgaug

(O))↪Monoid(CocomCoalgaug
(O)).

4.4.2. SinceBLie and ΩLie are mutually inverse equivalences (see Proposition 1.6.4),

the functor Grp(Chevenh
) ○ΩLie is the left adjoint of the functor

BLie ○Monoid(coChevenh
), CocomBialg(O)→ LieAlg(O).

4.4.3. Note that

oblvLie○BLie○Monoid(coChevenh
) ≃ PrimCocomaug ○oblvMonoid, CocomBialg(O)→O,

where

oblvMonoid ∶ CocomBialg(O)→ CocomCoalgaug
(O)

is the functor of forgetting the monoid structure.

So, the functor BLie ○Monoid(coChevenh
) can be viewed as one upgrading the

functor

PrimCocomaug ○oblvMonoid ∶ CocomBialg(O)→O

to a functor CocomBialg(O)→ LieAlg(O).

256 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

Remark 4.4.4. Let us repeat the last observation in words:

For a co-commutative bi-algebra A, the space of primitives of A considered just
as an augmented co-commutative co-algebra, has a natural structure of Lie algebra.

This is a higher algebra version of the motto ‘the tangent space of a Lie group
has a structure of a Lie algebra’.

Note, however, that we defined this Lie algebra structure not be explicitly writ-
ing down the Lie bracket, but by appealing the Koszul duality of the corresponding
operads:

(Cocomaug
)
∨
≃ Lie[−1].

4.4.5. We now claim:

Theorem 4.4.6. The functor

Grp(Chevenh
) ○ΩLie ∶ LieAlg(O)→ CocomBialg(O)

is fully faithful.

Proof. We need to show that the unit of the adjunction

Id→ (BLie ○Monoid(coChevenh
)) ○ (Grp(Chevenh

) ○ΩLie)

is an isomorphism.

Since BLie and ΩLie are mutually inverse equivalences, it suffices to show that
the natural transformation

ΩLie →Monoid(coChevenh
) ○Grp(Chevenh

) ○ΩLie,

obtained by applying the unit of the (Grp(Chevenh
),Monoid(coChevenh

))-adjunction
to ΩLie, is an isomorphism.

For the latter, it suffices to show that the natural transformation

oblvGrp ○ΩLie → oblvMonoid ○Monoid(coChevenh
) ○Grp(Chevenh

) ○ΩLie

is an isomorphism. Note, however, that the latter natural transformation identifies
with

oblvGrp ○ΩLie → coChevenh
○Chevenh

○oblvGrp ○ΩLie,

obtained by applying the unit of the (Chevenh, coChevenh
)-adjunction to oblvGrp ○

ΩLie.

However, by Proposition 1.7.2, the essential image of the functor oblvGrp○ΩLie

belongs to the essential image of the functor trivLie, and the assertion follows from
Theorem 4.2.4.

�

5. The universal enveloping algebra

In this section we recall some basic facts about the functor of universal envelop-
ing algebra in the setting of higher algebra.

5.1. Universal enveloping algebra: definition. In this subsection we recollect
the main constructions related to the functor of universal envelope of a Lie algebra.

5. THE UNIVERSAL ENVELOPING ALGEBRA 257

5.1.1. There is a canonical map of operads

(5.1) Lie→ Assocaug .

From this map we obtain the restriction functor

resAssocaug→Lie
∶ AssocAlgaug

(O)→ LieAlg(O).

The functor

U ∶ LieAlg(O)→ AssocAlgaug
(O)

is defined to be the left adjoint of resAssocaug→Lie.

5.1.2. The map (5.1) has the following additional structure: the functor resAssocaug→Lie

has a natural right-lax symmetric monoidal structure, where AssocAlgaug
(O) is a

symmetric monoidal category via the tensor product, and LieAlg(O) a symmetric
monoidal category via the Cartesian product.

Hence, the functor U acquires a natural left-lax symmetric monoidal struc-
ture (as we shall see shortly, this left-lax symmetric monoidal structure is actually
symmetric monoidal).

Finally, we will need one more piece of structure on (5.1):

The above left-lax symmetric monoidal structure on U makes the following
diagram of left-lax symmetric monoidal functors commute:

(5.2)

LieAlg(O)
Chevenh

ÐÐÐÐ→ CocomCoalgaug
(O)

U
×
×
×
Ö

×
×
×
Ö

resCocomaug→Coassocaug

AssocAlgaug
(O)

Barenh

ÐÐÐÐ→ CoassocCoalgaug
(O),

such that the induced isomorphism of functors

(5.3) Bar+ ○U ≃ oblvCoassoc,+ ○Barenh
○U ≃

≃ oblvCoassoc,+○resCocomaug→Coassocaug

○Chevenh
≃ oblvCocom,+○Chevenh

≃ Chev+

is the tautological isomorphism arising by adjunction from

resCoassocaug→Lie
○ trivAssocaug ≃ trivLie.

Remark 5.1.3. In fact, one can obtain the map (5.1), along with the above
properties, by defining it as corresponding to the map of co-operads

Cocomaug
→ Coassocaug

via the isomorphisms

(Cocomaug
)
∨
≃ Lie[−1] and (Coassocaug

)
∨
≃ Assocaug

[−1].

258 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

5.1.4. Being (left-lax) monoidal, the functor U gives rise to a functor

CocomCoalg(LieAlg(O))→ CocomCoalg(AssocAlgaug
(O)).

Pre-composing with the equivalence LieAlg(O) ≃ CocomCoalg(LieAlg(O))

(see Sect. 3.1.9, applied to the commutative case), we obtain a functor:

LieAlg(O)→ CocomCoalg(AssocAlgaug
(O)).

Composing with the equivalence

CocomCoalg(AssocAlgaug
(O)) ≃ CocomBialg(O)

of Proposition C.1.3, we obtain a functor

UHopf
∶ LieAlg(O)→ CocomBialg(O).

5.1.5. By Sect. 1.5, we can upgrade the functor UHopf to a functor

(UHopf
)
Fil

∶ LieAlg(O)→ CocomBialg(OFil,≥0
).

We will also consider the functor

UFil
∶ LieAlg(O)→ AssocAlg(OFil,≥0

).

5.2. The PBW theorem. In this subsection we will first give a somewhat non-
standard formulation of the PBW theorem, Theorem 5.2.4.

Subsequently, we will deduce from it the usual form of the PBW theorem,
Corollary 5.2.6.

5.2.1. We claim that there exists a canonically defined natural transformation

(5.4) U ○ trivLie → resComaug→Assocaug

○ freeComaug ,

as functors O→ AssocAlg(O).

The datum of a map (5.4) is equivalent, by adjunction, to that of a natural
transformation

(5.5) trivLie → resAssocaug→Lie
○ resComaug→Assocaug

○ freeComaug

as functors O→ LieAlg(O).

5.2.2. We construct the natural transformation (5.5) as follows.

We note that map of operads

Lie→ Assocaug
→ Comaug

equals
Lie→ 1VectΣ → Comaug .

Hence, the functor resAssocaug→Lie
○resComaug→Assocaug

is canonically isomorphic
to

trivLie ○ oblvComaug .

Now, the datum of the natural transformation in (5.5) is obtained by applying
trivLie to the natural transformation

Id→ Sym

as functors O→O.

5. THE UNIVERSAL ENVELOPING ALGEBRA 259

5.2.3. The PBW theorem says:

Theorem 5.2.4. The natural transformation (5.4) is an isomorhism.

We will prove Theorem 5.2.4 in Sect. B. See Corollary 5.2.6 below for the
relation with the more usual version of the PBW theorem.

5.2.5. Recall the symmetric monoidal functor

ass-gr ∶ OFil
→Ogr,

and the corresponding functor

Assocaug
(ass-gr) ∶ AssocAlgaug

(OFil
)→ AssocAlgaug

(Ogr
).

Consider the functor

Ugr
∶= Assocaug

(ass-gr) ○UFil, LieAlg(O)→ AssocAlgaug
(Ogr

).

We claim:

Corollary 5.2.6. There exists a canonical isomorphism of functors

LieAlg(O)→ AssocAlgaug
(Ogr

)

between Ugr and the composition

LieAlg(O)
oblvLie
Ð→ O

deg=1
Ð→ Ogr

Ð→ AssocAlg(Ogr
),

where the last arrow is resComaug→Assocaug

○ freeComaug .

Proof. By (1.11), the functor Ugr identifies canonically with

LieAlg(O)
oblvLie
Ð→ O

deg=1
Ð→ Ogr trivLie

Ð→ LieAlg(Ogr
)

U
Ð→ AssocAlgaug

(Ogr
).

Hence, the assertion of Corollary 5.2.6 follows from that of Theorem 5.2.4.
�

Corollary 5.2.6 is the usual formulation of the PBW theorem: the associated
graded of the universal enveloping algebra is the symmetric algebra.

5.2.7. From Corollary 5.2.6 we shall now deduce:

Lemma 5.2.8. The left-lax symmetric monoidal structure on the functor

U ∶ LieAlg(O)→ AssocAlg(O)

is symmetric monoidal.

Proof. We have to show that for h1,h2 ∈ LieAlg(O), the morphism

U(h1 × h2)→ U(h1)⊗U(h2)

is an isomorphism.

It is enough to prove the corresponding fact for the functor UFil, and hence
also for the functor Ugr. Now the assertion follows via Corollary 5.2.6 from the fact
that the functor freeComaug is symmetric monoidal. �

260 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

5.3. The Bar complex of the universal envelope. Recall the isomorphism

Bar+ ○U ≃ Chev+

of (5.3), and the resulting isomorphism

(5.6) Bar ○U ≃ Chev .

In this subsection we will upgrade the latter isomorphism to one between func-
tors taking values in CocomCoalgaug

(O).

5.3.1. Consider the functor

Bar ∶ AssocAlgaug
(CocomCoalgaug

(O))→ CocomCoalgaug
(O)

and note that the following diagram commutes

AssocAlgaug
(CocomCoalg(O))

Bar
ÐÐÐÐ→ CocomCoalg(O)

AssocAlgaug(oblvCocom)
×
×
×
Ö

×
×
×
Ö

oblvCocom

AssocAlgaug
(O)

Bar
ÐÐÐÐ→ O,

since the functor oblvCocom ∶ CocomCoalg(O)→O is symmetric monoidal.

5.3.2. We claim:

Proposition 5.3.3. There exists a canonical isomorphism

Bar ○UHopf
≃ Chevenh

as functors LieAlg(O)→ CocomCoalgaug
(O), such that the induced isomorphism

Bar ○U ≃ Bar ○AssocAlgaug
(oblvCocom) ○UHopf

≃ oblvCocom ○Bar ○UHopf
≃

≃ oblvCocom ○Chevenh
≃ Chev

identifies with (5.6).

Proof. Recall the commutative diagram (5.2), from which we produce the
inner square in the next commutative diagram

LieAlg(O)
Chevenh

ÐÐÐÐ→ CocomCoalgaug
(O)

∼
×
×
×
Ö

×
×
×
Ö

∼

CocomCoalgaug
(LieAlg(O))

CocomCoalgaug(Chevenh)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ CocomCoalgaug

(CocomCoalgaug
(O))

CocomCoalgaug(U)
×
×
×
Ö

CocomCoalgaug(resCocomaug→Coassocaug
)
×
×
×
Ö

CocomCoalgaug
(AssocAlgaug

(O))

CocomCoalgaug(Barenh)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ CocomCoalgaug

(CoassocCoalgaug
(O))

∼
×
×
×
Ö

CocomCoalgaug(oblvCoassocaug)
×
×
×
Ö

AssocAlgaug
(CocomCoalgaug

(O))
Bar

ÐÐÐÐ→ CocomCoalgaug
(O).

In the above diagram, the composite left vertical arrow is, by definition, the
functor UHopf , and the composite right vertical arrow is the identity functor.

�

6. THE UNIVERSAL ENVELOPE VIA LOOPS 261

6. The universal envelope via loops

In this section we establish the main result of this chapter, Theorem 6.1.2. It
says that the universal enveloping algebra of a Lie algebra can be expressed via the
Chevalley functor, namely, we have a canonical isomorphism of functors

UHopf
≃ Grp(Chevenh

) ○ΩLie.

6.1. The main result. In this subsection we state the main result of this chapter,
Theorem 6.1.2.

6.1.1. Our main result is the following:

Theorem 6.1.2. There exists a canonical isomorphism of functors

UHopf
≃ Grp(Chevenh

) ○ΩLie, LieAlg(O)→ CocomBialg(O).

Several remarks are in order:

Remark 6.1.3. The proof of Theorem 6.1.2 is such that the isomorphism stated
in the theorem automatically upgrades to an isomorphism at the filtered level:

(UHopf
)
Fil

≃ (Grp(Chevenh
) ○ΩLie)

Fil
.

Remark 6.1.4. One can generalize the proof of Theorem 6.1.2 to estabish the
isomorphims of functors

(6.1) UEn ≃ En -Algaug
(Chev) ○Ω×n

Lie,

where UEn is the left adjoint to the forgetful functor

resE
aug
n →Lie

∶ En -Algaug
(O)→ LieAlg(O),

arising from the corresponding map of operads.

Moreover, the isomorphism (6.1) automatically upgrades to an isomorphism of
the corresponding functors

LieAlg(O)→ CocomCoalg(Eaug
n -Alg(O)) ≃ En -Alg(CocomCoalgaug

(O)),

(6.2) UHopf
En ≃ En -Algaug

(Chevenh
) ○Ω×n

Lie.

Furthermore, the isomorphism (6.2) can be upgraded to an isomorphism of
functors with values in CocomCoalg(En -Alg(OFil,≥0

)).

Remark 6.1.5. A very natural proof of the isomorphism (6.1) can be given
using the language of factorization algebras. In the context of algebraic geometry,
this is done in [FraG, Proposition 6.1.2].

6.1.6. Note that by combining Theorem 6.1.2 with Proposition 4.3.3 we obtain:

Corollary 6.1.7. There exists a canonical isomorphism of functors

oblvAssoc ○U
Hopf

≃ Sym ○oblvLie, LieAlg(O)→ CocomCoalgaug
(O)

Remark 6.1.8. The assertion of Corollary 6.1.7 is of course well-known. The
curious aspect of our proof is that it does not use the symmetrization map from
the symmetric algebra to the tensor algebra, although one can show that the latter
map gives the same isomorphism.

262 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

6.2. Proof of Theorem 6.1.2. The idea of the proof is the following: we consider
the functor

Assocaug
(UHopf

)○ΩLie ∶ LieAlg(O)→ AssocAlgaug
(AssocAlgaug

(CocomCoalg(O))) ,

and we will compose it with two different versions of the Bar-construction: the
‘inner’ and the ‘outer’:

AssocAlgaug
(AssocAlgaug

(CocomCoalg(O)))→ AssocAlgaug
(CocomCoalg(O)) ≃

≃ CocomBialg(O).

6.2.1. The left-lax symmetric monoidal structure on the functor

U ∶ LieAlg(O)→ AssocAlgaug
(O)

gives rise to one on the functor

UHopf
∶ LieAlg(O)→ CocomCoalg(AssocAlgaug

(O)) ≃ AssocAlgaug
(CocomCoalg(O)).

However, since the left-lax symmetric monoidal structure on U is strict (see
Lemma 5.2.8), so is one on UHopf . Hence, the functor UHopf gives rise to a functor
that we denote Assocaug

(UHopf
):

Monoid(LieAlg(O))→ AssocAlg (AssocAlgaug
(CocomCoalg(O))) ≃

≃ AssocAlgaug
(AssocAlgaug

(CocomCoalg(O))) .

Remark 6.2.2. We can think of the category AssocAlgaug
(AssocAlgaug

(CocomCoalg(O)))

as that of augmented E2-algebras in CocomCoalg(O).

6.2.3. Consider the resulting functor
(6.3)

Assocaug
(UHopf

)○ΩLie ∶ LieAlg(O)→ AssocAlgaug
(AssocAlgaug

(CocomCoalg(O))) .

We consider the two functors,

AssocAlgaug
(AssocAlgaug

(CocomCoalg(O)))→ AssocAlgaug
(CocomCoalg(O)),

denoted Assocaug
(Bar) and Bar, corresponding to taking the Bar-complex with

respect to the ‘inner’ and ‘outer’ associative algebra structure, respectively.

We claim:

(6.4) Bar ○Assocaug
(UHopf

) ○ΩLie ≃ U
Hopf

and

(6.5) Assocaug
(Bar) ○Assocaug

(UHopf
) ○ΩLie ≃ Grp(Chevenh

) ○ΩLie

as functors

LieAlg(O)→ AssocAlgaug
(CocomCoalg(O)).

6. THE UNIVERSAL ENVELOPE VIA LOOPS 263

6.2.4. Indeed, since the functor UHopf is symmetric monoidal, we have

(6.6) Bar ○Assocaug
(UHopf

) ○ΩLie ≃ U
Hopf

○BLie ○ΩLie ≃ U
Hopf ,

which gives the isomorphism in (6.4).

To establish the isomorphism in (6.5), we note that the isomorphism of Propo-
sition 5.3.3 is compatible with the symmetric monoidal structures, and, hence, gives
rise to an isomorphism

Assocaug
(Bar) ○Assocaug

(UHopf
) ≃ Grp(Chevenh

)

as functors

Grp(LieAlg(O)) ≃ Monoid(LieAlg(O))→

→ AssocAlg(CocomCoalgaug
(O)) ≃ AssocAlgaug

(CocomCoalg(O)).

This gives rise to the isomorphism in (6.5) by precomposing with ΩLie.

6.2.5. Recall that the symmetric monoidal structure on CocomCoalg(O) is Carte-
sian. In particular, we can consider the full subcategories

CocomHopf(O) ∶= Grp(CocomCoalg(O)) ⊂ Monoid(CocomCoalg(O)) =

= AssocAlgaug
(CocomCoalg(O)),

and

Grp(Grp(CocomCoalg(O))) ⊂ Monoid(Monoid(CocomCoalg(O))) =

= AssocAlgaug
(AssocAlgaug

(CocomCoalg(O))).

We have the following basic fact proved below:

Proposition 6.2.6. For an ∞-category C endowed with the Cartesian sym-
metric monoidal structure, there exists a canonical isomorphism of functors

Grp(B) ≃ B, Grp(Grp(C))→ Grp(C).

We compose the isomorphism of Proposition 6.2.6 with the functor (6.3), and
obtain an isomorphism

(6.7) Assocaug
(Bar) ○Assocaug

(UHopf
) ○ΩLie ≃ Bar ○Assocaug

(UHopf
) ○ΩLie.

Combining the isomorphism (6.7) with the isomorphisms (6.4) and (6.5), we
arrive at the conclusion of the theorem.

�

6.3. Proof of Proposition 6.2.6.
6.3.1. By adjunction, the assertion of the proposition amounts to a canonical
isomorphism of functors

(6.8) Ω ≃ Grp(Ω) ∶ Grp(C)→ Grp(Grp(C)).

The latter reduces the assertion to the proposition when C = Spc is the category
of spaces, by the Yoneda lemma.

264 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

6.3.2. We start with the tautological isomorphism of functors

(6.9) Grp(Ω) ○Ω ≃ Ω ○Ω, Spc{∗}/ → Grp(Grp(Spc)).

By adjunction, we obtain a natural transformation

(6.10) B ○Grp(Ω)→ Ω ○B ≃ Id, Grp(Spc)→ Grp(Spc).

Applying Ω ∶ Grp(Spc) → Grp(Grp(Spc)) to (6.10), we obtain the desired
natural transformation

Grp(Ω) ≃ Ω ○B ○Grp(Ω)→ Ω.

6.3.3. To show that the resulting map Grp(Ω)→ Ω is an isomorphism, it is enough
to do so after precomposing with Ω ∶ Spc{∗}/ → Grp(Spc). However, the resulting
map

Grp(Ω) ○Ω→ Ω ○Ω

equals that of (6.9), and hence is an isomorphism.

7. Modules

The goal of this section is to give a new perspective on the equivalence of
categories

h-mod ≃ U(h)-mod

for a Lie algebra h. We will do so using the isomorphism

U(h)-mod ≃ AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h),

given by Theorem 6.1.2.

In a sense, the upshot of this section is that one does not really need the
definition of the functor

U ∶ LieAlg(O)→ AssocAlgaug
(O)

as the left adjoint of the restriction functor resAssocaug→Lie. Namely, all the essential
features of this functor are more conveniently expressed through its incarnation as
Grp(Chevenh

) ○Ω.

7.1. Left modules for associative algebras. In this subsection we recall some
basic pieces of structure pertaining to left modules over associative algebras and to
the Koszul duality functor in this case.

7.1.1. Let O be a monoidal category. Let A be an object of AssocAlg(O). We
let A-mod(O) denote the category of left A-modules on O. We have a tautological
pair of adjoint functors

freeA ∶ O⇄ A-mod(O) ∶ oblvA.

The monad oblvA ○ freeA is given by tensor product with A.

Reversing the arrows, we obtain the corresponding pieces of notations for co-
modules:

oblvB ∶ B-comod(O)⇄O ∶ cofreeB , B ∈ CoassocCoalg(O).

7. MODULES 265

7.1.2. Let now A be an augmented associative algebra. We have a canonically
defined functor

Bar●(A,−) ∶ A-mod(O)→O∆op

,

see [Lu2, Sect. 4.4.2.7].

We denote by

Bar(A,−) ∶ A-mod(O)→O

the composition of Bar●(A,−), followed by the functor of geometric realization

O∆op

→O, provided that the latter is defined.

The functor Bar(A,−) is the left adjoint of the functor

trivA ∶ O→ A-mod(O),

given by the augmentation on A.

7.1.3. We have the following additional crucial piece of structure on the adjoint
pair

Bar(A,−) ∶ A-mod(O)⇄O ∶ trivA.

Namely, the co-monad Bar(A,−) ○ trivA on O identifies canonically with one

given by tensor product with the co-associative co-algebra Barenh
(A), see [Lu2,

Sect. 5.2.2].

In particular, we have a canonically defined functor

Barenh
(A,−) ∶ A-mod(O)→ Barenh

(A)-comod(O),

making the following diagrams commutative:

(7.1)

A-mod(O)

Barenh(A,−)
ÐÐÐÐÐÐÐ→ Barenh

(A)-comod(O)

Id
×
×
×
Ö

×
×
×
Ö

oblv
Barenh(A)

A-mod(O)

Bar(A,−)
ÐÐÐÐÐ→ O

and

(7.2)

A-mod(O)

Barenh(A,−)
ÐÐÐÐÐÐÐ→ Barenh

(A)-comod(O)

trivA
Õ
×
×
×

Õ
×
×
×

cofree
Barenh(A)

O
Id

ÐÐÐÐ→ O.

7.2. Modules over co-commutative Hopf algebras. Let O be a symmetric
monoidal category.

The goal of this subsection is to establish the following basic fact: given a
co-commutative Hopf algebra A, the category of modules over A as an associative
algebra is equivalent to the totalization of the co-simplicial category of co-modules
over Bar●(A), where Bar●(A) is considered as a simplicial co-algebra.

266 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

7.2.1. Let A be a co-commutative bi-algebra in O. Consider the corresponding
object

Bar●(A) ∈ CocomCoalg(O)
∆op

.

Consider the resulting simplicial category

Bar●(A)-comod(O),

i.e., the simplicial category formed by co-modules in O over the terms of Bar●(A),
viewed as a simplicial co-algebra.

Passing to right adjoints, we obtain a co-simpicial category

Bar●(A)-comod(O)
R.

The goal of this subsection is to establish the following:

Proposition-Construction 7.2.2. Assume that A ∈ CocomHopf(O), and
let

Ã ∶= AssocAlg(oblvCocom)(A)

be the underlying associative algebra. Then there is a canonical equivalence of
categories:

(7.3) Ã-mod ≃ Tot (Bar●(A)-comod(O)
R
) .

The construction of the equivalence in Proposition 7.2.2 will have the following
features.

7.2.3. Recall the equivalence

Tot (Bar●(A)-comod(O)
R
) ≃ ∣Bar●(A)-comod(O)∣

of Volume I, Chapter 1, Proposition 2.5.7. Thus, we obtain a functor

(7.4) ∣Bar●(A)-comod(O)∣ ≃ Tot (Bar●(A)-comod(O)
R
) ≃ Ã-mod

Bar(Ã,−)
Ð→ O.

Corollary 7.2.4. The functor (7.4) is given by the simplex-wise forgetful
functors

oblvBarm(A) ∶ Barm(A)-comod(O)→O.

Proof. Follows by considering the corresponding right adjoints. �

7.2.5. Upgrading of Ã to an object of CocomCoalg(AssocAlg(O)) defines on

the category Ã-mod a symmetric monoidal structure. Similarly, the category
Tot (Bar●(A)-comod(O)

R
) is naturally symmetric monoidal.

It will follow from the construction, given below, that the equivalence (7.3) is
naturally compatible with the above symmetric monoidal structures.

7. MODULES 267

7.2.6. The rest of this subsection is devoted to the proof of Proposition 7.2.2.

Using Proposition C.1.3, to A we can canonically attach an object

A′
∈ CocomCoalg(AssocAlgaug

(O)),

so that

Ã ≃ oblvCocom(A′
).

Moreover, by construction, under the equivalence

CocomCoalg(O)
∆op

≃ CocomCoalg(O∆op

)

the object

Bar●(A) ∈ CocomCoalg(O)
∆op

identifies with the corresponding object

Cocom(Bar●)(A′
) ∈ CocomCoalg(O∆op

).

7.2.7. Consider the category P that consists of pairs (B,M), whereB ∈ AssocAlgaug
(O)

and M ∈ B-mod. This is a symmetric monoidal category under the operation of
tensor product.

If B upgrades to an object B′
∈ CocomCoalg(AssocAlgaug

(O)), then the object
(B,1O) ∈ P has a natural structure of object of CocomCoalg(P), denoted (B′,1O).
Moreover, we have a naturally defined functor

(7.5) B-mod(O)→ (B′,1O)-comod(P), M ↦ (B,M).

We have a naturally defined symmetric monoidal functor

(7.6) Bar●with module ∶ P→O∆op

, (B,M)↦ Bar●(B,M),

so that for B ∈ AssocAlgaug
(O), we have

Bar●with module(B,1O) ≃ Bar●(B),

and for B′
∈ CocomCoalg(AssocAlgaug

(O))

Cocom(Bar●with module)(B
′,1O) ≃ Cocom(Bar●)(B′

),

as objects of CocomCoalg(O)
∆op

.

7.2.8. Combining (7.5) and (7.6) we obtain a functor

(7.7) Ã-mod(O)→ Sect (∆op,Bar●(A)-comod(O)) ,

where Sect(∆op,−) denotes the category of (not necessarily co-Cartesian) sections

of a given simplicial category. Specifically, this functor maps an Ã-module M to
the section which assigns to [n], the Barn(A)-comodule given by Barn(A,M) and
maps given by restriction of comodules.

Lemma 7.2.9. If the bi-algebra A is a Hopf algebra, then for M ∈ Ã-mod(O),
the section (7.7) defines, by passing to right adjoints, an object of

Tot (Bar●(A)-comod(O)
R
)

(i.e., the corresponding morphisms are isomorphisms for every arrow in ∆).

268 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

Proof. For an Ã-module M , we have the action map

A⊗M →M.

Applying the coinduction functor (right adjoint to restriction of comodules) to M ,
this gives a map

A⊗M → A⊗M

of A-comodules. Unraveling the definitions, the statement of the lemma reduces to
the statement that the above map is an isomorphism. This follows from the fact
that A is a group object is the category of cocommutative coalgebras. �

7.2.10. Thus, by Lemma 7.2.9, we obtain the desired functor

(7.8) Ã-mod(O)→ Tot (Bar●(A)-comod(O)
R
) .

Let us now show that the functor (7.8) is an equivalence.

7.2.11. Let
ev0

∶ Tot (Bar●(A)-comod(O)
R
)→O

denote the functor of evaluation on 0-simplices.

It is easy to see that the co-simplicial category Bar●(A)-comod(O)
R satisfies

the monadic Beck-Chevalley condition (see [Ga3, Defn. C.1.2] for what this means).
Hence, the functor ev0 is monadic, and the resulting monad on O, regarded as a
plain endo-functor, is given by tensor product with

oblvCocom ○ oblvAssoc(A) ≃ oblvAssoc(Ã).

By construction, the composite functor

Ã-mod(O)→ Tot (Bar●(A)-comod(O)
R
)

ev0

Ð→O

is the tautological forgetful functor oblvÃ ∶ Ã-mod(O) → O. Hence, it is also
monadic, and the resulting monad on O, regarded as a plain endo-functor, is given
by tensor product with oblvAssoc(Ã).

Hence, it remains to see that the homomorphism of monads on O, induced by
(7.8), is an isomorphism as plain endo-functors of O. However, it follows from
the construction that the map in question is the identity map on the functor
oblvAssoc(Ã)⊗ −.

7.3. Modules for Lie algebras. Let O be a symmetric monoidal DG category.

In this subsection we recall some basic pieces of structure pertaining to modules
over Lie algebras and the Koszul duality functor.

7.3.1. For a Lie algebra h in O we let h-mod(O) the category of (operadic) h-
modules on O. We let

oblvh ∶ h-mod(O)→O

denote the tautological forgetful functor.

7.3.2. The map from h to the zero Lie algebra defines a functor

trivh ∶ O→ h-mod(O).

This functor admits a left adjoint, denoted

coinv(h,−) ∶ h-mod(O)→O.

7. MODULES 269

7.3.3. In the sequel we will need the following additional piece of structure on the
adjoint pair

coinv(h,−) ∶ h-mod(O)⇄O ∶ trivh.

Namely, the co-monad coinv(h,−) ○ trivh on O identifies canonically with one

given by tensor product with Chevenh
(h).

NB: Here we are abusing the notation slightly: we view Chevenh
(h) as an object of

the category CoassocCoalg(O); properly, we should have written

resCocom→Coassoc
(Chevenh

(h)).

7.3.4. In particular, we have a canonically defined functor

coinvenh
(h,−) ∶ h-mod(O)→ Chevenh

(h)-comod(O),

making the following diagrams commutative:

(7.9)

h-mod(O)

coinvenh(h,−)
ÐÐÐÐÐÐÐÐ→ Chevenh

(h)-comod(O)

Id
×
×
×
Ö

×
×
×
Ö

oblv
Chevenh(h)

h-mod(O)

coinv(h,−)
ÐÐÐÐÐÐ→ O

and

(7.10)

h-mod(O)

coinvenh(h,−)
ÐÐÐÐÐÐÐÐ→ Chevenh

(h)-comod(O)

trivh

Õ
×
×
×

Õ
×
×
×

cofree
Chevenh(h)

O
Id

ÐÐÐÐ→ O.

7.3.5. From the commutative diagram (7.10) it follows that forM1,M2 ∈ h-mod(O),
the map
(7.11)

Mapsh-mod(O)(M1,M2)→MapsChevenh(h)-comod(O)(coinvenh
(h,M1),coinvenh

(h,M2)),

induced by the functor coinvenh
(h,−), is an isomorphism whenever M2 lies in the

essential image of the functor trivh.

7.4. Modules for a Lie algebra and its universal envelope. Let h ∈ LieAlg(O)

be as above. In this subsection we will construct a canonical equivalence

(7.12) h-mod(O) ≃ U(h)-mod(O)

that makes the following diagrams commute:

h-mod(O) ÐÐÐÐ→ U(h)-mod(O)

oblvh

×
×
×
Ö

×
×
×
Ö

oblvU(h)

O
Id

ÐÐÐÐ→ O
and

(7.13)

h-mod(O) ÐÐÐÐ→ U(h)-mod(O)

coinv(h,−)
×
×
×
Ö

×
×
×
Ö

Bar(U(h),−)

O
Id

ÐÐÐÐ→ O.

270 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

In constructing (7.12) we will use the incarnation of U(h) as

AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h),

given by Theorem 6.1.2.

Note that using Sect. 7.2.5, this will endow the category h-mod(O) with a
symmetric monoidal structure, compatible with the forgetful functor oblvh.

7.4.1. We start with the object

Grp(Chevenh
) ○Ω(h) ∈ CocomHopf(O) ⊂ AssocAlg(CococomCoalg(O)),

and form the object

Bar●(Grp(Chevenh
) ○Ω(h)) ∈ CococomCoalg(O)

∆op

.

Consider the resulting simplicial category

Bar●(Grp(Chevenh
) ○Ω(h))-comod(O),

and the co-simplicial category

Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R,

obtained by passing to right adjoints.

According to Proposition 7.2.2, the category

AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)-mod(O)

identifies with

Tot (Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R
) ,

in such a way that the forgetful functor

oblvAssocAlg(oblvCocom)○Grp(Chevenh)○Ω(h) ∶

AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)-mod(O)→O

identifies with the functor of evaluation on zero-simplices.

7.4.2. Note that the simplicial co-algebra Bar●(Grp(Chevenh
) ○ Ω(h)) identifies

with

Chevenh
(Bar● ○Ω(h)),

where

Bar● ○Ω(h) ∈ LieAlg(O)
∆op

is the Čech nerve in LieAlg(O) of the map 0O → h.

Consider the co-simplicial category

(7.14) Bar● ○Ω(h)-mod(O).

Since

colim
∆op

Bar● ○Ω(h) ≃ h,

we have

h-mod(O) ≃ Tot (Bar● ○Ω(h)-mod(O)) .

7. MODULES 271

7.4.3. We will construct the sought-for equivalence

h-mod(O) ≃ AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)-mod(O)

by constructing an equivalence

Tot (Bar● ○Ω(h)-mod(O)) ≃ Tot (Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R
) .

To do so, it is sufficient to show that the corresponding semi-totalizations are
equivalent.

7.4.4. Let

Bar● ○Ω(h)-mod(O)
L

be the simplicial category obtained by passing to left adjoints in (7.14).

The functor coinvenh
(−,−) gives rise to a functor of simplicial categories

(7.15) Bar● ○Ω(h)-mod(O)
L
→ Bar●(Grp(Chevenh

) ○Ω(h))-comod(O),

and, in particular, a functor between the underlying semi-simplicial categories.

We have:

Lemma 7.4.5. For an injective map [m1] → [m2], the diagram of obtained by
passing to right adjoints along the vertical arrows in

Barm1
○Ω(h)-mod(O) ÐÐÐÐ→ Barm1

(Grp(Chevenh
) ○Ω(h))-comod(O)

×
×
×
Ö

×
×
×
Ö

Barm2
○Ω(h)-mod(O) ÐÐÐÐ→ Barm2

(Grp(Chevenh
) ○Ω(h))-comod(O)

commutes.

From Lemma 7.4.5 we obtain that the term-wise application of the functor
coinvenh

(−,−), gives rise to a functor from the co-semisimplicial category underly-

ing Bar● ○Ω(h)-mod(O) to that underlying Bar●(Grp(Chevenh
)○Ω(h))-comod(O)

R.

To prove that the resulting functor between co-semisimplicial categories induces
an equivalence of semi-totalizations, it is sufficient to show that for every m, the
corresponding functor

coinv(Barm ○Ω(h),−) ∶ Barm ○Ω(h)-mod(O)→ Barm(Grp(Chevenh
)○Ω(h))-comod(O)

is fully faithful on the essential image of all the face maps [0]→ [m].

However, this follows from Sect. 7.3.5.

7.4.6. It remains to establish the commutativity of the diagram (7.13).

According to Corollary 7.2.4, under the identification

AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)-mod(O) ≃

≃ Tot (Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R
)

of Proposition 7.2.2, the functor

Bar(AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h),−) ∶

AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)-mod(O)→O

272 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

corresponds to the functor

Tot (Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R
)→

→ ∣Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)∣→O,

given by the forgetful functors

oblvBarm(Grp(Chevenh)○Ω(h)) ∶ Barm(Grp(Chevenh
) ○Ω(h))-comod(O)→O.

We have a commutative diagram

Tot (Bar● ○Ω(h)-mod(O)) ÐÐÐÐ→ Tot (Bar●(Grp(Chevenh
) ○Ω(h))-comod(O)

R
)

∼
Õ
×
×
×

Õ
×
×
×

∼

∣Bar● ○Ω(h)-mod(O)
L
∣ ÐÐÐÐ→ ∣Bar●(Grp(Chevenh

) ○Ω(h))-comod(O)∣,

where the lower horizontal arrow comes from the map of simplicial categories (7.15).

Hence, we need to show that the functor

∣Bar● ○Ω(h)-mod(O)
L
∣→O,

given by

coinv(Barm ○Ω(h),−) ∶ Barm ○Ω(h)-mod(O)
L
→O,

corresponds under

(7.16) ∣Bar● ○Ω(h)-mod(O)
L
∣ ≃ Tot (Bar● ○Ω(h)-mod(O)) ≃ h-mod(O)

to the functor

coinv(h,−) ∶ h-mod(O)→O.

However, this follows from the fact that the functor (7.16) is given by the
functors,

Barm ○Ω(h)-mod(O)→ h-mod(O)

left adjoint to those given by restriction.

Remark 7.4.7. An alternate proof of the equivalence h-mod(O) ≃ U(h)-mod(O)

can be given as follows. Given an object M ∈ O, one has the relative inner Hom

EndO(M) ∶= HomO(M,M)

which is an associative algebra in O (see Volume I, Chapter 1, Sect. 3.6.6). For
any associative algebra A in O, the structure of an A-module on M is equivalent to
a map of associative algebras A → EndO(M) [Lu2, Corollary 4.7.2.41]. Similarly,
one can prove that for any Lie algebra h, the structure of an h-module on M is
equivalent to a map of Lie algebras h → EndO(M). The equivalence then follows
from the description of U(h) as the algebra induced from h along the map of operads
Lie→ Assocaug.

A. PROOF OF THEOREM 2.9.4 273

A. Proof of Theorem 2.9.4

Recall that Theorem 2.9.4 says that (under a certain hypothesis on the co-
operad Q) if we compute primitives in an object of Q∨ -Coalg(O) of the form

cofreefake
Q (V), V ∈ O,

we recover V . The non-triviality here lies in the fact that cofreefake
Q is not the

co-free Q co-algebra; rather, it comes from the corresponding co-free object under
the functor

Q
∨ -Coalgind-nilp

(O)→ Q
∨ -Coalg(O).

So, we are dealing with the difference between direct sums and direct products.
At the end of the day the proof will consist of showing that a certain spectral
sequence converges, and that will be achieved by taking into account t-structures
(hence the assumption on Q).

A.1. Calculation of co-primitives. Let P be an operad. In this subsection we
will give an expression for the functor

coPrimP ∶ P -Alg(O)→O

in terms of the Koszul dual co-operad.

A.1.1. For n ≥ 1, let

ιn ∶ Vect→ VectΣ

be the tautological functor that produces symmetric sequences with only the n-th
non-zero component.

We have the following basic fact:

Lemma A.1.2. For an operad P, the object 1VectΣ ∈ VectΣ, regarded as a right

P-module in the monoidal category VectΣ, can be canonically written as a colimit

colim
n≥1
Mn

with
coFib(Mn−1 →Mn) ≃ ιn(P

∨
(n)) ⋆P, n ≥ 1.

A.1.3. The assertion of Lemma A.1.2 gives rise to the following more explicit way
to express the functor coPrimP :

Corollary A.1.4. The functor

A↦ coPrimP(A), P -Alg(O)→O

admits a canonical filtration by functors of the form

A↦Mn ⋆
P
A,

where Mn are right P-modules, such that the associated graded of this filtration is
canonically identified with

n↦ P∨(n) ⋆ oblvP(A).

A.2. Computation of primitives. Our current goal is to formulate and prove an
analog of Corollary A.1.4 for co-algebras over a co-operad, namely Proposition A.2.3
below.

274 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

A.2.1. LetQ be a co-operad,N a rightQ-comodule in VectΣ, andA ∈ Q -Coalg(O).

We can form a co-simpicial object coBar●∗(N ,Q,A) of O with the n-th term

coBarn∗(N ,Q,A) ∶=

⎛

⎜

⎝

N ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⎞

⎟

⎠

∗A.

We define

N
Q
∗ A ∶= Tot (coBar●∗(N ,Q,A)) .

A.2.2. We are going to prove:

Proposition A.2.3. The functor

A↦ PrimQ(A), Q -Coalg(O)→O

can be canonically written as an inverse limit of functors of the form

Nn
Q
∗ A, n ≥ 1,

where Nn are right Q-comodules in VectΣ with

Fib(Nn → Nn−1) ≃ ιn(Q
∨
(n)) ⋆Q, n > 1.

The rest of this subsection is devoted to the proof of this proposition.

A.2.4. By definition, the functor PrimQ is calculated as

A↦ 1VectΣ

Q
∗ A.

Now, we have the following assertion, which is an analog of Lemma A.1.2 for
co-operads:

Lemma A.2.5. For a co-operad Q, the object 1VectΣ ∈ VectΣ, regarded as a right

Q-comodule in the monoidal category VectΣ, can be canonically written as a limit

lim
n≥1
Nn,

with

Fib(Nn → Nn−1) ≃ ιn(Q
∨
(n)) ⋆Q, n > 1.

A.2.6. Since functor of totalization commutes with the formation of limits of terms,
in order to prove Proposition A.2.3, it suffices to show that for every m ≥ 0, the
natural map

coBarm∗ (1VectΣ ,Q,A)→ lim
n

coBarm∗ (Nn,Q,A)

is an isomorphism.

For the latter, by the definition of the ∗-action, it suffices to show that for any
i ≥ 0, the map

⎛

⎜

⎝

1VectΣ ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⎞

⎟

⎠

(i)⊗A⊗i
→ lim

n

⎛

⎜

⎝

Nn ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⎞

⎟

⎠

(i)⊗A⊗i

is an isomorphism.

A. PROOF OF THEOREM 2.9.4 275

However, the required isomorphism follows from the fact that for every given
i, the family

n↦
⎛

⎜

⎝

Nn ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⎞

⎟

⎠

(i)

stabilizes to
⎛

⎜

⎝

1VectΣ ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⎞

⎟

⎠

(i)

for n ≥ i.

A.3. Proof of Theorem 2.9.4.
A.3.1. Strategy of the proof. We take A ∶= cofreefake

Q (V) for V ∈ O. We need to
show that the natural map

V → PrimQ ○cofreefake
Q (V)

is an isomorphism.

We calculate the right-hand side via Proposition A.2.3. We will prove that for
every n ≥ 1, the map

coFib(V → Nn
Q
∗ cofreefake

Q (V))→ coFib(V → Nn−1
Q
∗ cofreefake

Q (V))

is zero. This will prove the required assertion.

A.3.2. Step 0. For a right Q-comodule N in VectΣ, and A ∈ Q -Coalgind-nilp
(O),

consider the co-simplicial object coBar●⋆(N ,Q,A) of O with terms

coBarn∗(N ,Q,A) ∶=

⎛

⎜

⎝

N ⋆Q ⋆ ... ⋆Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⎞

⎟

⎠

⋆A.

Set

N
Q
⋆ A ∶= Tot (coBar●⋆(N ,Q,A)) .

Note that for A ∈ Q -Coalgind-nilp
(O), from (2.7) we obtain a map

(A.1) N
Q
⋆ A→ N

Q
∗ res⋆→∗(A).

We observe:

Lemma A.3.3. Let N be cofree, i.e., of the form N ′
⋆Q for N ′

∈ VectΣ. Then
we have a commutative diagram with vertical arrows being isomorphisms:

N
Q
⋆ A

(A.1)
ÐÐÐÐ→ N

Q
∗ res⋆→∗(A)

Õ
×
×
×

Õ
×
×
×

N
′
⋆ oblvind-nilp

Q (A)

(2.7)
ÐÐÐÐ→ N

′
∗ oblvind-nilp

Q (A).

Corollary A.3.4. Let N be of the form ιn(V) ⋆Q for some n and V ∈ O.
Then the map (A.1) is an isomorphism.

276 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

A.3.5. Step 1. We return to the proof of Theorem 2.9.4. We note that for any
n ≥ 1, the object Nn has a finite filtration by objects of the form ιm(Q

∨
(m)) ⋆Q,

m ≤ n.

By Corollary A.3.4, we obtain that for any A ∈ Q -Coalgind-nilp
(O) the map

Nn
Q
⋆ A→ Nn

Q
∗ res⋆→∗(A)

of (A.1) is an isomorphism.

Hence, we obtain that it suffices to show that the map

coFib(V → Nn
Q
⋆ cofreeQind-nilp(V))→ coFib(V → Nn−1

Q
⋆ cofreeQind-nilp(V))

is zero.

A.3.6. Step 2. Note that eachNn
Q
⋆cofreeQind-nilp(V) is naturally graded by integers

d ≥ 1, such that the map

V → Nn
Q
⋆ cofreeQind-nilp(V)

is an isomorphism on the degree 1 part for all n.

Hence, it remains to show that for all d > 1, the map

(A.2) (Nn
Q
⋆ cofreeQind-nilp(V))

d
→ (Nn−1

Q
⋆ cofreeQind-nilp(V))

d

is zero, where the superscript d indicates the degree d part.

A.3.7. Step 3. Note now that the functor

V ↦ (Nn
Q
⋆ cofreeQind-nilp(V))

d

(resp., the natutal transformation (A.2)) is given by

V ↦ (K
d
n ⊗ V

⊗d
)Σd

for some Kdn ∈ Rep(Σd) (resp., a map Kdn → K
d
n−1).

Hence, it remains to show that for every d > 1 and every n, the map

(A.3) K
d
n → K

d
n−1

is zero.

A.3.8. Step 4. Since the category Rep(Σd) is semi-simple, the fact that (A.3) is
equivalent to the map in question inducing the zero map on cohomology.

The latter reduces the assertion of the theorem to the case of O = Vect. Namely,
it suffices to show that for some/any V ∈ Vect♡f.d. with dim(V) ≥ d, the map (A.2)
induces the zero map on cohomology.

B. PROOF OF THE PBW THEOREM 277

A.3.9. Step 5. Consider the operad Q∗, and set Mn ∶= N
∗
n . We obtain that the

object

(Nn
Q
⋆ cofreeQind-nilp(V))

d

is the linear dual of the object

(A.4) (Mn ⋆
Q∗

freeQ∗(V ∗
))

d.

Hence, is is enough to show that the map

(A.5) (Mn−1 ⋆
Q∗

freeQ∗(V ∗
))

d
→ (Mn ⋆

Q∗
freeQ∗(V ∗

))
d

induces a zero map on cohomology for all n ≥ 1 and d > 1.

A.3.10. Step 6. We note that (Q
∗
)
∨
≃ (Q

∨
)
∗. So, by the assumption that Q∨[1]

and Q∗ are classical,

coFib(Mn−1 ⋆
Q∗

freeQ∗(V ∗
)→Mn ⋆

Q∗
freeQ∗(V ∗

))

is concentrated in cohomological degree −n.

Hence,

coFib((Mn−1 ⋆
Q∗

freeQ∗(V ∗
))

d
→ (Mn ⋆

Q∗
freeQ∗(V ∗

))
d
)

is also concentrated in cohomological degree −n.

Therefore, in order to show that (A.5) induces a zero map on cohomology, it
suffices to show that the colimit

(A.6) colim
n

(Mn ⋆
Q∗

freeQ∗(V ∗
))

d.

is acyclic.

A.3.11. Step 7. By Corollary A.1.4, the colimit (A.6) identifies with the degree d
part of

coPrimQ∗ ○freeQ∗(V ∗
).

However,
coPrimQ∗ ○freeQ∗(V ∗

) ≃ V ∗

and hence its degree d part for d ≠ 1 vanishes.
�

B. Proof of the PBW theorem

In this section we will prove the version of the PBW theorem stated in the
main body of the paper as Theorem 5.2.4.

B.1. The PBW theorem at the level of operads. In this subsection we for-
mulate a version of Theorem 5.2.4 that takes place within the category VectΣ.

B.1.1. We have the canonical maps

φ ∶ Lie→ Assocaug and ψ ∶ Assocaug
→ Comaug,

such that the composition ψ ○ φ factors through the augmentation/unit

Lie→ 1VectΣ → Com .

278 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

B.1.2. The map φ gives rise to the forgetful functor

resAssocaug→Lie
∶ AssocAlgaug

(O)→ LieAlg(O),

and the map ψ gives rise to the forgetful functor

resComaug→Assocaug

∶ Comaug
(O)→ AssocAlgaug

(O).

The functor

U ∶ LieAlg(O)→ AssocAlgaug
(O)

is given by

h↦ Assocaug
⋆

Lie
h.

B.1.3. The functor

U ○ trivLie ∶ O→ AssocAlgaug
(O)

is given by

V ↦ (Assocaug
⋆

Lie
1VectΣ) ⋆ V.

The canonical map

U ○ trivLie(V)→ freeComaug(V)

comes from the map in VectΣ:

(B.1) Assocaug
⋆

Lie
1VectΣ → Comaug,

which arises via the description of the map ψ ○ φ in Sect. B.1.1.

B.1.4. The operadic PBW theorem says:

Theorem B.1.5. The map (B.1) is an isomorphism in VectΣ.

It is clear that Theorem B.1.5 implies Theorem 5.2.4.

B.2. Proof of Theorem B.1.5.
B.2.1. We have the natural map in VectΣ

Comaug
→ Assocaug

which realizes the symmetrization map at the level of functors. This gives a map
of right Lie-modules in VectΣ

Comaug
⋆Lie→ Assocaug .

It follows from the classical PBW theorem applied to a free Lie algebra on a vector
space that this map is an isomorphism.

Hence, we have an isomorphism between Assocaug
⋆

Lie
1VectΣ and Comaug. In

particular, for every n, we have:

(Assocaug
⋆

Lie
1VectΣ) (n) ∈ Vect♡ .

C. COMMUTATIVE CO-ALGEBRAS AND BIALGEBRAS 279

B.2.2. It remains to show that for any V ∈ Vect♡, the map

H0
((Assocaug

⋆
Lie

1VectΣ) ⋆ V)→ freeComaug(V)

is an isomorphism.

Note, however, that the object H0
((Assoc ⋆

Lie
1VectΣ) ⋆ V) identifies with

H0
(U ○ trivLie(V)) ,

i.e., the universal enveloping algebra of the trivial Lie algebra, taken in the world
of classical associative algebras.

However, the latter is easily seen to map isomorphically to freeComaug(V).

C. Commutative co-algebras and bialgebras

Let H be a classical co-commutative bialgebra. We can regard H as either an
associative algebra in the category of co-commutative co-algebras or, equivalently,
a co-commutative co-algebra in the category of associative algebras.

In this section, we establish the corresponding fact in the context of higher alge-
bra, i.e., an equivalence of (∞,1)-categories CocomCoalg(AssocAlg(O)) ≃ AssocAlg(CocomCoalg(O)).
The latter is not altogether obvious, as the corresponding classical assertion is
proved by ‘an explicit formula’.

C.1. Two incarnations of co-commutative bialgebras. Co-commutative bial-
gebras can be thought of in two different ways: as co-commutative co-algebras in
the category of associative algebras, or as associative algebras in the category of
co-commutative co-algebras. In this subsection we show that the two are equivalent.

C.1.1. In this subsection we let O be a symmetric monoidal category, which con-
tains colimits, and for which the functor of tensor product preserves colimits in
each variable.

The category CocomBialg(O) is defined as

(C.1) AssocAlg(CocomCoalg(O)) ≃ AssocAlg(CocomCoalgaug
(O)),

where the (symmetric) monoidal structure on CocomCoalg(O) is given by tensor
product, which coincides with the Cartesian product in CocomCoalg(O).

Consider now the category AssocAlg(O), endowed with a symmetric monoidal
structure given by tensor product. Consider the category

(C.2) CocomCoalg(AssocAlg(O)) ≃ CocomCoalg(AssocAlgaug
(O)).

280 6. LIE ALGEBRAS AND CO-COMMUTATIVE CO-ALGEBRAS

C.1.2. In this section we will prove:

Proposition-Construction C.1.3. There exists a canonical equivalence of
categories

CocomCoalg(AssocAlg(O)) ≃ AssocAlg(CocomCoalg(O))

that makes the diagram

CocomCoalg(O)
Id

ÐÐÐÐ→ CocomCoalg(O)

CocomCoalg(oblvAssoc)
Õ
×
×
×

Õ
×
×
×

oblvAssoc

CocomCoalg(AssocAlg(O)) ÐÐÐÐ→ AssocAlg(CocomCoalg(O))

oblvCocom

×
×
×
Ö

×
×
×
Ö

AssocAlg(oblvCocom)

AssocAlg(O)
Id

ÐÐÐÐ→ AssocAlg(O)

commute.

C.2. Proof of Proposition C.1.3.
C.2.1. Step 1. We have a canonically defined symmetric monoidal functor

Bar● ∶ AssocAlgaug
(O)→O∆op

.

In particular, we obtain a functor

Cocom(Bar●) ∶ CocomCoalg(AssocAlgaug
(O))→ CocomCoalg(O∆op

) ≃

≃ CocomCoalg(O)
∆op

.

Combining with (C.2), we obtain a functor

(C.3) CocomCoalg(AssocAlg(O))→ CocomCoalg(O)
∆op

.

C.2.2. Step 2. Since the symmetric monoidal structure on CocomCoalg(O) is Carte-
sian, the functor

(C.4) Bar● ∶ AssocAlg(CocomCoalg(O))→ CocomCoalg(O)
∆op

is fully faithful.

Now, it is easy to see that the essential image of the functor (C.3) lies in that
of (C.4).

This defines a functor in one direction:

(C.5) CocomCoalg(AssocAlg(O))→ AssocAlg(CocomCoalg(O)).

C. COMMUTATIVE CO-ALGEBRAS AND BIALGEBRAS 281

C.2.3. Step 3. Let us now prove that the functor (C.5) is an equivalence. By
construction, the composite functor

CocomCoalg(AssocAlg(O))→ AssocAlg(CocomCoalg(O))
oblvAssoc
Ð→ CocomCoalg(O)

is the tautological functor

(C.6) Cocom(oblvAssoc) ∶ CocomCoalg(AssocAlg(O))→ CocomCoalg(O).

It suffices to show that the functor (C.6) and

(C.7) AssocAlg(CocomCoalg(O))
oblvAssoc
Ð→ CocomCoalg(O)

are both monadic, and that the map of monads, induced by (C.5), is an isomorphism
as plain endo-functors of CocomCoalg(O).

C.2.4. Step 4. The functor

AssocAlg(O′
)

oblvAssoc
Ð→ O′

is monadic for any monoidal category O′ (satisfying the same assumtion as O); its
left adjoint is given by

V ↦ freeAssoc(V).

In particular, the functor (C.7) is monadic: take O′
∶= CocomCoalg(O).

C.2.5. Step 5. We have a pair of adjoint functors

freeAssoc ∶ O⇄ AssocAlg(O) ∶ oblvAssoc,

with the right adjoint being symmetric monoidal.

Hence, the above pair induces an adjoint pair

CocomCoalg(O)⇄ CocomCoalg(AssocAlg(O)).

Hence, we obtain that the functor (C.6) is also monadic.

C.2.6. Step 6. To show that the map of monads on CocomCoalg(O), induced by
(C.5) is an isomorphism as plain endo-functors, it is enough to do so after composing
with the (conservative) forgetful functor oblvCocom ∶ CocomCoalg(O)→O.

By construction, it suffices to prove that the natural transformation

freeAssoc ○ oblvCocom → AssocAlg(oblvCocom) ○ freeAssoc,

coming by adjunction from the isomorphism

oblvCocom ○ oblvAssoc ≃ oblvAssoc ○AssocAlg(oblvCocom),

is itself an isomorphism.

However, this follows from the fact that the functor

oblvCocom ∶ CocomCoalg(O)→O

is symmetric monoidal and preserves coproducts.
�

CHAPTER 7

Formal groups and Lie algebras

Introduction

In this chapter we will use the notion of inf-scheme to give what may be regarded
as the ultimate formulation of the correspondence between formal groups and Lie
algebras.

0.1. Why does the tangent space of a Lie group have the structure of
a Lie algebra? In classical differential geometry the process of associating a Lie
algebra to a Lie group is the following:

(i) For any manifold Y , one considers the associative algebra of global differential
operators, endowed with its natural filtration;

(ii) One shows that the underlying Lie algebra is compatible with the filtration,
and in particular ass-gr1

(Diff(Y)) ≃ Γ(Y,TY) has a structure of Lie algebra;

(iii) If Y = G is a Lie group, the operation of taking differential operators/vector
fields, invariant with respect to left translations preserves the pieces of structure in
(i) and (ii); in particular, left-invariant vector fields form a Lie algebra.

(iv) One identifies the tangent space at the identity of G with the vector space of
left-invariant vector fields.

In the context of derived algebraic geometry, the process of associating a Lie
algebra to a formal group is different, and we will describe it in this subsection.

0.1.1. We will work in a relative context over a given X ∈ PreStklaft (the special
case of X = pt is still interesting and contains all the main ideas). By a formal
group we will mean an object of the category

Grp(FormMod/X),

where FormMod/X is the full subcategory of (PreStklaft)/X consisting of inf-schematic
nil-isomorphisms Y → X (when X = pt, this is the category of inf-schemes Y with
red
Y = pt).

We will define a functor

LieX ∶ Grp(FormMod/X)→ LieAlg(IndCoh(X)),

and the main goal of this Chapter is to show that it is an equivalence.

When X = pt we obtain an equivalence between the category of group inf-
schemes whose underlying reduced scheme is pt and the category of Lie algebras
in Vect. Note that we impose no conditions on the cohomological degrees in which
our Lie algebras are supposed to live.

283

284 7. FORMAL GROUPS AND LIE ALGEBRAS

0.1.2. To explain the idea of the functor LieX , let us first carry it out for classical
Lie groups; this will be a procedure of associating a Lie algebra to a Lie group
different (but, of course, equivalent) to one described above.

Namely, let G be a Lie group. The space Distr(G) of distributions supported at
the identity of G has a natural structure of a co-commutative Hopf algebra (which
will ultimately be identified with the universal enveloping algebra of the Lie algebra
g associated to G).

Now, the Lie algebra g can then be described as the space of primitive elements
of Distr(G).

0.1.3. We will now describe how the functor LieX is constructed in the context of
derived algebraic geometry. The construction will be compatible with pullbacks, so
we can assume that X =X ∈

<∞Schaff
ft .

For any

(Y
π
Ð→X) ∈ FormMod/X

we consider

Distr(Y) ∶= πIndCoh
∗ (ωY) ∈ IndCoh(X),

and we observe that it has a structure of co-commutative co-algebra in IndCoh(X),
viewed as a symmetric monoidal category with respect to the !-tensor product. (If
X = pt, the dual of Distr(Y) is the commutative algebra Γ(Y,OY).)

We denote the resulting functor FormMod/X → CocomCoalg(IndCoh(X)) by

DistrCocom; one shows that it sends products to products. In particular, DistrCocom

gives rise to a functor

Grp(DistrCocom
) ∶ Grp(FormMod/X)→ Grp(CocomCoalg(IndCoh(X))) =∶

= CocomHopf(IndCoh(X)).

0.1.4. Recall now (see Chapter 6, Sect. 4.4.2) that the category CocomHopf(IndCoh(X))

is related by a pair of adjoint functors with the category LieAlg(IndCoh(X)):

Grp(Chevenh
)○Ω ∶ LieAlg(IndCoh(X))⇄ CocomHopf(IndCoh(X)) ∶ BLie○Grp(coChevenh

),

with the left adjoint being fully faithful.

Finally, we set

(0.1) LieX ∶= BLie ○Grp(coChevenh
) ○Grp(DistrCocom

).

0.1.5. The upshot of the above discussion is the following: the appearance of the
Lie algebra structure is due to the Quillen duality at the level of operads:

(Cocomaug
)
∨
≃ Lie[−1].

The shift [−1] is compensated by delooping–this is where the group structure
is used.

0.2. Formal moduli problems and Lie algebras. The equivalence

LieX ∶ Grp(FormMod/X)→ LieAlg(IndCoh(X))

allows us to recover Lurie’s equivalence ([Lu6, Theorem 2.0.2]) between Lie algebras
and formal moduli problems, as we shall presently explain.

INTRODUCTION 285

0.2.1. Let X be an object PreStklaft. Consider the category Ptd(FormMod/X) of
pointed objects in FormMod/X . I.e., this is the category of diagrams

(π ∶ Y ⇄ X ∶ s), π ○ s = id

with the map π being an inf-schematic nil-isomorphism.

Recall also that according to Chapter 5, Theorem 1.6.4, the loop functor

ΩX ∶ Ptd(FormMod/X)→ Grp(FormMod/X)

is an equivalence, with the inverse functor denoted BX .

0.2.2. Thus, we obtain that the composition

(0.2) LieX ○ΩX ∶ Ptd(FormMod/X)→ LieAlg(IndCoh(X))

is an equivalence.

0.2.3. Let us now take X = X ∈
<∞Schaff

ft . Let us comment on the behavior of the
functor LieX ○ΩX in this case.

By construction, the above functor is

BLie ○Grp(coChevenh
) ○Grp(DistrCocom

) ○ΩX ,

i.e., it involves first looping our moduli problem and then delooping at the level of
Lie algebras.

Note, however, that there is another functor

Ptd(FormMod/X)→ LieAlg(IndCoh(X)).

Namely, the functor

DistrCocom
∶ FormMod/X → CocomCoalg(IndCoh(X))

gives rise to a functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)).

Composing with the functor

coChevenh
∶ CocomCoalgaug

(IndCoh(X))→ LieAlg(IndCoh(X)),

we obtain a functor

(0.3) coChevenh
○DistrCocomaug

∶ Ptd(FormMod/X)→ LieAlg(IndCoh(X)).

0.2.4. Now, the point is that the functors LieX ○ΩX and coChevenh
○DistrCocomaug

are not isomorphic.

In terms of the equivalence (0.2), the functor DistrCocomaug

corresponds to

Chevenh
∶ LieAlg(IndCoh(X))→ CocomCoalgaug

(IndCoh(X)).

Hence, the discrepancy between LieX ○ΩX and coChevenh
○DistrCocomaug

is the
endo-functor of LieAlg(IndCoh(X)) equal to

coChevenh
○Chevenh .

In particular, the unit of the adjunction defines a natural transformation

(0.4) LieX ○ΩX → coChevenh
○DistrCocomaug

.

286 7. FORMAL GROUPS AND LIE ALGEBRAS

0.3. Inf-affineness. Let X =X ∈
<∞Schaff

ft . In Sect. 2 we will introduce the notion
of inf-affineness for objects of Ptd(FormMod/X).

0.3.1. One of the equivalent conditions for an object Y ∈ Ptd(FormMod/X) to be
inf-affine is that the map (0.4) should be an isomorphism.

Another equivalent condition for inf-affineness is that the natural map

T (Y/X)∣X → oblvLie ○ coChevenh
○DistrCocomaug

(Y)

should be an isomorphism.

0.3.2. One of the ingredients in proving that LieX is an equivalence is the assertion
that any H ∈ Grp(FormMod/X), viewed as an object of Ptd(FormMod/X), is inf-
affine.

But, in fact, a stronger assertion is true.

0.3.3. To any F ∈ IndCoh(X) we attach the vector prestack, denoted VectX(F).
Namely, for

(f ∶ S ⇄X ∶ s) ∈ (Schaff
aft)nil-isom to X

we set

Maps/X(S,VectX(F)) = MapsIndCoh(X)(Distr+(S),F),

where

Distr+(S) ∶= Fib(f IndCoh
∗ (ωS)→ ωX).

In Corollary 2.2.3 we show that VectX(F) is inf-affine.

0.3.4. It follows from Chapter 6, Corollary 1.7.3 that any H ∈ Grp(FormMod/X),
regarded as an object of Ptd(FormMod/X), is canonically isomorphic to

VectX(oblvLie(Lie(H))).

0.4. The functor of inf-spectrum and the exponential construction. Let
X =X ∈

<∞Schaff
ft . Above we have introduced the functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)).

Another crucial ingredient in the proof of the fact that the functor LieX of
(0.1) is an equivalence is the functor

Specinf
∶ CocomCoalgaug

(IndCoh(X))→ Ptd(FormMod/X),

right adjoint to DistrCocomaug

.

0.4.1. In terms of the equivalence (0.2), the functor Specinf corresponds to the
functor

coChevenh
∶ CocomCoalgaug

(IndCoh(X))→ LieAlg(IndCoh(X)).

For example, we have:

VectX(F) ≃ Specinf
(Sym(F)).

INTRODUCTION 287

0.4.2. The notions of inf-affineness and inf-spectrum are loosely analogous to those
of affineness and spectrum in algebraic geometry. But the analogy is not perfect.
For example, it is not true that the functor Specinf is fully faithful.

Conjecturally, the functor Specinf maps CocomCoalgaug
(IndCoh(X)) to the

full subcategory of Ptd(FormMod/X) consisting of inf-affine objects.

0.4.3. We use the functor Specinf to construct an inverse to the functor LieX :

expX ∶ LieAlg(IndCoh(X))→ Grp(FormMod/X).

Namely,

expX ∶= Specinf
○Grp(Chevenh

) ○ΩLie.

0.4.4. The functor expX (extended from the case of schemes to that of prestacks)
can be used to give the following interpretation to the construction of the functor
of split square-zero extension

IndCoh(X)→ Ptd(FormMod/X),

extending the functor

RealSplitSqZ ∶ (Coh(X)
≤0

)
op
→ Ptd((Schaff

aft)/X), X ∈ Schaff
aft

of Chapter 1, Sect. 2.1. Here we regard (Coh(X)
≤0

)
op as a full subcategory of

IndCoh(X) by means of

(Coh(X)
≤0

)
op
↪ Coh(X)

op DSerre
X
Ð→ Coh(X)↪ IndCoh(X).

Namely, we have:

ΩX ○RealSplitSqZ(F) ∶= expX ○freeLie ○Ω,

where Ω on IndCoh(X) is the functor of shift [−1].

0.5. What else is done in this chapter? In this chapter we cover two more
topics: the notion of action of objects in Grp(FormMod/X) on objects of IndCoh(X)

and on objects of (PreStklaft)/X .

0.5.1. For H ∈ Grp(FormMod/X) we consider its Bar complex

B●
(H) ∈ (FormMod/X)

∆op

.

We define

H-mod(IndCoh(X)) ∶= Tot(IndCoh!
(B●

(H))).

In Sect. 5 we prove that the categoryH-mod(IndCoh(X)) identifies canonically
with

h-mod(IndCoh(X)),

where h = LieX (H).

288 7. FORMAL GROUPS AND LIE ALGEBRAS

0.5.2. In Sect. 6 we study the (naturally defined) notion of action ofH ∈ Grp(FormMod/X)

on (Y
π
→ X) ∈ (PreStklaft)/X .

Given an action of H on Y, we construct the localization functor

Loch,Y/X ∶ h-mod(IndCoh(X))→
/XCrys(Y).

Moreover, we show that given an action of H on Y, we obtain a map in
IndCoh(Y)

π!
(h)→ T (Y/X), h = LieX (H).

We also show that if h is free, i.e., h = freeLie(F) with F ∈ IndCoh(X), then
the map from the space of actions of H on Y to the space of maps π!

(F)→ T (Y/X)

is an isomorphism.

1. Formal moduli problems and co-algebras

As was mentioned in the introduction, our goal in this chapter is to address
the following old question: what is exacty the relationship between formal groups
and Lie algebras. By a Lie group we understand an object of Grp(FormMod/X)

and by a Lie algebra an object of LieAlg(IndCoh(X)).

In this section, we take the first step towards proving this equivalence. Namely,
we establish a relationship between pointed formal moduli problems over X and
co-commutative co-algebras in IndCoh(X). Specifically, we define the functor of
inf-spectrum that assigns to a co-commutative co-algebra a pointed formal moduli
problem over X.

Formal moduli problems arising in this way play a role loosely analogous to
that of affine schemes in the context of usual algebraic geometry.

1.1. Co-algebras associated to formal moduli problems. To any scheme
(affine or not) we can attach the commutative algebra of global sections of its
structure sheaf. This functor is, obviously, contravariant.

It turns out that formal moduli problems are well-adapted for a dual operation:
we send a moduli problem to the co-algebra of sections of its dualizing sheaf, which
can be thought of as the co-algebra of distributions. In this subsection we describe
this construction.

1.1.1. Let X be an object of <∞Schaff
ft . We regard the category IndCoh(X) as

endowed with the symmetric monoidal structure, given by
!
⊗.

Recall the category FormMod/X . We have a canonically defined functor

(1.1) FormMod/X → (DGCatSymMon
)IndCoh(X)/, Y ↦ IndCoh(Y).

1. FORMAL MODULI PROBLEMS AND CO-ALGEBRAS 289

1.1.2. Consider the following general situation. Let O be a fixed symmetric
monoidal category, and consider the category (DGCatSymMon

)O/. Let

′
(DGCatSymMon

)O/ ⊂ (DGCatSymMon
)O/

be the full subcategory consisting of those objects, for which the functor O → O′

admits a left adjoint, which is compatible with the O-module structure.

Note that for any φ ∶ O→O′ as above, the object φL(1O′) ∈ O has a canonical
structure of co-commutative co-algebra in O. In particular, we obtain a canonically
defined functor

′
(DGCatSymMon

)O/ → CocomCoalg(O).

Moreover, the functor
φL ∶ O′

→O

canonically factors as

O′
→ φL(1O′)-comod(O)

oblv
φL(1O′)

Ð→ O,

in a way functorial in O′
∈
′
(DGCatSymMon

)O/.

1.1.3. We apply the above discussion to O = IndCoh(X). Base change (see Chap-
ter 3, Proposition 3.1.2) implies that the functor (1.1) factors as

FormMod/X →
′
(DGCatSymMon

)IndCoh(X)/, Y ↦ IndCoh(Y).

In particular, we obtain a functor

FormMod/X → CocomCoalg(IndCoh(X)), (Y
π
→X)↦ πIndCoh

∗ (ωY).

We denote this functor by DistrCocom. We denote by

Distr ∶ FormMod/X → IndCoh(X)

the composition of DistrCocom with the forgetful functor

CocomCoalg(IndCoh(X))
oblvCocom
Ð→ IndCoh(X).

The functor
πIndCoh
∗ ∶ IndCoh(Y)→ IndCoh(X)

canonically factors as

IndCoh(Y)→ DistrCocom
(Y)-comod(IndCoh(X))

oblvDistrCocom(Y)

Ð→ IndCoh(X)

in a way functorial in Y.

1.1.4. The functor DistrCocom defines a functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)),

and the functor Distr defines a functor

Distraug
∶ Ptd(FormMod/X)→ IndCoh(X)ωX/.

We shall denote by Distr+ the functor Ptd(FormMod/X) → IndCoh(X) that
sends Y to

coFib(ωX → Distr(Y)) ≃ Fib(Distr(Y)→ ωX).

290 7. FORMAL GROUPS AND LIE ALGEBRAS

1.1.5. An example. Note that we have a commutative diagram

(1.2)

(Coh(X)
≤0

)
op

ÐÐÐÐ→ Ptd((<∞Schaff
ft)nil-isom to X)

DSerre
X

×
×
×
Ö

×
×
×
Ö

DistrCocomaug

Coh(X)
trivCocomaug

ÐÐÐÐÐÐÐ→ CocomCoalgaug
(IndCoh(X)),

where the top horizontal arrow is the functor of split square-zero extension.

1.1.6. The following observation will be useful:

Lemma 1.1.7.

(a) The functors
Distr ∶ FormMod/X → IndCoh(X)

and
DistrCocom

∶ FormMod/X → CocomCoalg(IndCoh(X))

are left Kan extensions of their respective restrictions to

(
<∞Schaff

ft)nil-isom to X ⊂ FormMod/X .

(b) The functors

Distraug
∶ Ptd(FormMod/X)→ IndCoh(X)ωX/

and

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)),

are left Kan extensions of their respective restrictions to

Ptd((<∞Schaff
ft)nil-isom to X) ⊂ Ptd(FormMod/X).

Proof. We prove point (a), since point (b) is similar.

Since the forgetful functor

oblvCocom ∶ CocomCoalg(IndCoh(X))→ IndCoh(X)

commutes with colimits, it suffices to prove the assertion for the functor

Distr ∶ Ptd(FormMod/X)→ IndCoh(X).

The required assertion follows from Chapter 5, Corollary 1.5.5.
�

Remark 1.1.8. Recall (see Chapter 6, Sect. 2.2) that for a DG category O, in
addition to the category CocomCoalgaug

(O), one can consider the category

CocomCoalg(O)
aug,ind-nilp

∶= Cocomaug -Coalgind-nilp
(O)

of ind-nilpotent co-commutatve co-algebras. This category is endowed with a for-
getful functor

res⋆→∗ ∶ CocomCoalgaug,ind-nilp
→ CocomCoalgaug

(O).

Using Lemma 1.1.7, one can refine the above functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X))

to a functor

DistrCocomaug,ind-nilp

∶ Ptd(FormMod/X)→ CocomCoalgaug,ind-nilp
(IndCoh(X)).

1. FORMAL MODULI PROBLEMS AND CO-ALGEBRAS 291

Namely, for Z ∈ Ptd((<∞Schaff
ft)nil-isom to X)), the t-structure allows to naturally

upgrade the object

DistrCocomaug

(Z) ∈ CocomCoalgaug
(IndCoh(X))

to an object

DistrCocomaug,ind-nilp

(Z) ∈ CocomCoalgaug,ind-nilp
(IndCoh(X)).

Now, we let DistrCocomaug,ind-nilp

be the left Kan extension under

Ptd((<∞Schaff
ft)nil-isom to X)↪ Ptd(FormMod/X)

of the above functor Z ↦ DistrCocomaug,ind-nilp

(Z).

1.2. The monoidal structure. In this subsection we will establish the compat-
ibility of the functor DistrCocom with symmetric monoidal structures. Namely, we
show that DistrCocom is a symmetric monoidal functor and commutes with the
Bar-construction on group objects.

1.2.1. Let us consider FormMod/X and CocomCoalg(IndCoh(X)) as symmetric
monoidal categories with respect to the Cartesian structure. Tautologically, the
functor DistrCocom is left-lax symmetric monoidal. We claim:

Lemma 1.2.2. The left-lax symmetric monoidal structure on DistrCocom is
strict.

Proof. We need to show that for

π1 ∶ Y1 →X and π2 ∶ Y2 →X,

and

Y1 ×
X
Y2 =∶ Y

π
→X,

the map

πIndCoh
∗ (ωY)→ (π1)

IndCoh
∗ (ωY1)

!
⊗ (π2)

IndCoh
∗ (ωY2)

is an isomorphism.

However, this follows from base change for the diagram

Y ÐÐÐÐ→ Y1 ×Y2

π
×
×
×
Ö

×
×
×
Ö

π1×π2

X ÐÐÐÐ→ X ×X.

�

1.2.3. Recall the notation

CocomBialg(IndCoh(X)) ∶= AssocAlg (CocomCoalgaug
(IndCoh(X))) ;

this is the category of associative algebras in CocomCoalgaug
(IndCoh(X)).

Recall also that

CocomHopf(IndCoh(X)) ⊂ CocomBialg(IndCoh(X))

denotes the full subcategory spanned by group-like objects.

292 7. FORMAL GROUPS AND LIE ALGEBRAS

1.2.4. By Lemma 1.2.2, the functor DistrCocomaug

gives rise to a functor

Grp(FormMod/X) ≃ Monoid(Ptd(FormMod/X))→

→ AssocAlg (CocomCoalgaug
(IndCoh(X))) = CocomBialg(IndCoh(X)),

which in fact factors through

CocomHopf(IndCoh(X)) ⊂ CocomBialg(IndCoh(X)).

We denote the resulting functor by Grp(DistrCocomaug

).

1.2.5. The following will be useful in the sequel:

Lemma 1.2.6. Let H be an object of Grp(FormMod/X). Then the canonical
map

Bar ○Grp(DistrCocomaug

)(H)→ DistrCocomaug

○BX(H)

is an isomorphism.

Proof. It is enough to establish the isomorphism in question after applying
the forgetful functor CocomCoalgaug

(IndCoh(X))→ IndCoh(X).

The left-hand side is the geometric realization of the simplicial object of IndCoh(X)

given by

Bar● (Distr(H))
Lemma 1.2.2

≃ Distr (B●
X(H)) .

We can think of B●
X(H) as the Čech nerve of the map X → BX(H). Hence, by

Chapter 3, Proposition 3.3.3(b), the map

∣Distr (B●
X(H)) ∣→ Distr(BX(H))

is an isomorphism, as required.
�

1.3. The functor of inf-spectrum. Continuing the parallel with usual algebraic
geometry, the functor Spec provides a right adjoint to the functor

Sch→ (ComAlg(Vect≤0
))

op, X ↦ τ≤0
(Γ(X,OX)).

In this subsection we will develop its analog for formal moduli problems. This
will be a functor, denoted Specinf , right adjoint to

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)).

1.3.1. Starting from A ∈ CocomCoalgaug
(IndCoh(X)), we first define a presheaf

on the category on Ptd((<∞Schaff
ft)nil-isom to X), denoted Specinf

(A)nil-isom, by

Maps(Z,Specinf
(A)nil-isom) ∶= MapsCocomCoalgaug(IndCoh(X))(DistrCocomaug

(Z),A).

Let Specinf
(A) ∈ (PreStklaft)/X be the left Kan extension of Specinf

(A)nil-isom

along the forgetful functor

(1.3) (Ptd((<∞Schaff
ft)nil-isom to X))

op
→ ((

<∞Schaff
ft)/X)

op
.

We claim that Specinf
(A) is an object of Ptd(FormMod/X).

Indeed, this follows from Chapter 5, Corollary 1.5.2(b) and the following asser-
tion:

1. FORMAL MODULI PROBLEMS AND CO-ALGEBRAS 293

Lemma 1.3.2. Let Z ′
2 ∶= Z

′
1 ⊔
Z1

Z2 be a push-out diagram in Ptd((<∞Schaff
ft)nil-isom to X),

where the map Z1 → Z ′
1 is a closed embedding. Then the canonical map

DistrCocomaug

(Z ′
1) ⊔

DistrCocomaug (Z1)
DistrCocomaug

(Z2)→ DistrCocomaug

(Z ′
2)

is an isomorphism.

Proof. Since the forgetful functor

CocomCoalgaug
(IndCoh(X))→ IndCoh(X)ωX/

commutes with colimits, it is sufficient to show that the map

Distraug
(Z ′

1) ⊔
Distraug(Z1)

Distraug
(Z2)→ Distraug

(Z ′
2)

is an isomorphism in IndCoh(X)ωX/. By Serre duality, this is equivalent to showing
that

(π′2)∗(OZ′2)→ (π′1)∗(OZ′
1
) ×
(π1)∗(OZ1

)
(π2)∗(OZ2)

is an isomorphism in QCoh(X), and the latter follows from the assumptions.
�

1.3.3. We now claim that the assignment

A↦ Specinf
(A)

provides a right adjoint to the functor DistrCocomaug

. Indeed, this follows from
Chapter 5, Corollaries 1.5.2(a) and Lemma 1.1.7(b).

1.3.4. We have:

Lemma 1.3.5. For A ∈ CocomCoalgaug
(IndCoh(X)), there is a canonical iso-

morphism

T (Specinf
(A)/X)∣X ≃ PrimCocomaug(A).

Proof. The proof is just a repeated application of definitions. Indeed, for
F ∈ Coh(X)

≤0 we have by definition

MapsIndCoh(X)(D
Serre
X (F), T (Specinf

(A)/X)∣X)) =

= MapsPro(QCoh(X)−)(T
∗
(Specinf

(A)/X)∣X),F) = MapsX/ /X(XF ,Specinf
(A)),

where XF is the split square-zero extension corresponding to F , see Chapter 1,
Sect. 2.1.1.

By definition,

MapsX/ /X(XF ,Specinf
(A)) = MapsCocomCoalgaug(IndCoh(X))(DistrCocomaug

(SF),A).

Now, by (1.2)

DistrCocomaug

(SF) ≃ trivCocomaug(DSerre
X (F)),

while

MapsCocomCoalgaug(IndCoh(X))(trivCocomaug(DSerre
X (F)),A) = Maps(DSerre

X (F),PrimCocomaug(A)),

again by definition.
�

294 7. FORMAL GROUPS AND LIE ALGEBRAS

1.3.6. Being a right adjoint to a symmetric monoidal functor, the functor Specinf

is automatically right-lax symmetric monoidal. Hence, it gives rise to a functor

CocomBialg(IndCoh(X)) ∶= AssocAlg (CocomCoalgaug
(IndCoh(X)))→

→Monoid(Ptd(FormMod/X)) ≃ Grp(FormMod/X).

We shall denote the above functor by Monoid(Specinf
).

Remark 1.3.7. If instead of the category CocomCoalgaug
(IndCoh(X)) one

works with the category Cocomaug,ind-nilp
(IndCoh(X)), one obtains a functor

Specinf,ind-nilp
∶ Cocomaug,ind-nilp

(IndCoh(X))→ Ptd(FormMod/X).

However, the functors Specinf,ind-nilp and Specinf carry the same information:
it follows formally that the functor Specinf factors as the composition

CocomCoalgaug
(IndCoh(X))→ Cocomaug,ind-nilp

(IndCoh(X))
Specinf,ind-nilp

Ð→ Ptd(FormMod/X),

where the first arrow is the right adjoint to the forgetful functor

res⋆→∗ ∶ Cocomaug,ind-nilp
(IndCoh(X))→ CocomCoalgaug

(IndCoh(X)).

Furthermore, it follows from Chapter 6, Corollary 2.10.5(b), applied in the
case of the co-operad Cocomaug, and Lemma 1.3.5 that the natural map from
Specinf,ind-nilp to the composition

Cocomaug,ind-nilp
(IndCoh(X))

res⋆→∗

Ð→ CocomCoalgaug
(IndCoh(X))

Specinf

Ð→ Ptd(FormMod/X)

is an isomorphism.

1.4. An example: vector prestacks. The basic example of a scheme is the
scheme attached to a finite-dimensional vector space:

Maps(S,V) = Γ(S,OS)⊗ V.

In this subsection we describe the counterpart of this construction for formal
moduli problems.

Namely, for an object F ∈ IndCoh(X), we will construct a formal moduli
problem VectX(F) over X. In the case when F is a coherent sheaf, VectX(F) will
be the formal completion of the zero section of the ‘vector bundle’ associated to F .

1.4.1. Let F be an object of IndCoh(X) and consider the object

Sym(F) ∈ CocomCoalgaug
(IndCoh(X)),

where, as always, the monoidal structure on IndCoh(X) is given by the !-tensor
product. See Chapter 6, Sect. 4.2 for the notation Sym.

Consider the corresponding object

VectX(F) ∶= Specinf
(Sym(F)) ∈ Ptd(FormMod/X).

1. FORMAL MODULI PROBLEMS AND CO-ALGEBRAS 295

1.4.2. Recall the notation Distr+ introduced in Sect. 1.1.4. We claim:

Proposition 1.4.3. For Z ∈ Ptd((<∞Schaff
ft)nil-isom to X the natural map

MapsPtd(FormMod/X) (Z,VectX(F))→MapsIndCoh(X)(Distr+(Z),F),

given by the projection Sym(F)→ F , is an isomorphism.

Proof. First, we note that the presheaf on Ptd((<∞Schaff
ft)nil-isom to X , given

by
Z ↦MapsIndCoh(X)(Distr+(Z),F),

gives rise to an object of Ptd(FormMod/X) for the same reason as Specinf does.

Denote this object by Vect′X(F).

Hence, in order to prove that the map in question is an isomorphism, by Chap-
ter 1, Proposition 8.3.2, its suffices to show that the map

(1.4) T (VectX(F)/X)∣X → T (Vect′X(F)/X)∣X .

is an isomorphism.

The commutative diagram (1.2) implies that T (Vect′X(F)/X)∣X identifies with
F .

By Lemma 1.3.5,

T (VectX(F)/X)∣X ≃ PrimCocomaug(Sym(F)),

and the map (1.4) identifies with the canonical map

PrimCocomaug(Sym(F))→ F .

Now, the latter map is an isomorphism by Chapter 6, Corollary 4.2.5.
�

Note that in the process of proof we have also shown:

Corollary 1.4.4. For F ∈ IndCoh(X), there exists a canonical isomorphism

T (VectX(F)/X)∣X ≃ F .

Remark 1.4.5. The proof of Proposition 1.4.3 used the somewhat non-trivial
isomorphism of Chapter 6, Corollary 4.2.5. However, if instead of the functor
Specinf , one uses the functor Specinf,ind-nilp (see Remark 1.3.7), then the statement
that

MapsPtd(FormMod/X) (Z,Specinf,ind-nilp
(cofreeind-nilp

Cocomaug(F)))→MapsIndCoh(X)(Distr+(Z),F)

is an isomorphism, would be tautological. Note that

Sym(F) ≃ res⋆→∗ ○ cofreeind-nilp
Cocomaug(F) =∶ cofreefake

Cocomaug(F).

Thus, we can interpret the assertion of Proposition 1.4.3 as saying that the
natural map

Specinf,ind-nilp
(cofreeind-nilp

Cocomaug(F))→ Specinf
(Sym(F)) = VectX(F)

is an isomorphism.

Note that the latter is a particular case of the isomorphism of functors of
Remark 1.3.7.

296 7. FORMAL GROUPS AND LIE ALGEBRAS

1.4.6. We now claim:

Proposition 1.4.7. The co-unit of the adjunction

(1.5) DistrCocomaug

(VectX(F))→ Sym(F)

is an isomorphism.

The rest of this subsection is devoted to the proof of the proposition.

1.4.8. Step 1. Suppose for a moment that F is such that DSerre
X (F) ∈ Coh(X)

<0.
In this case, by Proposition 1.4.3,

MapsPtd(FormMod/X) (Z,VectX(F)) ≃ MapsIndCoh(X)(Distr+(Z),F) ≃

≃ MapsQCoh(X) (D
Serre
X (F),Fib(π∗(OZ)→ OX)) ≃

≃ Maps/X (Z,SpecX (freeCom(DSerre
X (F))))

(where freeCom is taken in the symmetric monoidal category QCoh(X)), so VectX(F)

is a scheme isomorphic to SpecX (freeCom(DSerre
X (F))), and the assertion is mani-

fest.

1.4.9. Step 2. Now, we claim that both sides in (1.5), viewed as functors

IndCoh(X)→ CocomCoalgaug
(IndCoh(X)),

commute with filtered colimits in F .

The commutation is obvious for the functor F ↦ Sym(F).

Since the functor DistrCocomaug

is a left adjoint, it suffices to show that the
functor

F ↦ Specinf
(Sym(F))

commutes with filtered colimits.

By the construction of the functor Specinf , it suffices to show that the functor

F ↦ Specinf
(Sym(F))nil-isom ∶

IndCoh(X)→ Funct ((Ptd((<∞Schaff
ft)nil-isom to X))

op
,Spc)

commutes with filtered colimits.

By Proposition 1.4.3, it suffuces to show that for Z ∈ Ptd((<∞Schaff
ft)nil-isom to X),

the functor

F ↦MapsIndCoh(X)(Distr+(Z),F)

commutes with filtered colimits. The latter follows from the fact that Distr+(Z) ∈

Coh(X) = IndCoh(X)
c.

2. INF-AFFINENESS 297

1.4.10. Step 3. According to Step 2, we can assume that F ∈ Coh(Z). Combining
with Step 1, it remains to show that if the assertion of the proposition holds for
F[−1], then it also holds for F .

The description of VectX(F), given by Proposition 1.4.3 implies that there is
a canonical isomorphism

VectX(F[−1]) ≃ ΩX(VectX(F)) ∈ Grp(FormMod/X),

and hence

BX(VectX(F[−1])) ≃ VectX(F).

Note also that we have a canonical isomorphism in CocomCoalgaug
(IndCoh(X)):

Bar(Sym(F[−1])) ≃ Sym(F),

where we regard Sym(F[−1]) as an object of

CocomBialg(IndCoh(X)) ≃ Assoc(CocomCoalgaug
(IndCoh(X)))

via the structure on F[−1] of a group-object in IndCoh(X).

The following diagram commutes by adjunction

Bar ○DistrCocomaug

(VectX(F[−1]))
Lemma 1.2.6
ÐÐÐÐÐÐÐ→

∼
DistrCocomaug

○BX(VectX(F[−1]))

×
×
×
Ö

×
×
×
Ö

∼

Bar(Sym(F[−1])) DistrCocomaug

(VectX(F))

∼
×
×
×
Ö

×
×
×
Ö

Sym(F)
id

ÐÐÐÐ→ Sym(F).

By assumption, the upper left vertical arrow in this diagram is an isomorphism.
Hence, so is the lower right vertical arrow.

�

2. Inf-affineness

In this section we study the notion of inf-affineness, which is a counterpart of
the usual notion of affineness in algebraic geometry.

The naive expectation would be that an inf-affine formal moduli problem over
X is one of the form Specinf of a co-commutative co-algebra in IndCoh(X). How-
ever, this does not quite work as the analogy with the usual notion of affine-
ness is not perfect: it is not true that the functor Specinf identifies the category
CocomCoalgaug

(IndCoh(X)) with that of inf-affine objects in Ptd(FormMod/X).

2.1. The notion of inf-affineness. In algebraic geometry a prestack Y is an
affine scheme if and only if Γ(Y,OY) is connective and for any S ∈ Schaff , the map

MapsSchaff (S,Y)→MapsComAlg(Vect)(Γ(Y,OY),Γ(S,OS))

is an isomorphism.

In formal geometry we give a similar definition.

298 7. FORMAL GROUPS AND LIE ALGEBRAS

2.1.1. Let as before X ∈
<∞Schaff

ft .

Definition 2.1.2. An object Y ∈ Ptd(FormMod/X) is inf-affine, if the functor

DistrCocomaug

induces an isomorphism

MapsPtd(FormMod/X)(Z,Y)→

→MapsCocomCoalgaug(IndCoh(X))(DistrCocomaug

(Z),DistrCocomaug

(Y)),

where Z ∈ Ptd((<∞Schaff
ft)nil-isom to X).

2.1.3. Here are some basic facts related to this notion:

Proposition 2.1.4. Any object

Y ∈ Ptd((Schaff
aft)nil-isom to X) ⊂ Ptd(FormMod/X)

is inf-affine.

Proof. By definition, we need to show that for

Y1, Y2 ∈ Ptd((Schaff
aft)nil-isom to X),

with Y1 eventually coconnective, the groupoid MapsPtd(FormMod/X)(Y1, Y2) maps

isomorphically to

MapsCocomCoalgaug(IndCoh(X))((π1)
IndCoh
∗ (ωY1), (π2)

IndCoh
∗ (ωY2)) .

The assertion easily reduces to the case when Y2 is eventually coconnective. In
the latter case, Serre duality identifies the above groupoid with

MapsComAlgaug(QCoh(X)) ((π2)∗(OY2), (π1)∗(OY1)) ,

and the desired isomorphism is manifest.
�

2.1.5. We claim:

Lemma 2.1.6. Let Y ∈ Ptd(FormMod/X) be inf-affine. Then for any Z ∈

Ptd(FormMod/X), the map

MapsPtd(FormMod/X)(Z,Y)→

→MapsCocomCoalgaug(IndCoh(X))(DistrCocomaug

(Z),DistrCocomaug

(Y))

is an isomorphism.

Proof. Follows from Chapter 5, Corollary 1.5.2(a) and Lemma 1.1.7(b). �

Remark 2.1.7. It follows from Proposition 2.3.3 below, combined with Chap-
ter 6, Corollary 2.10.5(b) for the co-operad Cocom that if instead of CocomCoalgaug

(IndCoh(X))

one uses Cocomaug,ind-nilp
(IndCoh(X)), one obtains the same notion of inf-affineness.

2. INF-AFFINENESS 299

2.2. Inf-affineness and inf-spectrum. As was mentioned already, it is not true
that the functor Specinf identifies the category CocomCoalgaug

(IndCoh(X)) with
that of inf-affine objects in Ptd(FormMod/X). The problem is that the analog of
Serre’s theorem fails: for a connective commutative DG algebra A, the map

A→ Γ(Spec(A),OSpec(A))

is an isomorphism, whereas for A ∈ CocomCoalgaug
(IndCoh(X)), the map

DistrCocomaug

(Specinf
(A))→ A

does not have to be such.

In this subsection we establish several positive facts that can be said in this
direction. A more complete picture is presented in Sect. 3.3.

2.2.1. We note:

Lemma 2.2.2. Let A ∈ CocomCoalgaug
(IndCoh(X)) be such that the co-unit of

the adjunction

DistrCocomaug

(Specinf
(A))→ A

is an isomorphism. Then the object Specinf
(A) is inf-affine.

In particular, combining with Proposition 1.4.7, we obtain:

Corollary 2.2.3. For F ∈ IndCoh(X), the object VectX(F) ∈ Ptd(FormMod/X)

is inf-affine.

Remark 2.2.4. As we shall see in Sect. 3.3.10, it is not true that the functor
Specinf is fully faithful. I.e., the co-unit of the adjunction

DistrCocomaug

(Specinf
(A))→ A

is not an isomorphism for all A ∈ CocomCoalgaug
(IndCoh(X)).

However, we will see that Chapter 6, Conjecture 2.8.9(b) for the symmetric
monoidal DG category IndCoh(X) implies that the above map is an isomorphism

for A lying in the essential image of the functor DistrCocomaug

.

We will also see that Chapter 6, Conjecture 2.8.9(a) for IndCoh(X) implies that

the essential image of the functor Specinf lands in the subcategory of Ptd(FormMod/X)

spanned by inf-affine objects.

Remark 2.2.5. The same logic shows that Chapter 6, Conjecture 2.6.6 for the
symmetric monoidal DG category IndCoh(X) and the Lie operad, implies that the

functor Specinf,ind-nilp is an equivalence onto the full subcategory of Ptd(FormMod/X)

spanned by objects that are inf-affine.

2.3. A criterion for being inf-affine. A prestack Y is an affine scheme if and
only if Γ(Y,OY) is connective and the canonical map

Y → Spec(Γ(Y,OY))

is an isomorphism.

The corresponding assertion is true (but not completely tautological) also in
formal geometry: an object Y ∈ Ptd(FormMod/X) is inf-affine if and only if the
unit of the adjunction

Y → Specinf
○DistrCocomaug

(Y)

300 7. FORMAL GROUPS AND LIE ALGEBRAS

is an isomorphism.

In addition, in this subsection we will give a crucial criterion for inf-affineness
in terms of the tangent space of Y at its distinguished point, which does not have
a counterpart in usual algebraic geometry.

2.3.1. Recall the commutative diagram (1.2).

We obtain that for F ∈ Coh(X)
≤0 and Y ∈ Ptd(FormMod/X), the functor

DistrCocomaug

gives rise to a canonically defined map

(2.1) MapsIndCoh(X)(D
Serre
X (F), T (Y/X)∣X)→

→MapsCocomCoalgaug(IndCoh(X)) (trivCocomaug(DSerre
X (F)),DistrCocomaug

(Y)) .

Consider the functor

PrimCocomaug ∶ CocomCoalgaug
(IndCoh(X))→ IndCoh(X).

We can rewrite (2.1) as a map

(2.2) MapsIndCoh(X)(D
Serre
X (F), T (Y/X)∣X)→

→MapsIndCoh(X)(D
Serre
X (F),PrimCocomaug ○DistrCocomaug

(Y)).

The map (2.2) gives rise to a well-defined map in IndCoh(X):

(2.3) T (Y/X)∣X → PrimCocomaug ○DistrCocomaug

(Y).

2.3.2. We claim:

Proposition 2.3.3. For an object Y ∈ Ptd(FormMod/X) the following condi-
tions are equivalent:

(i) Y is inf-affine;

(ii) The unit of the adjunction Y → Specinf
○DistrCocomaug

(Y) is an isomorphism;

(iii) The map (2.3) is an isomorphism.

Proof. The implication (i) ⇒ (iii) is tautological from the definition of inf-
affineness.

Suppose that Y satisfies (ii). Then for Z ∈ Ptd((<∞Schaff
ft)nil-isom to X) the map

MapsPtd(FormMod/X)(Z,Y)→MapsPtd(FormMod/X) (Z,Specinf
○DistrCocomaug

(Y))

is an isomorphism, while its composition with the adjunction isomorphism

MapsPtd(FormMod/X) (Z,Specinf
○DistrCocomaug

(Y)) ≃

≃ MapsCocomCoalgaug(IndCoh(X)) (DistrCocomaug

(Z),DistrCocomaug

(Y))

equals the map induced by the functor DistrCocomaug

. Hence, Y is inf-affine.

Finally, assume that Y satisfies (iii), and let us deduce (ii). By Chapter 1,

Proposition 8.3.2, in order to show that Y → Specinf
○DistrCocomaug

(Y) is an iso-
morphism, it suffices to show that the map

T (Y/X)∣X → T (Specinf
○DistrCocomaug

(Y)/X)∣X

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 301

is an isomorphism in IndCoh(X).

Recall the isomorphism T (Specinf
(A)/X)∣X ≃ PrimCocomaug(A) of Lemma 1.3.5.

Now, it is easy to see that the composed map

T (Y/X)∣X → T (Specinf
○DistrCocomaug

(Y)/X)∣X ≃ PrimCocomaug(DistrCocomaug

(Y))

equals the map (2.3), implying our assertion.
�

3. From formal groups to Lie algebras

LetG be a Lie group. The tangent space at the identity ofG has the structure of
a Lie algebra. One way of describing this Lie algebra structure is the following: the
Lie algebra of G is given by the space of primitive elements in the co-commutative
co-algebra given by the space of distributions on G supported at the identity.

In this section, we implement this idea in the context of derived algebraic geom-
etry and finally spell out the relationship between the categories Grp(FormMod/X)

and LieAlg(IndCoh(X)), i.e., formal groups and Lie algebras:

To go from an object of Grp(FormMod/X) to LieAlg(IndCoh(X)), we first
attach to it an object Grp(LieAlg(IndCoh(X))) via the functor

coChevenh
○DistrCocomaug

(i.e., we attach to an object of Grp(FormMod/X) the corresponding augmented co-

commutative co-algebra and use Quillen’s functor coChevenh that maps CocomCoalgaug

to LieAlg), and then deloop.

To go from LieAlg(IndCoh(X)) we use the ‘exponential map’, incarnated by
the functor

Grp(Chevenh
) ○ΩLie ∶ LieAlg → CocomHopf

(the latter is canonically isomorphic to the more usual construction given by the
functor UHopf , the universal enveloping algebra, viewed as a co-commutatove Hopf
algebra), and then apply the functor of inf-spectrum.

3.1. The exponential construction. Let as before X ∈
<∞Schaff

ft . The idea of
the exponential construction is the following: for a Lie algebra h, the corresponding
formal group expX(h) is such that

Distr(expX(h)) ≃ U(h).

3.1.1. We define the functor

expX ∶ LieAlg(IndCoh(X))→ Grp(FormMod/X)

to be

Monoid(Specinf
) ○Grp(Chevenh

) ○ΩLie.

For example, for F ∈ IndCoh(X), we have

exp(trivLie(F)) = Monoid(Specinf
)(Sym(F)) = VectX (F),

equipped with its natural group structure.

302 7. FORMAL GROUPS AND LIE ALGEBRAS

Remark 3.1.2. To bring the above construction closer to the classical idea of
the exponential map, let us recall that, according to Chapter 6, Theorem 6.1.2, we
have a canonical isomorphism in CocomHopf(IndCoh(X))

Grp(Chevenh
) ○ΩLie ≃ U

Hopf .

3.1.3. In the next section we will prove:

Theorem 3.1.4. The functor

expX ∶ LieAlg(IndCoh(X))→ Grp(FormMod/X)

is an equivalence.

3.2. Corollaries of Theorem 3.1.4. In this subsection we will show that the
functor expX as defined above, has all the desired properties, i.e., that there are no
unpleasant surprises.

3.2.1. Recall (see Chapter 6, Corollary 1.7.3) that when Grp(Chevenh
) ○ ΩLie(h)

is viewed as an object of CocomCoalgaug
(IndCoh(X)), i.e., if we forget the algebra

structure, it is (canonically) isomophic to Sym(oblvLie(h)).

Hence, by Corollary 2.2.3, when we view expX(h) as an object of Ptd(FormMod/X),
it is isomorphic to VectX(oblvLie(h)), and hence is inf-affine.

Therefore, as a consequence of Theorem 3.1.4 (plus Corollary 1.4.4), we obtain:

Corollary 3.2.2. Every object of H ∈ Grp(FormMod/X), when viewed by
means of the forgetful functor as an object of Ptd(FormMod/X), is inf-affine, and
we have:

oblvGrp(H) ≃ VectX(T (oblvGrp(H)/X)∣X).

From Proposition 1.4.7 and Chapter 6, Proposition 4.3.3, we obtain:

Corollary 3.2.3. The natural transformation

(3.1) Grp(DistrCocomaug

) ○ expX → Grp(Chevenh
) ○ΩLie

is an isomorphism.

Combining the isomorphism (3.1) with the isomorphism

(3.2) BLie ○Monoid(coChevenh
) ○Grp(Chevenh

) ○ΩLie ≃ Id

of Chapter 6, Theorem 4.4.6, we obtain:

Corollary 3.2.4. There exists a canonical isomorphism of functors

BLie ○Monoid(coChevenh
) ○Grp(DistrCocomaug

) ○ expX ≃ Id .

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 303

3.2.5. Let us denote by

(3.3) LieX ∶ Grp(FormMod/X)→ LieAlg(IndCoh(X))

the functor

BLie ○Monoid(coChevenh
) ○Grp(DistrCocomaug

).

Hence:

Corollary 3.2.6. The functor

LieX ∶ Grp(FormMod/X)→ LieAlg(IndCoh(X))

is the inverse of

expX ∶ LieAlg(IndCoh(X))→ Grp(FormMod/X).

3.2.7. By combining Corollary 3.2.2, Proposition 2.3.3 and the tautological iso-
morphism

oblvLie ○BLie ○Monoid(coChevenh
) ≃ PrimCocomaug ○oblvGrp,

we obtain:

Corollary 3.2.8. There exists a canonical isomorphism of functors

Grp(FormMod/X)→ IndCoh(X), oblvLie ○ LieX(H) ≃ T (oblvGrp(H)/X)∣X .

In other words, this corollary says that the object of IndCoh underlying the Lie
algebra corresponding to a formal group indeed identifies with the tangent space
at the origin.

3.2.9. The upshot of this subsection is that in derived algebraic geometry the
passage from the a formal group to its Lie algebra is given by the functor

LieX ∶= BLie ○Monoid(coChevenh
) ○Grp(DistrCocomaug

).

3.3. Lie algebras and formal moduli problems. In this subsection we will
assume Theorem 3.1.4 and deduce some further corollaries. In particular, we will
show that there is an equivalence between pointed formal moduli problems over a
scheme X and Lie algebras in IndCoh(X).

Furthermore, we will see what the functor of inf-spectrum really does, and what
it means to be inf-affine. Namely, we will show that under the equivalence above,
the functor Specinf corresponds to the functor coChevenh.

3.3.1. First, we claim:

Corollary 3.3.2. There is the following commutative diagram of functors

(3.4)

CocomCoalgaug
(IndCoh(X))

DistrCocomaug

←ÐÐÐÐÐÐÐÐ Ptd(FormMod/X)

Chevenh
Õ
×
×
×

∼
Õ
×
×
×

BX

LieAlg(IndCoh(X))
LieX
←ÐÐÐÐ

∼
Grp(FormMod/X).

304 7. FORMAL GROUPS AND LIE ALGEBRAS

Proof. Indeed, by Theorem 3.1.4, it suffices to construct a functorial isomor-
phism

DistrCocomaug

○BX ○ expX ≃ Chevenh .

However, by Lemma 1.2.6 and the isomorphism (3.1), the left-hand side iden-
tifies with

Bar ○Grp(DistrCocomaug

) ○ expX ≃ Bar ○Grp(Chevenh
) ○ΩLie ≃

≃ Chevenh
○BLie ○ΩLie ≃ Chevenh .

�

Corollary 3.3.3. For Y ∈ Ptd(FormMod/X) there is a canonical isomorphism

DistrCocomaug

(Y) ≃ Chevenh
○LieX ○ΩX(Y).

Remark 3.3.4. The commutative diagram (3.4) implies the following:

The functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X))

remembers/loses as much information as does the functor

Chevenh
∶ LieAlg(IndCoh(X))→ CocomCoalgaug

(IndCoh(X)).

However, the functor

Grp(DistrCocomaug

) ∶ Grp(FormMod/X)→ CocomBialgaug
(IndCoh(X))

is fully faithful, as is the functor

Grp(Chevenh
) ○ΩLie ∶ LieAlg(IndCoh(X))→ CocomBialgaug

(IndCoh(X)).

3.3.5. By passing to right adjoints in diagram (3.4) we obtain:

Corollary 3.3.6. There is the following commutative diagram of functors

(3.5)

CocomCoalgaug
(IndCoh(X))

Specinf

ÐÐÐÐ→ Ptd(FormMod/X)

coChevenh
×
×
×
Ö

∼
×
×
×
Ö

ΩX

LieAlg(IndCoh(X))

expX
ÐÐÐÐ→

∼
Grp(FormMod/X).

Remark 3.3.7. The commutative diagram (3.5) implies:

The functor

Specinf
∶ CocomCoalgaug

(IndCoh(X))→ Ptd(FormMod/X)

remembers/loses as much information as does the functor

coChevenh
∶ CocomCoalgaug

(IndCoh(X))→ LieAlg(IndCoh(X)).

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 305

3.3.8. Let

BLie
X ∶ LieAlg(IndCoh(X))→ Ptd(FormMod/X)

denote the functor BX ○ expX .

This is the functor that associates to a Lie algebra in IndCoh(X) the corre-
sponding moduli problem. By Theorem 3.1.4, this functor is an equivalence, with
the inverse being

Y ↦ LieX ○ΩX(Y).

From Proposition 2.3.3 we obtain:

Corollary 3.3.9. Let Y be an object of Ptd(FormMod/X), and let h be the
corresponding object of LieAlg(IndCoh(X)), i.e.,

h = LieX ○ΩX(Y) and/or Y ∶= BLie
X (h).

Then Y is inf-affine if and only if unit of the adjunction

h→ coChevenh
○Chevenh

(h)

is an isomorphism.

3.3.10. Let A be an object of CocomCoalgaug
(IndCoh(X)). From the diagrams

(3.4) and (3.5) we obtain that the co-unit of the adjunction

(3.6) DistrCocomaug

(Specinf
(A))→ A

identifies with the map

(3.7) Chevenh
○ coChevenh

(A)→ A.

In partcular, we obtain that if Chapter 6, Conjecture 2.8.9(b) holds for the
symmetric monoidal DG category IndCoh(X) and the co-operad Cocomaug, i.e., if
the map (3.7) is an isomorphism for A lying in the essential image of the functor

Chevenh
∶ LieAlg(IndCoh(X))→ CocomCoalgaug

(IndCoh(X)),

then the map (3.6) is an isomorphism for A lying in the essential image of the
functor

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)).

Similarly, suppose that Chapter 6, Conjecture 2.8.9(a) holds for the symmetric
monoidal DG category IndCoh(X) and the co-operad Cocomaug, i.e., if the map

h→ coChevenh
○Chevenh

(h)

is an isomorphism for h lying in the essential image of the functor

coChevenh
∶ CocomCoalgaug

(IndCoh(X))→ LieAlg(IndCoh(X)).

Then, by Corollary 3.3.9, any Y ∈ Ptd(FormMod/X) lying in the essential image of
the functor

Specinf
∶ CocomCoalgaug

(IndCoh(X))→ Ptd(FormMod/X),

is inf-affine.

306 7. FORMAL GROUPS AND LIE ALGEBRAS

3.4. The ind-nilpotent version. For completeness, let us explain what happens
to the picture in Sect. 3.3 if we consider instead the adjoint functors

DistrCocomaug,ind-nil

∶ Ptd(FormMod/X)⇄ CocomCoalgaug,ind-nilp
(IndCoh(X)) ∶ Specinf,ind-nilp .

3.4.1. First, we have the commutative diagrams

(3.8)

CocomCoalgaug,ind-nilp
(IndCoh(X))

DistrCocomaug,ind-nilp

←ÐÐÐÐÐÐÐÐÐÐÐÐ Ptd(FormMod/X)

Chevenh,ind-nilp
Õ
×
×
×

∼
Õ
×
×
×

BX

LieAlg(IndCoh(X))
LieX
←ÐÐÐÐ

∼
Grp(FormMod/X).

and

(3.9)

CocomCoalgaug,ind-nilp
(IndCoh(X))

Specinf,ind-nilp

ÐÐÐÐÐÐÐÐ→ Ptd(FormMod/X)

coChevenh,ind-nilp
×
×
×
Ö

∼
×
×
×
Ö

ΩX

LieAlg(IndCoh(X))

expX
ÐÐÐÐ→

∼
Grp(FormMod/X).

3.4.2. Let us now assume the validity of Chapter 6, Conjecture 2.6.6 for the sym-
metric monoidal DG category IndCoh(X) and the co-operad Cocomaug .

From it we obtain:

Conjecture 3.4.3. The functor

Specinf,ind-nilp
∶ CocomCoalgaug,ind-nilp

(IndCoh(X))→ Ptd(FormMod/X)

is fully faithful.

3.5. Base change. As we saw in Proposition 2.3.3, the criterion of inf-affineness
involves the operation of taking primitives in an augmented co-commutative co-
algebra in IndCoh(X). This operation is not guaranteed to behave well with respect
to the operation of pullback. The functor of inf-spectrum has a similar drawback,
for the same reason.

In this subsection we will establish several positive results in this direction.

3.5.1. Let f ∶ X ′
→ X be a map in <∞Schaff

ft , and consider the corresponding
functor

f !
∶ CocomCoalgaug

(IndCoh(X))→ Cocomaug
(IndCoh(X ′

)).

The following diagram commutes by construction

Ptd(FormMod/X)

X′×
X
−

ÐÐÐÐ→ Ptd(FormMod/X′)

DistrCocomaug
×
×
×
Ö

×
×
×
Ö

DistrCocomaug

CocomCoalgaug
(IndCoh(X))

f !

ÐÐÐÐ→ Cocomaug
(IndCoh(X ′

)).

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 307

Hence, by adjunction, for A ∈ CocomCoalgaug
(IndCoh(X)) we have a canoni-

cally defined map

(3.10) X ′
×
X

Specinf
(A)→ Specinf

(f !
(A)).

Remark 3.5.2. It follows from Lemma 4.2.3 below and diagram (3.5), that the
natural transformation (3.10) is an isomorphism if f is proper.

3.5.3. The following is immediate from Lemma 2.2.2 and Proposition 2.3.3:

Lemma 3.5.4. Assume that A is such that both maps

DistrCocomaug

○Specinf
(A)→ A and DistrCocomaug

○Specinf
(f !

(A))→ f !
(A)

are isomorphisms. Then the map (3.10) is an isomorphism for A.

Corollary 3.5.5. For F ∈ IndCoh(X), the canonical map

X ′
×
X

VectX(F)→ VectX′(f !
(F))

is an isomorphism.

3.5.6. By combining Corollary 3.5.5 and Chapter 6, Proposition 1.7.2, we obtain:

Corollary 3.5.7. For h ∈ LieAlg(IndCoh(X)), the canonical map

X ′
×
X

expX(h)→ expX′(f !
(h))

is an isomorphism.

Corollary 3.5.8. For H ∈ Grp(FormMod/X), the canonical map

f !
(LieX(H))→ LieX′(X ′

×
X
H)

is an isomorphism.

3.6. Extension to prestacks. We will now extend the equivalence expX to the

case when the base X ∈
<∞Schaff

ft is replaced by an arbitrary X ∈ PreStklaft.

3.6.1. Note that the discussion in Sect. 1.1 applies verbatim to the present sit-
uation (i.e., the base being an object of PreStklaft). In particular, we obtain the
functors

Distr ∶ FormMod/X → IndCoh(X),

DistrCocom
∶ FormMod/X → CocomCoalg(IndCoh(X)),

Distr+ ∶ Ptd(FormMod/X)→ IndCoh(X),

DistrCocomaug

∶ Ptd(FormMod/X)→ CocomCoalgaug
(IndCoh(X)),

and

Grp(DistrCocomaug

) ∶ Grp(FormMod/X)→ CocomBialaug
(IndCoh(X)).

We have:

308 7. FORMAL GROUPS AND LIE ALGEBRAS

Theorem 3.6.2. The functor

LieX ∶= BLie ○Monoid(coChevenh
) ○Grp(DistrCocomaug

)

defines an equivalence Grp(FormMod/X)→ LieAlg(IndCoh(X)). Furthermore, we
have:

(a) The co-unit of the adjunction

Grp(Chevenh
) ○ΩLie ○ LieX → Grp(DistrCocomaug

)

is an isomorphism.

(b) The composition

oblvLie ○ LieX ∶ Grp(FormMod/X)→ IndCoh(X)

identifies canonically with the functor

H ↦ T (oblvGrp(H)/X)∣X .

Proof. Observe that for X ∈ PreStklaft the functors

LieAlg(IndCoh(X))→ lim
X∈((<∞Schaff

ft)/X)op
LieAlg(IndCoh(X))

and
Grp(FormMod/X)→ lim

X∈((<∞Schaff
ft)/X)op

Grp(FormMod/X)

are both equivalences, see Chapter 5, Lemma 1.1.5 for the latter statement.

Using Theorem 3.1.4, to show that the functor LieX is an equivalence, it remains
to check that the functors LieX , where X is a scheme, are compatible with base
change. But this follows from Corollary 3.5.8.

The isomorphisms stated in (a) and (b) follow from the case of schemes.
�

As a formal consequence we obtain:

Corollary 3.6.3. The category Grp(FormMod/X) contains sifted colimits,
and the functor

H ↦ T (oblvGrp(H)/X)∣X ∶ Grp(FormMod/X)→ IndCoh(X)

commutes with sifted colimits.

3.6.4. Let
expX ∶ LieAlg(IndCoh(X))→ Grp(FormMod/X)

denote the equivalence, inverse to LieX .

Let
BLie
X ∶ LieAlg(IndCoh(X))→ Ptd(FormMod/X)

denote the resulting equivalence

BX ○ expX , LieAlg(IndCoh(X))→ Ptd(FormMod/X).

Note that from Corollary 3.3.2 we obtain:

Corollary 3.6.5. There is a canonical isomorphism of functors

Chevenh
≃ DistrCocomaug

○BLie
X .

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 309

3.6.6. In what follows we will denote by

(3.11) F ↦ VectX (F)

the functor IndCoh(X)→ Ptd(FormMod/X), given by

F ↦ VectX (F) ∶= oblvGrp ○ expX ○trivLie(F) ≃ BLie
X ○ expX ○trivLie(F[−1]).

Note that by Corollary 3.6.5 we obtain

DistrCocomaug

(VectX (F)) ≃ Sym(F).

From Proposition 1.4.3, we obtain:

Corollary 3.6.7. The functor VectX (−) ∶ IndCoh(X)→ Ptd(FormMod/X) is

the right adjoint to the functor Distr+.

Note also:

Corollary 3.6.8. For H ∈ Grp(FormMod/X), we have a canonical isomor-
phism

oblvGrp(H) ≃ VectX (T (oblvGrp(H)/X)∣X).

3.6.9. The functor (3.11) is easily seen to commute with products. Hence, it
induces a functor

(3.12) IndCoh(X)→ ComMonoid(FormMod/X),

see Chapter 6, Sect. 1.8 for the notation.

We claim:

Corollary 3.6.10. The functor (3.12) is an equivalence.

Proof. Follows from Chapter 6, Proposition 1.8.3. �

3.7. An example: split square-zero extensions. In Chapter 1, Sect. 2.1 we
discussed the functor of split square-zero extension

RealSplitSqZ ∶ (Coh(X)
≤0

)
op
→ Ptd((Schaff

aft)/X), X ∈ Schaff
aft .

In this subsection we will extend this construction to the case of arbitrary
objects X ∈ PreStklaft-def , where instead of (Coh(−)≤0

)
op we use all of IndCoh(X).

Here for X =X ∈ Schaft, we view (Coh(X)
≤0

)
op as a full subcategory of IndCoh(X)

via

(Coh(X)
≤0

)
op
↪ Coh(X)

op DSerre
X
Ð→ Coh(X)↪ IndCoh(X).

310 7. FORMAL GROUPS AND LIE ALGEBRAS

3.7.1. For X ∈ PreStklaft-def consider the functor

RealSplitSqZ ∶ IndCoh(X)→ Ptd((PreStklaft-def)/X),

defined as follows:

We send F ∈ IndCoh(X) to

BX ○expX ○freeLie(F[−1]) ∈ Ptd((Schaff
)/X) ∈ Ptd((FormMod)/X) ⊂ Ptd((PreStklaft-def)/X).

We can phrase the above construction as follows: we create the free Lie algebra
on F[−1], then we consider the corresponding object of Grp((Schaff

)/X), and then
take the formal classifying space of the latter.

By construction, we have a commutative diagram:

(3.13)

IndCoh(X)
RealSplitSqZ
ÐÐÐÐÐÐÐ→ Ptd(FormMod/X)

freeLie○[−1]
×
×
×
Ö

ΩX
×
×
×
Ö

∼

LieAlg(IndCoh(X))

expX
ÐÐÐÐ→ Grp(FormMod/X).

3.7.2. We claim that the functor RealSplitSqZ can also be described as a left
adjoint:

Proposition 3.7.3. The functor RealSplitSqZ is the left adjoint of the functor

Ptd((PreStklaft-def)/X)→ IndCoh(X), Y ↦ T (Y/X)∣X .

Proof. Given Y ∈ Ptd((PreStklaft-def)/X) and F ∈ IndCoh(X) we need to
establish a canonical isomorphism
(3.14)

MapsPtd((PreStklaft-def)/X)(RealSplitSqZ(F),Y) ≃ MapsIndCoh(X)(F , T (Y/X)∣X).

Note that the left-hand side receives an isomorphism from Maps(RealSplitSqZ(F),Y∧X),
where Y∧X is the formal completion of Y along the map X → Y. So, with no restric-
tion of generailty, we can assume that Y ∈ Ptd((FormMod)/X).

In this case, by Chapter 5, Theorem 1.6.4, we can further rewrite the left-hand
side in (3.14) as

MapsGrp((FormMod)/X)(expX ○freeLie(F[−1]),ΩX (Y)),

and then as

MapsLieAlg(IndCoh(X)) (freeLie(F[−1]),LieX ○ΩX (Y)) ≃

≃ MapsIndCoh(X) (F[−1],oblvLie ○ LieX ○ΩX (Y)) .

However, by Corollary 3.2.8, we have

oblvLie ○ LieX ○ΩX (Y) ≃ T (ΩX (Y)/X)∣X ≃ T (Y/X)∣X [−1].

Thus, the left-hand side in (3.14) identifies with

MapsIndCoh(X) (F[−1], T (Y/X)∣X [−1]) ,

as required.
�

3. FROM FORMAL GROUPS TO LIE ALGEBRAS 311

Remark 3.7.4. The above verification of the adjunction can be summarized
by the commutative diagram

IndCoh(X)

T (−/X)∣X
←ÐÐÐÐÐ Ptd(FormMod/X)

[1]○oblvLie

Õ
×
×
×

ΩX
×
×
×
Ö

∼

LieAlg(IndCoh(X))
LieX
←ÐÐÐÐ Grp(FormMod/X).

3.7.5. As a corollary of Proposition 3.7.3, we obtain:

Corollary 3.7.6. The monad on IndCoh(X), given by the composition

([−1] ○ T (−/X)∣X) ○ (RealSplitSqZ ○[1])

is canonically isomorphic to oblvLie ○ freeLie.

3.7.7. The next property of the functor RealSplitSqZ follows formally from Propo-
sition 3.7.3:

Corollary 3.7.8. For Y ∈ (PreStklaft-def)X / and F ∈ IndCoh(X) there is a
canonical isomorphism

Maps(PreStklaft-def)X/
(RealSplitSqZ(F),Y) ≃ MapsIndCoh(X)(F , T (Y)∣X).

In the above corollary, by a slight abuse of notation, we view RealSplitSqZ(F)

as an object of (PreStklaft-def)X / rather than Ptd((PreStklaft-def)/X).

Proof. Set Y ′ ∶= X ×
XdR

Y, and apply the adjunction of Proposition 3.7.3. �

3.7.9. Let us now compare the functor RealSplitSqZ as defined above with its
version introduced in Chapter 1, Sect. 2.1:

Corollary 3.7.10. For X ∈ Schaft we have a commutative diagram

(Coh(X)
≤0

)
op RealSplitSqZ
ÐÐÐÐÐÐÐ→ Ptd((Schaft)nil-isom to X)

DSerre
X

×
×
×
Ö

×
×
×
Ö

IndCoh(X)
RealSplitSqZ
ÐÐÐÐÐÐÐ→ Ptd((FormMod)/X).

Proof. Follows from Corollary 3.7.8, since the split square-zero construction
of Chapter 1, Sect. 2.1 has the same universal property.

�

3.7.11. It follows from the equivalence

BLie
X ∶ LieAlg(IndCoh(X))→ Ptd(FormMod/X)

that the functor RealSplitSqZ takes coproducts in IndCoh(X) to coproducts in the
category Ptd(FormMod/X). In particular, it defines a functor
(3.15)
IndCoh(X)

op
≃ ComMonoid(IndCoh(X)

op
)→ ComMonoid(Ptd(FormMod/X)

op
).

We claim:

Proposition 3.7.12. The functor (3.15) is an equivalence.

Proof. Follows from the fact thatBLie
X is an equivalence, combined with Chap-

ter 6, Corollary 1.8.7. �

312 7. FORMAL GROUPS AND LIE ALGEBRAS

4. Proof of Theorem 3.1.4

4.1. Step 1. In this subsection we will prove that the functor expX defines an
equivalence from LieAlg(IndCoh(X)) to the full subcategory of Grp(FormMod/X),
spanned by objects that are inf-affine when viewed as objects of Ptd(FormMod/X)

(i.e., after forgetting the group structure).

We denote this category by Grp(FormMod/X)
′.

4.1.1. First, we note that by Proposition 1.4.7 and Chapter 6, Proposition 1.7.2,
for any h ∈ LieAlg(IndCoh(X)), the object

oblvGrp ○ expX(h) ∈ Ptd(FormMod/X)

is inf-affine, and the canonical map

(4.1) Grp(DistrCocomaug

)(expX(h))→ Grp(Chevenh
) ○ΩLie(h)

is an isomorphism.

4.1.2. We claim that the functor LieX of Sect. 3.3, restricted to Grp(FormMod/X)
′,

provides a right adjoint to expX . In other words, we claim that for h ∈ LieAlg(IndCoh(X))

and H′
∈ Grp(FormMod/X)

′, there is a canonical isomorphism:

MapsGrp(FormMod/X)(expX(h),H′
) ≃ MapsLieAlg(IndCoh(X))(h,LieX(H

′
)).

Indeed, by Lemma 2.1.6 and (4.1), we rewrite the left-hand side as

MapsCocomHopf(IndCoh(X))(Grp(Chevenh
) ○ΩLie(h),Grp(DistrCocomaug

)(H
′
)),

and, further, using Chapter 6, Sect. 4.4.2 as

MapsLieAlg(O) (h,BLie ○Monoid(coChevenh
) ○Grp(DistrCocomaug

)(H
′
)) ,

as required.

4.1.3. We claim that the unit of the adjunction

Id→ LieX ○ expX

is an isomorphism.

Indeed, this follows from (4.1) and (3.2).

4.1.4. Hence, it remains to show that the functor LieX , restricted to Grp(FormMod/X)
′,

is conservative. I.e., we need to show that ifH1 →H2 is a map in Grp(FormMod/X)
′,

such that LieX(H1) → LieX(H2) is an isomorphism, then the original map is also
an isomorphism.

More generally, we claim that if Y1 → Y2 is a map between two inf-affine objects
of Ptd(FormMod/X), such that the induced map

PrimCocomaug ○DistrCocomaug

(Y1)→ PrimCocomaug ○DistrCocomaug

(Y2)

is an isomorphism in IndCoh(X), then the original map is also an isomorphism.

Indeed, this follows from Proposition 2.3.3 and Chapter 1, Proposition 8.3.2.

4.2. Step 2. In this subsection we will reduce the assertion of Theorem 3.1.4 to
the case when X is reduced.

4. PROOF OF THEOREM 3.1.4 313

4.2.1. Taking into account Step 1, the assertion of Theorem 3.1.4 is equivalent to
the fact that every object H ∈ Grp(FormMod/X) is inf-affine, when we consider it
as an object of Ptd(FormMod/X).

Thus, by Proposition 2.1.4, we need to show that for anyH ∈ Grp(FormMod/X),
the canonical map

T (H/X)∣X → PrimCocomaug ○DistrCocomaug

(H)

is an isomorphism.

4.2.2. Let f ∶X ′
→X be a map in (

<∞Schaff
ft)/X . We have the symmetric monoidal

functor

f !
∶ IndCoh(X)→ IndCoh(X ′

),

which makes the following diagram commute:

IndCoh(X)
f !

ÐÐÐÐ→ IndCoh(X ′
)

trivCocom

×
×
×
Ö

×
×
×
Ö

trivCocom

CocomCoalgaug
(IndCoh(X))

f !

ÐÐÐÐ→ Cocomaug
(IndCoh(X ′

))

Hence, by adjunction, we obtain a natural transformation:

(4.2) f !
○PrimCocomaug → PrimCocomaug ○f !.

We claim:

Lemma 4.2.3. Assume that f is proper. Then the natural transformation (4.2)
is an isomomorphism

Proof. Follows by the (f IndCoh
∗ , f !

)-adjunction from the commutative diagram

IndCoh(X)

f IndCoh
∗

←ÐÐÐÐ IndCoh(X ′
)

trivCocom

×
×
×
Ö

×
×
×
Ö

trivCocom

CocomCoalgaug
(IndCoh(X))

f IndCoh
∗

←ÐÐÐÐ Cocomaug
(IndCoh(X ′

)).

�

4.2.4. Let i denote the canonical map X ′
∶=

redX → X. From Lemma 4.2.3 we
obtain that for Y ∈ Ptd(FormMod/X), we have a commutative diagram with vertical
arrows being isomorphisms

i!(T (Y/X)∣X) ÐÐÐÐ→ i! (PrimCocomaug ○DistrCocomaug

(Y))

×
×
×
Ö

×
×
×
Ö

T (Y
′
/X ′

)∣X′ ÐÐÐÐ→ PrimCocomaug ○DistrCocomaug

(Y
′
),

where Y ′ ∶=X ′
×
X
Y.

Since the functor i! is conservative (see Volume I, Chapter 4, Corollary 6.1.5),
we obtain that if

T (Y
′
/X ′

)∣X′ → PrimCocomaug ○DistrCocomaug

(Y
′
)

314 7. FORMAL GROUPS AND LIE ALGEBRAS

is an isomorphism, then so is

T (Y/X)∣X)→ PrimCocomaug ○DistrCocomaug

(Y).

Hence, the assertion of Theorem 3.1.4 for redX implies that for X.

4.3. Step 3. We will now show that the functor expX is essentially surjective
onto the entire category Grp(FormMod/X). By Step 2, we can assume that X is
reduced.

4.3.1. For H ∈ Grp(FormMod/X) set

Y ∶= BX(H) ∈ Ptd(FormMod/X).

Using Chapter 5, Corollary 1.5.2(a), we can write

Y ≃ colim
α∈A

Zα,

where the index category A is

(Ptd((<∞Schaff
ft)nil-isom to X))/Y ,

and where the colimit is taken in the category PreStklaft.

We make the following observation:

Lemma 4.3.2. If the scheme X is reduced, then the category A is sifted.

Proof. We claim that the diagonal functor A → A ×A admits a left adjoint.
Namely, it is given by sending

Z1, Z2 → Z1 ⊔
X
Z2,

see Chapter 1, Proposition 7.2.2.

NB: the fact that X is reduced is used to ensure that the maps X → Zi are
closed (and hence, nilpotent embeddings).

�

4.3.3. Set

Hα ∶= ΩX(Zα).

Since Hα is a scheme, it is inf-affine, by Proposition 2.1.4. Hence, there exists
a canonically defined functor

A→ LieAlg(IndCoh(X)), α ↦ hα,

so that Hα = expX(hα).

Set

h ∶= colim
α∈A

hα ∈ LieAlg(IndCoh(X)).

We are going to construct an isomorphism H ≃ expX(h).

4. PROOF OF THEOREM 3.1.4 315

4.3.4. By Chapter 5, Theorem 1.6.4, it suffices to construct an isomorphism

Y ≃ BX ○ expX(h)

in Ptd(FormMod/X).

We let Y → BX ○expX(h) be the map, given by the compatible system of maps

Zα → BX ○ expX(h)

that correspond under the equivalence ΩX to the maps

Hα ≃ expX(hα)→ expX(h).

To prove that the resulting map Y → BX ○ expX(h) is an isomorphism, by
Chapter 1, Proposition 8.3.2, it suffices to show that the induced map

T (Y/X)∣X → T (BX ○ expX(h)/X)∣X

is an isomorphism in IndCoh(X).

4.3.5. We have a commutative diagram

colim
α∈A

T (Zα/X)∣X
id

ÐÐÐÐ→ colim
α∈A

T (Zα/X)∣X

×
×
×
Ö

×
×
×
Ö

T (Y/X)∣X ÐÐÐÐ→ T (BX ○ expX(h)/X)∣X .

We note that the left vertical arrow is an isomorphism by Chapter 1, Proposi-
tion 2.5.3, since the category of indices A is sifted (see Lemma 4.3.2).

Hence, it remains to show that the right vertical arrow is an isomorphism.

4.3.6. The corresponding map

colim
α∈A

T (Zα/X)∣X[−1]→ T (BX ○ expX(h)/X)∣X[−1]

identifies with

colim
α∈A

T (Hα/X)∣X → T (expX(h)/X)∣X ,

and, further, by Proposition 2.3.3, with

(4.3) colim
α∈A

oblvLie(hα)→ oblvLie(h).

Since the category A is sifted, in the commutative diagram

colim
α∈A

oblvLie(hα) ÐÐÐÐ→ oblvLie(h)

×
×
×
Ö

×
×
×
Ö

id

oblvLie (colim
α∈A

hα)
∼

ÐÐÐÐ→ oblvLie(h)

the vertical arrows are isomorphisms.

Hence, the map (4.3) is an isomorphism, as required. �

316 7. FORMAL GROUPS AND LIE ALGEBRAS

5. Modules over formal groups and Lie algebras

In the previous sections we have constructed an equivalence between formal
groups and Lie algebras. In this section we will show that under this equivalence,
the datum of action of a formal group on a given object of IndCoh is equivalent to
that of action of the corresponding Lie algebra.

5.1. Modules over formal groups.
5.1.1. Let H be an object of Grp((FormModlaft)/X). We define the category
H-mod(IndCoh(X)) as

Tot (IndCoh!
(B●

(H))) ,

where IndCoh!
(B●

(H)) is the co-simplicial category, obtained by applying the (con-

travariant) functor IndCoh!
PreStklaft

to the simplicial object B●
(H) of PreStklaft.

Denote h ∶= LieX (H). The goal of this subsection is to prove the following:

Proposition-Construction 5.1.2. There exists a canonical equivalence of
categories

(5.1) H-mod(IndCoh(X)) ≃ h-mod(IndCoh(X))

that commutes with the forgetful functor to IndCoh(X), and is functorial with re-
spect to X .

The rest of this subsection is devoted to the proof of Proposition 5.1.2.

Without loss of generality, we can assume that X =X ∈
<∞Schaff

ft .

5.1.3. Consider the object

Grp(Chevenh
) ○Ω(h) ∈ AssocAlg(CococomCoalg(IndCoh(X))).

Consider the corresponding simplicial object

Bar●(Grp(Chevenh
) ○Ω(h)) ∈ CococomCoalg(IndCoh(X))

∆op

,

and the simplicial category

Bar●(Grp(Chevenh
) ○Ω(h))-comod(IndCoh(X)).

According to Chapter 6, Proposition 7.2.2 and Sect. 7.4, there exist canonical
equivalences

h-mod(IndCoh(X)) ≃ (AssocAlg(oblvCocom) ○Grp(Chevenh
) ○Ω(h)) -mod(IndCoh(X)) ≃

≃ ∣Bar●(Grp(Chevenh
) ○Ω(h))-comod(IndCoh(X))∣.

5.1.4. By Volume I, Chapter 1, Proposition 2.5.7, we have

H-mod(IndCoh(X)) = Tot (IndCoh!
(B●

(H))) ≃ ∣ (IndCoh∗(B
●
(H))) ∣,

where IndCoh∗(B
●
(H)) is the simplicial category, obtained by applying the functor

IndCohPreStklaft
∶ PreStklaft → DGCatcont

to the simplicial object B●
(H) of PreStklaft.

We will construct a functor between simplicial categories

(5.2) IndCoh∗(B
●
(H))→ Bar●(Grp(Chevenh

) ○Ω(h))-comod(IndCoh(X)),

and show that it induces an equivalence on geometric realizations.

5. MODULES OVER FORMAL GROUPS AND LIE ALGEBRAS 317

5.1.5. Let π● denote the augmentation B●
(H) → X. By Sect. 1.1.3, The functor

(π●)IndCoh
∗ defines a map of simplicial categories

(5.3) IndCoh∗(B
●
(H))→ DistrCocom

(B●
(H))-comod(IndCoh(X)).

Note that by Lemma 1.2.2, we have:

DistrCocom
(B●

(H)) ≃ Bar●(Grp(DistrCocomaug

)(H)).

Since

Grp(DistrCocomaug

)(H) ≃ Grp(Chevenh
) ○Ω(h),

we obtain

DistrCocom
(B●

(H)) ≃ Bar●(Grp(Chevenh
) ○Ω(h)).

Combining with (5.3), we obtain the desired functor (5.2).

5.1.6. It remains to show that the induced functor

∣IndCoh∗(B
●
(H))∣→ ∣Bar●(Grp(Chevenh

) ○Ω(h))-comod(IndCoh(X))∣

is an equivalence.

Consider the commutative diagram

IndCoh(X)
id

ÐÐÐÐ→ IndCoh(X)

∼
×
×
×
Ö

×
×
×
Ö

∼

IndCoh∗(B
0
(H)) ÐÐÐÐ→ Bar0

(Grp(Chevenh
) ○Ω(h))-comod(IndCoh(X))

×
×
×
Ö

×
×
×
Ö

∣IndCoh∗(B
●
(H))∣ ÐÐÐÐ→ ∣Bar●(Grp(Chevenh

) ○Ω(h))-comod(IndCoh(X))∣.

The functor corresponding to the composite left vertical arrow is monadic by
Chapter 3, Proposition 3.3.3(a).

The functor corresponding to the composite left vertical arrow is monadic by
Chapter 6, Proposition 7.2.2.

Hence, it remains to check that the resulting map of monads on IndCoh(X)

induces an isomorphism at the level of the underlying endo-functors.

By Chapter 3, Proposition 3.3.3(a), the former endo-functor is given by !-tensor
product with π∗(ωH), while the latter is given by !-tensor product with

oblvCocom○oblvAssoc○Grp(Chevenh
)○Ω(h) ≃ oblvCocom○DistrCocom

(H) ≃ Distr(H) ≃ π∗(ωH).

Now, it is easy to see that the resulting map of endo-functors is the identity
map on π∗(ωH).

5.2. Relation to nil-isomorphisms. Let

π ∶ Y ⇆ X ∶ s

be an object of Ptd((FormModlaft)/X), and set H = ΩX (Y).

In this subsection we will interpret various functors between the categories
IndCoh(Y) and IndCoh(X) in terms of the equivalence of Proposition 5.1.2.

318 7. FORMAL GROUPS AND LIE ALGEBRAS

5.2.1. Set H ∶= ΩX (Y). By Chapter 3, Proposition 3.3.3(b), there is a canonical
equivalence

(5.4) IndCoh(Y) ≃ Tot (IndCoh(B●
(H))) =H-mod(IndCoh(X)),

and thus

IndCoh(Y) ≃ h-mod(IndCoh(X)).

Under this identification, the forgetful functor

oblvh ∶ h-mod(IndCoh(X))→ IndCoh(X)

corresponds to s!, and the functor

trivh ∶ IndCoh(X)→ h-mod(IndCoh(X))

corresponds to π!.

5.2.2. The functor

πIndCoh
∗ ∶ IndCoh(Y)→ IndCoh(X),

being the left adjoint of π!, identifies with

coinv(h,−) ∶ h-mod(IndCoh(X))→ IndCoh(X).

The functor πIndCoh
∗ naturally lifts to a functor

IndCoh(Y)→ DistrCocom
(Y)-comod(IndCoh(X)),

and the latter can be identified with

coinvenh
(h,−) ∶ h-mod(IndCoh(X))→ Chevenh

(h)-comod(IndCoh(X)),

see Chapter 6, Sect. 7.3.4 for the notation.

5.2.3. The functor

sIndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y),

being the left adjoint of s!, identifies with

freeh ∶ IndCoh(X)→ h-mod(IndCoh(X)).

In particular, we obtain:

Corollary 5.2.4. The monad s!
○ sIndCoh

∗ on IndCoh(X) is canonically iso-

morphic to the monad U(h)
!
⊗ (−), where h ∶= LieX (H).

5.3. Compatibility with colimits. In this subsection we will prove the following
technically important assertion: the assignment Y ↝ IndCoh(Y) commutes with
sifted colimits in FormModX /. This is not tautological because the forgetful functor

FormModX / → (PreStklaft)X /

does not commute with sifted colimits1.

1Note, however, that it does commute with filtered colimits, by Chapter 1.

5. MODULES OVER FORMAL GROUPS AND LIE ALGEBRAS 319

5.3.1. Let X be an object of PreStklaft-def . Let i ↦ Yi be a sifted diagram in
FormModX /, and let Y be its colimit. Denote by fi the canonical map Yi → Y.

Under the above circumstances, we have:

Proposition 5.3.2. The functor

IndCoh(Y)→ lim
i

IndCoh(Yi),

given by the compatible collection of functors (fi)
!, is an equivalence.

As a formal consequence of Proposition 5.3.2

Corollary 5.3.3. Under the assumptions of Proposition 5.3.2 we have:

(a) The functor

colim
i

IndCoh(Yi)→ IndCoh(Y),

defined by the compatible collection of functors (fi)
IndCoh
∗ , is an equivalence.

(b) The natural map

colim
i

(fi)
IndCoh
∗ (ωYi)→ ωY

is an isomorphism in IndCoh(Y).

The rest of this subsection is devoted to the proof of Proposition 5.3.2.

5.3.4. Step 1. We will first treat the case when the diagram i↦ Yi is in Ptd(FormMod/X).
In this case Y also naturally an object of Ptd(FormMod/X), and identifies with the
colimit of Yi in Ptd(FormMod/X).

Let

i↦ hi

be the diagram in LieAlg(IndCoh(X)) so that Yi = B
Lie
X (hi). Denote

h ∶= colim
i

hi ∈ LieAlg(IndCoh(X)),

so that Y ≃ BLie
X (h).

By Proposition 5.1.2, it suffices to show that the functor

h-mod(IndCoh(X))→ lim
i
hi-mod(IndCoh(X)),

given by restriction, is an equivalence. However, this is true for any sifted diagram
of Lie algebras.

5.3.5. Step 2. Let us now return to the general case of a sifted diagram i ↦ Yi in
FormModX /. Consider the corresponding diagram

i↦R●
i

in FormGrpoid(X). Let R● be the formal groupoid corresponding to Y.

By Chapter 5, Corollary 2.2.4, for every n, the map

colim
i
R
n
i →R

n

is an isomorphism in Ptd(FormMod/X).

Applying Step 1, we obtain that for every n, the functor

IndCoh(Rn)→ lim
i

IndCoh(Rni)

320 7. FORMAL GROUPS AND LIE ALGEBRAS

is an equivalence.

Now, the equivalence

IndCoh(Y)→ lim
i

IndCoh(Yi)

follows by descent, i.e., Chapter 5, Proposition 2.2.6. �

6. Actions of formal groups on prestacks

The goal of this section is to make precise the following idea: an action of a Lie
algebra on a prestack is equivalent to that of action of the corresponding formal
group.

The first difficulty that we have to grapple with is to define what we mean by
an action of a Lie algebra on a prestack. For now we will skirt this question by
considering free Lie algebras; we will return to it in Chapter 8, Sect. 7.

6.1. Action of groups vs. Lie algebras. In this subsection we will make precise
the following construction:

If a formal group H acts on a prestack Y, then the Lie algebra of H maps to
global vector fields on Y.

6.1.1. Let X be an object of PreStklaft. Let H ∈ Grp((FormModlaft)/X); denote
h ∶= LieX (H).

Let π ∶ Y → X be an object of (PreStklaft)/X , equipped with an action of H.
Let us assume that Y admits deformation theory relative to X (see Chapter 1, Sect.
7.1.6 for what this means).

6.1.2. We claim that the data of action gives rise to a map in IndCoh(Y);

(6.1) π!
(oblvLie(h))→ T (Y/X).

Indeed, if act denotes the action map

H ×
X
Y → Y,

then we have a canonically map

T ((H ×
X
Y)/X)→ act!

(T (Y/X)).

Pulling back along the unit section of H, and composing with the canonical
map

π!
(T (H/X)∣X)→ T (H ×

X
Y/X)∣Y ,

and using the isomorphism T (H/X)∣X ≃ oblvLie(h) of Corollary 3.2.8, we obtain
the desired map

π!
(oblvLie(h)) ≃ π

!
(T (H/X)∣X)→ T (H ×

X
Y/X)∣Y → act!

(T (Y/X))∣Y ≃ T (Y/X).

6.1.3. Assume now that h is of the form freeLie(F) for some F ∈ IndCoh(X).
Note that by adjunction we have a canonical map

F → oblvLie ○ freeLie(F).

Composing with (6.1), we obtain a map

(6.2) π!
(F)→ T (Y/X).

6. ACTIONS OF FORMAL GROUPS ON PRESTACKS 321

6.1.4. The above construction defines a map from the groupoid of actions of H on
Y to

MapsIndCoh(Y)(π
!
(F), T (Y/X)).

The goal of this section is to prove the following assertion:

Theorem 6.1.5. For Y and F as above, the map from groupoid of data of
actions of H on Y to MapsIndCoh(Y)(π

!
(F), T (Y/X)) is an isomorphism.

6.2. Proof of Theorem 6.1.5.
6.2.1. Idea of proof. The statement of the theorem readily reduces to the case when
X =X ∈

<∞Schaff
ft .

Let (π!
)
R denote the (discontinuous) right adjoint of π!

∶ IndCoh(X)→ IndCoh(Y),
so that

MapsIndCoh(Y)(π
!
(F), T (Y/X)) ≃ MapsIndCoh(X) (F , (π

!
)
R
(T (Y/X))) .

Starting from Y as above, we will construct an object

Autinf
(Y/X) ∈ Grp((FormModlaft)/X),

such that for any H′
∈ Grp((FormModlaft)/X), the data of action of H′ on Y is

equivalent to that of a homomorphism

H
′
→ Autinf

(Y/X).

Moreover, we will show that the map

(6.3) oblvLie (LieX(Autinf
(Y/X)))→ (π!

)
R
(T (Y/X)),

arising by adjunction from (6.1), is an isomorphism.

This will prove Theorem 6.1.5, since the functor LieX is an equivalence.

6.2.2. By Chapter 5, Proposition 1.2.2, in order to construct Autinf
(Y/X) as an

object of
Monoid((FormModlaft)/X),

it suffices to define it as a presheaf with values in Monoid(Spc) on the category

(
<∞Schaff

ft)nil-isom to X ,

so that it satisfies the deformation theory conditions of Chapter 5, Proposition
1.2.2(b).

For Z ∈ (
<∞Schaff

ft)nil-isom to X , we set

Maps/X(Z,Autinf
(Y/X)) ∶= Maps/X(Z ×

X
Y,Y) ×

Maps/X(redZ×
X
Y,Y)

∗ ≃

≃ Maps/Z(YZ ,YZ) ×
Maps

/redZ
(YredZ

,YredZ
)
∗,

(here YZ ∶= Z ×
X
Y and YredZ =

redZ ×
X
Y).

The deformation theory conditions of Chapter 5, Proposition 1.2.2(b) follow
from the fact that Y admits deformation theory.

Remark 6.2.3. The prestack Autinf
(Y/X) constructed above is the formal

completion of the full automorphism prestack Aut(Y/X) along the identity.

322 7. FORMAL GROUPS AND LIE ALGEBRAS

6.2.4. Thus, we have constructed Autinf
(Y/X) as an object of AssocAlg((FormModlaft)/X).

It belongs to Grp((FormModlaft)/X) by Chapter 5, Lemma 1.6.2.

It remains to show that the map (6.3) is an isomorphism. By construction, for
F ∈ Coh(X) such that DSerre

X (F) ∈ Coh(X)
≤0, we have

MapsIndCoh(X)(F , T (Autinf
(Y/X))∣X) ≃ Maps/X(RealSplitSqZ(DSerre

X (F))×
X
Y,Y).

By the deformation theory of Y, the latter maps isomorphically to

MapsIndCoh(Y)(π
!
(F), T (Y/X))),

and by adjunction, further (still isomorphically) to

MapsIndCoh(X) (F , (π
!
)
R
(T (Y/X))) .

Furthermore, it follows from the construction that the resulting map

MapsIndCoh(X)(F , T (Autinf
(Y/X))∣X)→MapsIndCoh(X) (F , (π

!
)
R
(T (Y/X)))

is the one induced by (6.2).

This implies the required assertion, as IndCoh(X) is generated by the above
objects of Coh(X) under colimits.

�

6.3. Localization of Lie algebra modules. In this subsection we show how to
construct crystals on a given prestack starting from modules over a Lie algebra that
acts on this prestack.

6.3.1. Let f ∶ Y → X and H be as in Sect. 6.1.1. Consider the prestack

Y/XdR ∶= YdR ×
XdR

X ,

see Chapter 4, Sect. 3.3.2 for the notation.

Recall also the notation

/XCrys(Y) ∶= IndCoh(YdR ×
XdR

X).

In this subsection we will construct the localization functor

Loch,Y/X ∶ h-mod(IndCoh(X))→
/XCrys(Y).

6.3.2. The action of H on Y defines an object

H ×
X
Y ∈ FormGrpoid(Y),

see Chapter 5, Sect. 2.2.1 for the notation.

By (the relative over X version of) Chapter 5, Theorem 2.3.2, the corresponding
quotient

Y/H ∈ FormModY/

is well-defined.

6. ACTIONS OF FORMAL GROUPS ON PRESTACKS 323

We have canonically defined maps of prestacks

Y/H

f/H
ÐÐÐÐ→ BX(H)

g
×
×
×
Ö

Y/XdR.

6.3.3. We define the sought-for functor Loch,Y/X as

gIndCoh
∗ ○ (f/H)

!,

where we identify

IndCoh(BX (H)) ≃ h-mod(IndCoh(X))

by means of (5.4).

6.3.4. Note that the functor Loch,Y/X is by construction the left adjoint of the (in
general, discontinuous) functor

((f/H)
IndCoh
∗)

R
○ g!

∶
/XCrys(Y)→ h-mod(IndCoh(X)).

We claim that the functor ((f/H)
IndCoh
∗)

R
○ g! makes the following diagram

commutative:

/XCrys(Y)
oblv/XdR,Y

ÐÐÐÐÐÐ→ IndCoh(Y)

((f/H)IndCoh
∗)R○g!

×
×
×
Ö

×
×
×
Ö

(f !)R

h-mod(IndCoh(X))

oblvh

ÐÐÐÐ→ IndCoh(X),
where oblv/XdR,Y is by definition the !-pullback functor along

p/XdR,Y ∶ Y → Y/XdR.

6.3.5. Indeed, we need to establish the commutativity of the diagram

IndCoh(Y)
(f IndCoh
∗)R

ÐÐÐÐÐÐ→ IndCoh(X)

Õ
×
×
×

Õ
×
×
×

IndCoh(Y/H)

((f/H)IndCoh
∗)R

ÐÐÐÐÐÐÐÐÐ→ IndCoh(BX (H)),

where the vertical arrows are given by !-pullback.

However, this follows by passing to right adjoints in the commutative diagram,

IndCoh(Y)
f IndCoh
∗

←ÐÐÐÐ IndCoh(X)

×
×
×
Ö

×
×
×
Ö

IndCoh(Y/H)

(f/H)IndCoh
∗

←ÐÐÐÐÐÐÐ IndCoh(BX (H)),

given by base-change.

CHAPTER 8

Lie algebroids

Introduction

0.1. Who are these Lie algebroids? In this chapter we initiate the study of Lie
algebroids over prestacks (technically, over prestacks locally almost of finite type
that admit deformation theory). The reason we decided to devote a chapter to this
notion is that Lie algebroids provide a convenient language to discuss differential-
geometric properties of prestacks, which will be studied in Chapter 9.

0.1.1. In classical algebraic geometry, a Lie algebroid (over a classical scheme) X
is a quasi-coherent sheaf L, equipped with an OX -linear map to the tangent sheaf
and an operation of Lie bracket that satisfy some natural axioms (see Sect. 9.1).

In the setting of derived we define the category of Lie algebroids on X to be that
of formal groupoids on X . This is sensible because the category of Lie algebras in
IndCoh(X) is equivalent to the category of formal groups over X , due to Chapter 7,
Theorem 3.6.2.

The reason we call these objects ‘Lie algebroids’ is that we construct various
forgetful functors to more linear categories and show that Lie algebroids can be
described as ind-coherent sheaves with an additional structure. However, a distinc-
tive feature of the derived story we will explain is that the only description of this
extra structure that we give is in terms of geometry. I.e., we could not come up
with a more ‘algebraic’ definition.

0.1.2. We show that with the definition of Lie algebroids as formal groupids, one
can perform with them all the expected operations:

A Lie algebroid L will have an associated object

oblvLieAlgbroid(L) ∈ IndCoh(X),

equipped with a morphism oblvLieAlgbroid(L)→ T (X), called the anchor map. The
kernel of the anchor map has a structure of Lie algebra in IndCoh(X), while the
space of global sections of oblvLieAlgbroid(L) has also a structure of Lie algebra (in
Vect).

Thus, the category LieAlgbroid(X) is related to the category IndCoh(X)/T (X)
by a pair of adjoint functors

freeLieAlgbroid ∶ IndCoh(X)/T (X) ⇄ LieAlgbroid(X) ∶ oblvLieAlgbroid /T ,

and we will show that the resulting monad

oblvLieAlgbroid /T ○ freeLieAlgbroid

acting on IndCoh(X)/T (X) has ‘the right size’, see Proposition 5.3.2.

325

326 8. LIE ALGEBROIDS

Furthermore, LieAlgbroid(X) is related to the category LieAlg(IndCoh(X))

by a pair of adjoint functors

diag ∶ LieAlg(IndCoh(X))→ LieAlgbroid(X) ∶ ker-anch,

(where the meaning of diag is that an OX -linear Lie algebra can be considered into
a Lie algebroid with the zero anchor map, and ker-anch sends a Lie algebroid to
the kernel of its anchor map1). The monad

ker-anch ○diagX

is given by the operation of semi-direct product with the inertia Lie algebra inertX ,
which is again what one expects from a sensible definition of Lie algebroids.

0.1.3. Finally, let us comment on our inability to define Lie algebroids without
resorting to geometry. In fact, this is not surprising: throughout the book the only
way we access Lie algebras is via the definition of the Lie operad as the Koszul dual
of the commutative operad. So, it is natural that in order to define objects that
generalize Lie algebras we resort to commutative objects (in our case, prestacks).

In Sect. 5.6 we present a very general categorical framework, in which one can
define ‘broids’ as modules over a certain monad.

0.2. What is done in this chapter? We should say right away that this chapter
does not contain any big theorems. Mostly, it uses the material of the previous
chapters to set up the theory of Lie algebroids and also sets ground for applications
in Chapter 9.

0.2.1. In Sect. 1 we return to the study of groupoids (in spaces and then in the
framework of algebraic geometry).

Given a space (resp., prestack) X, we define two functors from the category
Groupoid(X) to the category of groups over X.

The first of these functors, denoted Inert, sends a groupoid to its inertia group.
Applying this functor to the unit groupoid (i.e., the initial object of Groupoid(X)),
we obtain the inertia group of X, denoted InertX .

The second functor, denoted Ωfake, sends a groupoid R to ΩX(R), where we
view R as a pointed object over X via

unit ∶X ⇄ R ∶ ps.

The above two functors are related by a fiber sequence

Ωfake
(R)→ InertX → Inert(R).

1Another way to look at the above adjoint pair is that the category LieAlg(IndCoh(X))

identifies with the over-category

(LieAlgbroid(X))/0,

where 0 is the zero Lie algebroid.

INTRODUCTION 327

0.2.2. In Sect. 2 we introduce the notion of Lie algebroid over an object X ∈

PreStklaft-def , along with two pairs of adjoint functors

freeLieAlgbroid ∶ IndCoh(X)/T (X) ⇄ LieAlgbroid(X) ∶ oblvLieAlgbroid /T ,

and

diagX ∶ LieAlg(IndCoh(X))→ LieAlgbroid(X) ∶ ker-anch .

We introduce also another functor

Ωfake
∶ LieAlgbroid(X)→ LieAlg(IndCoh(X)),

so that for L ∈ LieAlgbroid(X) we have the fiber sequence

Ωfake
(L)→ inertX → ker-anch(L),

where inertX is the Lie algebra of the inertia group of X .

We note that

oblvLie(inertX) = T (X)[−1]

and when we apply oblvLie to the map Ωfake
(L) → inertX , we recover the shift by

[−1] of the anchor map, i.e., of the object

oblvLieAlgbroid /T ∈ IndCoh(X)/T (X).

0.2.3. In Sect. 3 we consider the basic examples of Lie algebroids: the tangent
algebroid, the zero algebroid, the Lie algebroid attached to a map of prestacks, and
the Atiyah algebroid attached to an object of QCoh(X)

perf .

0.2.4. In Sect. 4 we introduce the notion of module over a Lie algebroid, and define
the universal enveloping algebra of a Lie algebroid.

0.2.5. In Sect. 5 we study the relationship between square-zero extensions and
Lie algebroids. Recall that according to Chapter 5, Theorem 2.3.2, for a given
X ∈ PreStklaft-def , the category of formal moduli problems under X is equivalent
to that of formal groupoids over X , and thus to the category of Lie algebroids.

Using this equivalence, we construct functor

RealSqZExt ∶ IndCoh(X)/T (X) → FormModX /

to correspond to the functor

freeLieAlgbroid ∶ IndCoh(X)/T (X) → LieAlgbroid(X).

We show that the functor is the left adjoint to the functor that sends X → Y
to T (X /Y) ∈ IndCoh(X)/T (X), i.e., it really behaves like a square-zero extension.

We also show that the notion of square-zero extension developed in the present
section using Lie algebroids is equivalent to one developed in Chapter 1, Sect. 10,
which was bootstrapped from the case of schemes.

328 8. LIE ALGEBROIDS

0.2.6. In Sect. 6 we introduce the Atiyah class, which is a functorial assignment
for any F ∈ IndCoh(X) of a map

T (X)[−1]
!
⊗F

αF
→ F .

We show that if i ∶ X → X ′ is a square-zero extension of X , given by

F
′ γ
→ T (X),

then the category IndCoh(X ′
) can be described as the category consisting of F ∈

IndCoh(X), equipped with a null-homotopy of the composite map

F
′ !
⊗F

γ
!
⊗id
Ð→ T (X)[−1]

!
⊗F

αF
→ F .

We deduce that the dualizing object ωX ′ ∈ IndCoh(X ′
) fits into the exact

triangle

iIndCoh
∗ (ωX)→ ωX ′ → iIndCoh

∗ (F
′
),

further justifying the terminology ‘square-zero extension’.

0.2.7. In Sect. 7 we show that the space of global sections of a Lie algebroid carries
a canonical structure of Lie algebra. (In particular, global vector fields carry a
structure of Lie algebra.)

We also show that h is a Lie algebra object in IndCoh(X) obtained as Ωfake
(L)

for a Lie algebroid L, then the Lie algebra structure on the space of global sections
of h is the trivial one.

0.2.8. In Sect. 8 we present another point of view on the category LieAlgbroid(X).
Namely, we show that the functor

ker-anch ∶ LieAlgbroid(X)→ LieAlg(IndCoh(X))

is monadic.

I.e., the category LieAlgbroid(X) can be realized as the category of modules
for the monad

MInertinf
X
∶= ker-anch ○diag

acting on the category LieAlg(IndCoh(X)).

The monad MInertinf
X

is given by the operation of ‘semi-direct product’ with the

inertia Lie algebra inertX . So in a sense, this gives a very manageable presentation
of the category LieAlgbroid(X). We learned this idea from J. Francis.

Thus, there are (at least) two ways to exhibit LieAlgbroid(X) as modules over
a monad acting on some category: one is what we just said above, and another via
the adjunction

freeLieAlgbroid ∶ IndCoh(X)/T (X) ⇄ LieAlgbroid(X) ∶ oblvLieAlgbroid /T .

1. THE INERTIA GROUP 329

0.2.9. Finally, in Sect. 9 we compare our definition of Lie algebroids with the usual
(i.e., classical) one, when our prestack X is a classical scheme X.

We show (see Theorem 9.1.5) that the subcategory consisting of Lie algebroids
L, for which the object oblvLieAlgbroid(L) ∈ IndCoh(X) lies in the essential image
of the functor

QCoh(X)
♡
↪ QCoh(X)

ΥX
↪ IndCoh(X)

is canonically equivalent to that of classical Lie algebroids.

Further, we show that if L ∈ LieAlgbroid(X) is such that oblvLieAlgbroid(L) ∈

IndCoh(X) lies in the essential image of the functor

QCoh(X)
♡,flat

↪ QCoh(X)
♡
↪ QCoh(X)

ΥX
↪ IndCoh(X),

then the category L-mod(IndCoh(X)) agrees with the classical definition of the
category of modules over a Lie algebroid.

1. The inertia group

In this section we return to the discussion of groupoids, first in the category
Spc and then in formal geometry.

We show that there are two forgetful functors from the category of groupoids
(on a given space or prestack) X to that of groups over X . The first functor is
given by the inertia group, i.e. the morphisms with the same source and target.
The second is given by taking the relative loop space of the groupoid. We also
establish a relationship between these two functors: namely, they fit into a fiber
sequence with the inertia group of the identity groupoid in the middle.

1.1. Inertia group of a groupoid. In this subsection we work in the category
of spaces. We introduce the notion of inertia group of a groupoid.

1.1.1. Recall the setting of Chapter 5, Sect. 2.1. For X ∈ Spc, note that we have
a tautological forgetful functor

diag ∶ Grp(Spc/X)→ Grpoid(X).

In fact,

Grp(Spc/X) ≃ Grpoid(X)/diagX
.

Hence, the functor diag admits a right adjoint, denoted Inert, given by Carte-
sian product (inside Grpoid(X)) with diagX .

Concretely, as a space

Inert(R) ∶=X ×
X×X

R,

(we recall that X ×X is the final object in Grpoid(X)).

330 8. LIE ALGEBROIDS

1.1.2. For R = diagX being the identity groupoid, we thus obtain an object of
Grp(Spc/X), denoted InertX .

I.e., as an object of Grp(Spc/X), we have:

InertX =X ×
X×X

X = ΩX(X ×X),

where X ×X is regarded as an object of Ptd(Spc/X) via the maps

∆X ∶X ⇄X ×X ∶ ps.

The object InertX ∈ Grp(Spc/X) is called the inertia group2of X.

1.1.3. For R =X ×
Y
X, we have:

Inert(R) =X ×
Y

InertY .

1.1.4. There is another functor

Ωfake
∶ Grpoid(X)→ Grp(Spc/X).

Namely,

Ωfake
(R) ∶= ΩX(R),

where in the left-hand side ΩX is the loop functor Ptd(Spc/X) → Grp(Spc/X),

where we view R as as an object of Ptd(Spc/X) via

unit ∶X ⇄ R ∶ ps.

For example,

InertX = Ωfake
(X ×X).

1.1.5. Since X ×X is the final object in Grpoid(X), for any groupoid R we have
a tautological map R →X ×X, which gives rise to a map

Ωfake
(R)→ InertX .

In addition, the unit map diagX → R gives rise to a map in Grp(Spc/X)

InertX → Inert(R).

It is easy to see that

Ωfake
(R)→ InertX → Inert(R)

is a fiber sequence in Grp(Spc/X).

1.1.6. Note also that the composed endo-functor of Groupoid(X)

diag ○Ωfake

identifies with

R ↦ diagX ×
R

diagX ,

where the fiber product is taken in Groupoid(X).

2Note that we can also think of InertX as XS1
, i.e., the free loop space of X.

1. THE INERTIA GROUP 331

1.2. Infinitesimal inertia. In this subsection we translate the material from
Sect. 1.1 to the context of infinitesimal algebraic geometry. I.e., instead of Spc,
we will work with the category PreStklaft-def , and instead of groupoids we will
consider objects of FormGrpoid(X) over a given prestack X .

1.2.1. Let X be an object of PreStklaft-def . Consider the category FormGrpoid(X).

Note that FormGrpoid(X) admits a final object equal to (X ×X)
∧, the formal

completion of the diagonal in X ×X .

The initial object in FormGrpoid(X) is diagX , and we have a canonical iden-
tification

Grp(FormMod/X) ≃ FormGrpoid(X)/diagX
.

1.2.2. Consider the forgetful functor

diag ∶ Grp(FormMod/X)→ FormGrpoid(X).

It admits a right adjoint, denoted Inertinf , and given by Cartesian product
(inside the category FormGrpoid(X)) with the unit groupoid diagX . Explicitly,

Inertinf
(R) = X ×

(X×X)∧
R.

1.2.3. For R = diagX being the identity groupoid, we thus obtain an object of

Grp(Spc/X), denoted Inertinf
X . We call it the infinitesimal inertial group of X .

I.e., as an object of PreStk, we have:

Inertinf
X = X ×

(X×X)∧
X .

1.2.4. We reserve the notation InertX for the object

X ×
X×X

X ∈ Grp(PreStk/X),

i.e., the usual (=non-infinitesimal) inertia group of X .

It is easy to see that Inertinf
X is obtained from InertX by completion along the

unit section.

1.2.5. There is another functor

Ωfake
∶ FormGrpoid(X)→ Grp(FormMod/X).

Namely,

Ωfake
(R) ∶= ΩX (R),

where in the left-hand side ΩX is the loop functor Ptd(FormMod/X)→ Grp(FormMod/X),
where we view R as as an object of Ptd(FormMod/X) via

unit ∶ X ⇄R ∶ ps.

For example,

Inertinf
X = Ωfake

((X ×X)
∧
).

332 8. LIE ALGEBROIDS

1.2.6. Since (X ×X)
∧ is the final object in FormGrpoid(X), for any groupoid R

we have a tautological map R→ (X ×X)
∧, which gives rise to a map

Ωfake
(R)→ Inertinf

X .

In addition, the unit map X →R gives rise to a map in Grp(FormMod/X)

Inertinf
X → Inertinf

(R).

It is easy to see that

(1.1) Ωfake
(R)→ Inertinf

X → Inertinf
(R)

is a fiber sequence.

1.3. Inertia Lie algebras. In this subsection we will introduce Lie algebra coun-
terparts of the constructions in Sect. 1.2.

1.3.1. In what follows we denote

inertX ∶= LieX (Inertinf
X) ∈ LieAlg(IndCoh(X).

Note that
oblvLie(inertX) ≃ T (X)[−1].

1.3.2. For R ∈ FormGrpoid(X), denote

inert(R) ∶= Lie(Inertinf
(R)).

From the fiber sequence (1.1) we obtain a fiber sequence in LieAlg(IndCoh(X)):

(1.2) Lie(Ωfake
(R))→ inertX → inert(R).

1.3.3. If R is the groupoid corresponding to a formal moduli problem X → Y (i.e.,
R = X ×

Y
X), then

inert(R) ≃ inertY ∣X .

In particular,
oblvLie(inert(R)) ≃ T (Y)∣X [−1].

The canonical map

oblvLie(inertX)→ oblvLie(inert(R)),

induced by Inertinf
X → Inertinf

(R), is the shft by [−1] of the differential T (X) →

T (Y)∣X .

Note also that

oblvLie ○ Lie(Ωfake
(R)) ≃ T (X /Y)[−1].

Applying oblvLie to (1.2), we obtain the shift by [−1] of the tautological exact
triangle

T (X /Y)→ T (X)→ T (Y)∣X .

2. Lie algebroids: definition and basic pieces of structure

In this section we introduce the category LieAlgbroid(X) of Lie algebroids on
X as the category of formal groupoids on X and study several forgetful functors
to the categories IndCoh(X) and LieAlg(IndCoh(X)), including those induced by
the functors from Sect. 1.

2. LIE ALGEBROIDS: DEFINITION AND BASIC PIECES OF STRUCTURE 333

2.1. Lie algebroids and the main forgetful functor.

We define the category LieAlgbroid(X) to be the same as FormGrpoid(X).
The difference will only express itself in our point of view: we will (try to) view Lie
algebroids as objects of a linear category (namely, IndCoh(X)), equipped with an
extra structure.

According to Chapter 5, Theorem 2.3.2, we can also identify

LieAlgbroid(X) ≃ FormModX / .

2.1.1. Our ‘main’ forgetful functor is denoted

oblvLieAlgbroid /T ∶ LieAlgbroid(X)→ IndCoh(X))/T (X),

and is constructed as follows:

It associates to a formal moduli problem X → Y the object of IndCoh(X)/T (X)
equal to

T (X /Y)→ T (X).

The functor oblvLieAlgbroid /T is conservative by Chapter 1, Proposition 8.3.2.

2.1.2. We will think of a Lie algebroid L as the corresponding object oblvLieAlgbroid /T (L)

of IndCoh(X)/T (X), abusively denoted by the same character L, equipped with an
extra structure.

We shall denote by oblvLieAlgbroid the composition of oblvLieAlgbroid /T and the
forgetful functor

IndCoh(X)/T (X) → IndCoh(X).

The corresponding map

(2.1) oblvLieAlgbroid(L)
anch
→ T (X)

is usually referred to as the anchor map.

Proposition 2.1.3.

(a) The category LieAlgbroid(X) admits sifted colimits, and the functor oblvLieAlgbroid /T
commutes with sifted colimits.

(b) The functor oblvLieAlgbroid /T admits a left adjoint.

Proof. Point (a) of the proposition follows from Chapter 5, Corollary 2.2.4.
To prove point (b), by the Adjoint Functor Theorem, it is enough to show that the
functor oblvLieAlgbroid /T commutes with limits, while the latter is obvious from the
definitions.

�

We will denote the functor

IndCoh(X)/T (X) → LieAlgbroid(X),

left adjoint to oblvLieAlgbroid /T , by freeLieAlgbroid. In Sect. 5 we will clarify the
geometric meaning of this functor.

334 8. LIE ALGEBROIDS

2.1.4. Note that Corollary 2.1.3 implies:

Corollary 2.1.5. The functor

oblvLieAlgbroid /T ∶ LieAlgbroid(X)→ IndCoh(X)/T (X)

is monadic.

2.1.6. The above discussion can be rendered into the relative setting, where instead
of the category PreStklaft-def , we consider the category (PreStklaft-def)/Z over a fixed
Z ∈ PreStklaft-def .

For X ∈ (PreStklaft-def)/Z , we denote the resulting category of relative Lie
algebroids by

LieAlgbroid(X /Z).

Its natural forgetful functor, denoted by the same symbol oblvLieAlgbroid /T
takes values in the category IndCoh(X)T (/X /Z). I.e., we now take tangent spaces
relative to Z.

2.2. From Lie algebroids to Lie algebras. It turns out that there are two
forgetful functors from LieAlgbroid(X) to LieAlg(IndCoh(X)), induced by the two
functors from groupoids to groups in Sect. 1. We will explore these two functors in
the present subsection.

2.2.1. We define the functor

ker-anch ∶ LieAlgbroid(X)→ LieAlg(IndCoh(X))

so that the diagram

FormGrpoid(X)
∼

ÐÐÐÐ→ LieAlgbroid(X)

Inertinf
×
×
×
Ö

×
×
×
Ö

ker-anch

Grp(FormMod/X)
Lie

ÐÐÐÐ→
∼

LieAlg(IndCoh(X))

is commutative.

I.e., if L is the algebroid corresponding to the groupoid R, we have

ker-anch(L) ∶= inert(R),

in the notation of Sect. 1.3.2.

Note that by construction, for L ∈ LieAlgbroid(X), we have:

oblvLie ○ ker-anch(L) ≃ Fib(oblvLieAlgbroid(L)
anch
→ T (X)) ,

functorially in L.

In particular, the functor ker-anch is conservative.

2. LIE ALGEBROIDS: DEFINITION AND BASIC PIECES OF STRUCTURE 335

2.2.2. Another forgetful functor, denoted Ωfake
∶ LieAlgbroid(X)→ LieAlg(IndCoh(X)),

is defined so that the diagram

FormGrpoid(X)
∼

ÐÐÐÐ→ LieAlgbroid(X)

Ωfake
×
×
×
Ö

×
×
×
Ö

Ωfake

Grp(FormMod/X)
Lie

ÐÐÐÐ→
∼

LieAlg(IndCoh(X))

commutes.

In particular, the fiber sequence (1.2) translates as

(2.2) Ωfake
(L)→ inertX → ker-anch(L).

Note that by construction

oblvLie ○Ωfake
(L) ≃ oblvLieAlgbroid(L)[−1].

I.e., the object of IndCoh(X), underlying the shift by [−1] of a Lie algebroid,
carries a natural structure of Lie algebra in IndCoh(X).

The functor Ωfake is also conservative.

Remark 2.2.3. In Sect. 7, we shall see that the object of Vect equal to global
sections of oblvLieAlgbroid(L) for a Lie algebroid L itself carries a structure of Lie
algebra.

2.2.4. We will refer to the canonical map

(2.3) Ωfake
(L)→ inertX

as the shifted anchor map. After applying oblvLie, the map (2.3) becomes the shift
by [−1] of the map (2.1).

Applying oblvLie to (2.2), we obtain a fiber sequence in IndCoh(X) that is
equal to the shift by [−1] of the tautological sequence

oblvLie(ker-anch(L))→ oblvLieAlgbroid(L)→ T (X).

2.2.5. The functor ker-anch admits a left adjoint, denoted

diag ∶ LieAlg(IndCoh(X))→ LieAlgbroid(X).

Tautologically, it makes the following diagram commute

FormGrpoid(X)
∼

ÐÐÐÐ→ LieAlgbroid(X)

diag
Õ
×
×
×

Õ
×
×
×

diag

Grp(FormMod/X)
Lie

ÐÐÐÐ→
∼

LieAlg(IndCoh(X)).

We note:

336 8. LIE ALGEBROIDS

Lemma 2.2.6. The following diagram of functors commutes:

IndCoh(X)
freeLie
ÐÐÐÐ→ LieAlg(IndCoh(X))

×
×
×
Ö

×
×
×
Ö

diag

IndCoh(X)/T (X)
freeLieAlgbroid

ÐÐÐÐÐÐÐÐ→ LieAlgbroid(X),

where the left vertical arrow sends F ∈ IndCoh(X) to (F
0
→ T (X)).

Proof. Follows by adjunction from the commutativity of the corresponding
diagram of right adjoints

IndCoh(X)
oblvLie
←ÐÐÐÐ LieAlg(IndCoh(X))

Õ
×
×
×

Õ
×
×
×

ker-anch

IndCoh(X)/T (X)
oblvLieAlgbroid /T

←ÐÐÐÐÐÐÐÐÐÐ LieAlgbroid(X),

where the left vertical arrow sends

(F
γ
→ T (X))↦ Fib(γ).

�

3. Examples of Lie algebroids

In this section we discuss four main examples of Lie algebroids: the tangent
algebroid, the zero algebroid, the Lie algebroid attached to a map, and the Atiyah
algebroid attached to a perfect complex.

3.1. The tangent and zero Lie algebroids. In this subsection we introduce
two most basic Lie algebroids.

3.1.1. The most basic example of a Lie algebroid is the final object of LieAlgbroid(X),
denoted T (X). It is called the tangent Lie algebroid.

It corresponds to the formal moduli problem X
pdR,X

Ð→ XdR. The corresponding
groupoid is (X ×X)

∧.

We have

oblvLieAlgbroid /T (T (X)) = (T (X)
id
→ T (X)).

We also have:

ker-anch(T (X)) = 0 and Ωfake
(T (X)) ≃ inertX .

3.1.2. For a Lie algebroid L, we define the notion of splitting to be the right inverse
of the canonical map L→ T (X).

3. EXAMPLES OF LIE ALGEBROIDS 337

3.1.3. The initial object in LieAlgbroid(X) is the ‘zero’ Lie algebroid, denoted

0 ∈ LieAlgbroid(X).

It equals diag(0), and corresponds to the groupoid diagX . The corresponding
formal moduli problem is

X
id
→ X .

We have:

oblvLieAlgbroid /T (0) = (0→ T (X)).

We also have

ker-anch(0) = inertX and Ωfake
(0) = 0.

3.1.4. Note that the composite endo-functor of LieAlgbroid(X)

diag ○Ωfake

identifies with

L↦ 0 ×
L

0,

where the fiber product is taken in LieAlgbroid(X).

3.2. The Lie algebroid attached to a map. In this subsection we discuss the
Lie algebroid attached to a map of prestacks.

3.2.1. Let X → Y be a map in PreStklaft-def . Consider the corresponding map

X → Y
∧
X ,

where

Y
∧
X ∶= XdR ×

YdR

Y,

and the corresponding formal groupoid

(X ×
Y
X)

∧,

see Chapter 5, Sect. 2.3.3.

We denote the corresponding algebroid by T (X /Y). We have

oblvLieAlgbroid /T (T (X /Y)) = (T (X /Y)→ T (X)).

We also have:

ker-anch(T (X /Y)) ≃ inertY ∣X ,

and therefore

oblvLieAlg(ker-anch(T (X /Y))) ≃ f !
(T (Y))[−1].

3.2.2. Note that we recover T (X) as T (X /pt).

Note also that the zero Lie algebroid can be recovered as T (X /X).

3.2.3. By definition, the datum of splitting of the Lie algebroid T (X /Y) is equiv-
alent to that of factoring the map X → Y as

X

pdR,X

Ð→ XdR → Y.

338 8. LIE ALGEBROIDS

3.3. Digression: the universal classifying space. In this subsection we intro-
duce the prestack responsible for the functor that sends an affine scheme to the
(space underlying) the category of perfect complexes on this scheme. We will use
this prestack in the next subsection in order to construct the Atiyah algebroid of a
perfect complex.

3.3.1. We define the prestack Perf by setting

Maps(S,Perf) = (QCoh(S)perf
)
Spc, S ∈ Schaff ,

where we recall that the superscript ‘Spc’ stands for taking the space obtained from
a given (∞,1)-category by discarding non-invertible morphisms.

Proposition 3.3.2. The prestack Perf belongs to PreStklaft-def .

Proof. First, we note that Perf is convergent (see Volume I, Chapter 3, Propo-
sition 3.6.10). In order to prove that Perf belongs to PreStklaft, it is sufficient to
show that the functor

S ↦ QCoh(S)perf

takes filtered limits (on all of Schaff) to colimits. However, this follows from
[DrGa2, Lemma 1.9.5].

Thus, it remains to show that Perf admits deformation theory. This will be
done in Sect. A.2.

�

3.3.3. We will now describe the Lie algebra inertPerf .

Let Euniv be the tautological object of QCoh(Perf)perf . Consider the object

End(Euniv) ∈ AssocAlg(QCoh(Perf)).

Applying the symmetric monoidal functor

Υ ∶ QCoh(−)→ IndCoh(−)

(see Volume I, Chapter 6, Sect. 3.3), we obtain an object

ΥPerf(End(Euniv)) ∈ AssocAlg(IndCoh(Perf)).

We claim:

Proposition 3.3.4. The object inertPerf ∈ LieAlg(IndCoh(Perf)) identifies
canonically with the Lie algebra obtained from ΥPerf(End(Euniv)) by applying the
forgetful functor

resAssoc→Lie
∶ AssocAlg(IndCoh(Perf))→ LieAlg(IndCoh(Perf)).

Proof. The rest of this subsection is devoted to the proof of this proposition.

3. EXAMPLES OF LIE ALGEBROIDS 339

3.3.5. Consider first the object

InertPerf ∈ Grp(PreStk/Perf).

By definition, for S ∈ Schaff , the groupoid Maps(S, InertPerf) consists of the data
(E , g), where E ∈ QCoh(S)perf and g is an automorphism of E .

We need to show that the Lie algebra of the completion Inertinf
Perf of InertPerf

along the unit section (obtained by the functor LiePerf of Chapter 7, Theorem 3.6.2)
identifies canonically with

resAssoc→Lie
(ΥPerf(End(Euniv))) .

3.3.6. Consider
ΥPerf(Euniv) ∈ IndCoh(Perf).

The above description of InertPerf implies that ΥPerf(Euniv) naturally lifts to an
object of

InertPerf -mod(IndCoh(Perf));

see Chapter 7, Sect. 5.1.1 for the notation.

In particular, by restriction, we can view ΥPerf(Euniv) as an object of

Inertinf
Perf -mod(IndCoh(Perf)).

By Chapter 7, Proposition 5.1.2, we can view ΥPerf(Euniv) as an object of

inertPerf -mod(IndCoh(Perf)),

and by Chapter 6, Sect. 7.4 as an object of

U(inertPerf)-mod(IndCoh(Perf)).

Hence, we obtain a map of associative algebras

U(inertPerf)→ End(ΥPerf(Euniv)) ≃ ΥPerf(End(Euniv)).

By adjunction, we obtain a map of Lie algebras

(3.1) inertPerf → resAssoc→Lie
(ΥPerf(End(Euniv))) .

It remains to see that the latter map is an isomorphism.

3.3.7. By definition,

oblvLie(inertPerf) = T (InertPerf /Perf)∣Perf ,

and deformation theory identifies the latter with oblvAssoc (ΥPerf(End(Euniv)).

Morover, by unwinding the constructions, we obtain that the resulting map

oblvLie(inertPerf)→ oblvAssoc (ΥPerf(End(Euniv))

equals the map obtained from (3.1) by applying the functor oblvLie.

Hence, we obtain that the map (3.1) induces an isomorphism of the underlying
objects of IndCoh(Perf), as required.

�

3.4. The Atiyah algebroid. In this subsection we introduce the Atiyah algebroid
corresponding to an object of QCoh(X)

perf for X ∈ PreStklaft-def . Furthermore, we
show, that as in the classical case, the Atiyah algebroid controls the obstruction to
giving such an object a structure of crystal on X .

340 8. LIE ALGEBROIDS

3.4.1. Recall that for X ∈ PreStk the category

QCoh(X)
perf

⊂ QCoh(X)

is defined as

lim
S∈(Schaff

/X
)op

QCoh(S)perf .

Therefore,

QCoh(X)
perf

≃ Maps(X ,Perf),

where Perf is as in Sect. 3.3.

3.4.2. For X ∈ PreStklaft-def , and given an object E ∈ QCoh(X)
perf , and thus a

map

X → Perf,

we define the Atiyah algebroid of E , denoted At(E), to be T (X /Perf).

Note that

ker-anch(At(E)) ≃ inert(Perf)∣X ,

and the latter identifies with ΥX (End(E)) by Proposition 3.3.4.

3.4.3. By Sect. 3.2.3, the datum of splitting of At(E) is equivalent to that of
factoring the map X → Perf, corresponding to E , as

X

pdR,X

Ð→ XdR → Perf .

I.e., this is equivalent to a structure of left crystal on E , see [GaRo2, Sect. 2.1]
for what this means.

According to [GaRo2, Proposition 2.4.4], this is equivalent to a structure of
crystal on ΥX (E).

4. Modules over Lie algebroids and the universal enveloping algebra

4.1. Modules over Lie algebroids. In this subsection we introduce the notion
of module over a Lie algebroid.

In particular, we show that for E ∈ QCoh(X)
perf , the ind-coherent sheaf ΥX (E) ∈

IndCoh(X) has a canonical structure of a module over the Atiyah algebroid At(E);
Moreover, the Atiyah algebroid is the universal Lie algebroid that acts on ΥX (E);
i.e. an action of an algebroid L on ΥX (E) is equivalent to a map of Lie algebroids
L→ At(E).

4.1.1. Let L be a Lie algebroid on X , corresponding to a groupoid R. We define
the category L-mod(IndCoh(X)) to be

IndCoh(X)
R,

see Chapter 5, Sect. 2.2.5 for the notation.

We let

indL ∶ IndCoh(X)⇄ L-mod(IndCoh(X)) ∶ oblvL

denote the corresponding adjoint pair of functors.

4. MODULES OVER LIE ALGEBROIDS AND THE UNIVERSAL ENVELOPING ALGEBRA341

4.1.2. Let (X
π
→ Y) ∈ FormModX / be the object corresponding to L. By Chapter 5,

Proposition 2.2.6, we have a canonical equivalence

IndCoh(Y) ≃ L-mod(IndCoh(X)).

Under this equivalence, the functor oblvL corresponds to π!, and the functor
indL corresponds to πIndCoh

∗ .

4.1.3. Assume for a moment that L is of the form diag(h) for h ∈ LieAlg(IndCoh(X).
In this case, by Chapter 7, Sect. 5.2.1, we have a canonical identification

L-mod(IndCoh(X)) ≃ h-mod(IndCoh(X)).

Under this equivalence, the functor oblvL goes over to oblvh, and the functor
indL corresponds to indh.

4.1.4. Examples. For L = T (X) we obtain:

T (X)-mod(IndCoh(X)) = IndCoh(XdR) =∶ Crys(X).

For L = 0, we have

T (X)-mod(IndCoh(X)) = IndCoh(X).

4.1.5. Let now E ∈ QCoh(X)
perf . By construction, ΥX (E) has a canonical struc-

ture of module over At(E).

Hence, for a Lie algebroid L, a homomorphism L→ At(E) defines on ΥX (E) a
structure of L-module.

Proposition 4.1.6. The above map from the space of homomorphisms L →
At(E) to that of structures of L-module on ΥX (E) is an isomorphism.

Proof. Let X
π
→ Y be the object of FormModX / corresponding to L. The

space of homomorphisms L→ At(E) is isomorphic to the space of factorizations of
the map X → Perf, corresponding to E as

X
π
→ Y → Perf .

I.e., this is the space of ways to write E as π∗(E ′) for E ′ ∈ QCoh(Y)perf .

The space of structures of L-module on ΥX (E) is isomorphic to the space of
ways to write ΥX (E) as π!

(ΥY(E
′
)). I.e., we have to show that the diagram of

categories

QCoh(Y)perf ΥY
ÐÐÐÐ→ IndCoh(Y)

π∗
×
×
×
Ö

×
×
×
Ö

π!

QCoh(X)
perf ΥX

ÐÐÐÐ→ IndCoh(X)

is a pullback square. However, this follows by descent from Volume I, Chapter 6,
Lemma 3.3.7.

�

4.2. The universal enveloping algebra. In this subsection we associate to a
Lie algebroid L its universal enveloping algebra, viewed as an algebra object in the
category of endo-functors of IndCoh(−).

342 8. LIE ALGEBROIDS

4.2.1. Let L be a Lie algebroid on X . Consider the monad on IndCoh(X) corre-
sponding to the adjunction

indL ∶ IndCoh(X)⇄ L-mod(IndCoh(X)) ∶ oblvL.

We denote by U(L) the corresponding algebra object in the monoidal DG
category

Functcont(IndCoh(X), IndCoh(X)).

Tautologically,

oblvAssoc(U(L)) = oblvL ○ indL.

4.2.2. Assume for a moment that L is of the form diag(h) for h ∈ LieAlg(IndCoh(X)).

In this case, by Chapter 7, Proposition 5.1.2, U(L) is given by tensor product
with U(h).

Remark 4.2.3. In Chapter 9 we will see that U(L) possesses an extra structure:
namely a filtration. This extra structure will allow us to develop infinitesimal
differential geometry on prestacks.

4.3. The co-algebra structure. In the classical situation, the unversal envelop-
ing algebra of a Lie algebroid, when considered as a left OX -module, has a natural
structure of co-commutative co-algebra. In this subsection we will establish the
corresponding property in the derived setting.

4.3.1. Consider the functor

Functcont(IndCoh(X), IndCoh(X))→ IndCoh(X),

given by precomposition with

p!
X ∶ Vect→ IndCoh(X).

Let U(L)
L
∈ IndCoh(X) denote the image of

oblvAssoc(U(L)) ∈ Functcont(IndCoh(X), IndCoh(X))

under this functor.

The object U(L)
L corresponds to the functor

oblvL ○ indL ○ p
!
X ∶ Vect→ IndCoh(X).

4.3.2. Note that the category L-mod(IndCoh(X)) ≃ IndCoh(Y) carries a natu-
ral symmetric monoidal structure, and the functor oblvL is symmetric monoidal.
Hence, the functor indL has a natural left-lax symmetric monoidal structure.

Hence, the functor oblvL ○ indL ○ p
!
X also has a left-lax symmetric monoidal

structure. This defines on U(L)
L
∈ IndCoh(X) a structure of co-commutative co-

algebra in the symmetric monoidal category IndCoh(X), and the map 0→ L defines
an augmentation.

5. SQUARE-ZERO EXTENSIONS AND LIE ALGEBROIDS 343

4.3.3. Thus, we can view U(L)
L as an object of

CocomCoalgaug
(IndCoh(X)).

We are going to prove:

Proposition 4.3.4. There exists a canonical isomorphism in CocomCoalg(IndCoh(X)):

U(L)
L
≃ Chevenh

(Ωfake
(L)).

Proof. Let ps, pt ∶ R ⇉ X be the formal groupoid corresponding to L. We
can rewrite the functor oblvL ○ indL ○ p

!
X as

(ps)
IndCoh
∗ ○ p!

R

(here pR is the projectionR→ pt), where the left-lax symmetric monoidal structure
comes from the symmetric monoidal structure on p!

R and the left-lax symmetric
monoidal structure on (ps)

IndCoh
∗ , the latter obtained by adjunction from the sym-

metric monoidal structure on p!
s.

Let us regard R as an object of Ptd(FormMod/X) via the maps ∆X and ps.
Now, the statement of the proposition follows from Chapter 7, Sect. 5.2.2.

�

5. Square-zero extensions and Lie algebroids

In this section, we will show that under the equivalence LieAlgbroid(X) ≃

FormModX /, free Lie algebroids on X correspond to square-zero extensions.

This is parallel to Chapter 7, Corollary 3.7.8, which says that split square zero
extensions correspond to free Lie algebras.

5.1. Square-zero extensions of prestacks. Let X be a scheme. Consider the
full subcategory

SchX/,inf-closed ⊂ SchX/,

see Chapter 1, Sect. 5.1.2.

Recall that we have a pair of mutually adjoint functors

RealSqZ ∶ ((QCoh(X)
≤−1

)T ∗(X)/)
op
⇄ SchX/,inf-closed,

where the right adjoint sends (X → Y)↦ T ∗(X/Y).

We will now carry out parallel constructions in the setting of formal moduli
problems under an arbitrary object of PreStklaft-def .

5.1.1. For X ∈ PreStklaft-def consider the category FormModX /.

Consider the functor

(5.1) FormModX / → IndCoh(X)/T (X), (X → Y)↦ (T (X /Y)→ T (X)).

Note that under the equivalence

FormModX / ≃ LieAlgbroid(X),

the functor (5.1) corresponds to oblvLieAlgbroid /T .

Hence, by Proposition 2.1.3(b), the functor (5.1) admits a left adjoint. In what
follows, we shall denote the left adjoint to (5.1) by

RealSqZ ∶ IndCoh(X)/T (X) → FormModX / .

344 8. LIE ALGEBROIDS

The following diagram commutes by definition:

(5.2)

FormMod/X
∼

ÐÐÐÐ→ FormGrpoid(X)

RealSqZ
Õ
×
×
×

∼
Õ
×
×
×

IndCoh(X)/T (X)
freeLieAlgbroid

ÐÐÐÐÐÐÐÐ→ LieAlgbroid(X).

5.1.2. We have:

Lemma 5.1.3. For any (X
f
→ Z) ∈ (PreStklaft-def)X / and (F

γ
→ T (X)) ∈

IndCoh(X)/T (X), the space of extensions of f to a map

RealSqZ(F
γ
→ T (X))→ Z

is canonically isomorphic to that of nul-homotopies of the composed map

F
γ
→ T (X)→ T (Z)∣X .

Proof. We can replace Z by

Z
′
∶= Z ×

ZdR

XdR,

so that Z ′ ∈ FormModX /, and then the assertion follows from the definition. �

5.1.4. Recall the functor RealSplitSqZ of Chapter 7, Sect. 3.7. By Chapter 7,
Proposition 3.7.3, it is the left adjoint to

Ptd(FormMod/X)→ IndCoh(X), (X → Y → X)↦ T (Y/X)∣X ,

and by construction corresponds under the equivalence

Ptd(FormMod/X)
ΩX
Ð→ Grp(FormMod/X)

Lie
Ð→ LieAlg(IndCoh(X))

to the functor

IndCoh(X)

[−1]
Ð→ IndCoh(X)

freeLie
Ð→ LieAlg(IndCoh(X)).

The commutative diagram of Lemma 2.2.6 translates into the commutative
diagram

(5.3)

IndCoh(X)

RealSplitSqZ ○[1]
ÐÐÐÐÐÐÐÐÐ→ Ptd(FormMod/X)

×
×
×
Ö

×
×
×
Ö

IndCoh(X)/T (X)
RealSqZ
ÐÐÐÐ→ FormModX /,

where the left vertical arrow sends F ↦ (F
0
→ T (X)), and the right vertical arrow

is the tautological forgetful functor.

5. SQUARE-ZERO EXTENSIONS AND LIE ALGEBROIDS 345

5.2. Tangent complex of a square-zero extension. In this subsection we ap-
proach the following question: how to describe the relative tangent complex of a
square-zero extension?

This question makes sense even for schemes, however, it turns out that it is
more convenient to answer in the framework of arbitrary objects of PreStklaft-def

and formal moduli problems.

By answering this question we will also arrive to an alternative definition of Lie
algebroids as modules over a certain monad.

5.2.1. From the commutative diagram (5.2) we obtain (compare with Chapter 7,
Corollary 3.7.6):

Corollary 5.2.2. The monad on IndCoh(X)/T (X) given by the composition

T (X /−) ○RealSqZ

is canonically isomorphic to

oblvLieAlgbroid /T ○ freeLieAlgbroid.

In other words, Corollary 5.2.2 gives a description of the relative tangent com-
plex of a square-zero extension in terms of the ‘more linear’ functor freeLieAlgbroid.

Remark 5.2.3. In Sect. 5.3 we will give an ‘estimate’ of what the monad

oblvLieAlgbroid /T ○ freeLieAlgbroid

looks like when viewed as a plain endo-functor.

5.2.4. From Corollary 2.1.5, we obtain:

Corollary 5.2.5. There exists a canonical equivalence of categories

(5.4) LieAlgbroid(X) ≃ (T (X /−) ○RealSqZ)-mod(IndCoh(X)/T (X)).

Note that Corollary 5.2.5 implies that we can use the right-hand side of (5.4)
as an alternative definition of the category LieAlgbroid(X).

5.3. Filtration on the free algebroid. The main result of this subsection,
Proposition 5.3.2 gives an estimate of what the monad

oblvLieAlgbroid /T ○ freeLieAlgbroid ∶ IndCoh(X)/T (X) → IndCoh(X)/T (X)

looks like as a plain endo-functor, see Proposition 5.3.2 below.

5.3.1. The goal of this subsection is to prove:

Proposition 5.3.2. For (F
γ
→ T (X)) ∈ IndCoh(X)/T (X), the object

oblvLieAlgbroid /T ○ freeLieAlgbroid(F → T (X)) ∈ IndCoh(X)/T (X)

can be naturally lifted to

(IndCoh(X)
Fil,≥0

)/T (X)

(where T (X) is regarded as a filtered object placed in degree 0), such that its asso-
ciated graded identifies with

oblvLie ○ freeLie(F)
0
Ð→ T (X)

with its natural grading.

346 8. LIE ALGEBROIDS

The rest of this subsection is devoted to the proof of Proposition 5.3.2. In the
proof we will appeal to the material from Chapter 9, Sect. 1. Let us explain the
idea:

Given an object (F
γ
→ T (X)) ∈ IndCoh(X)/T (X), scaling γ to zero gives (by

applying Chapter 9, Sect. 1) a filtration on (F
γ
→ T (X), such that the associated

graded is F
0
→ T (X).

The result then follows by applying freeLieAlgbroid to this filtered object, be-
cause

freeLieAlgbroid((F
0
→ T (X))

is the free Lie algebra generated by F .

5.3.3. Consider the following presheaves of categories

P1 and P2, (Schaff
aft)

op
→ 1-Cat .

The functor P1 sends an affine scheme S to

IndCoh(X × S)/T (X)∣X×S .

The functor P2 sends an affine scheme S to

FormModX×S/ /S .

Here FormModX×S/ /S stands for formal moduli problems under X×S, equipped
with a map of prestacks to S.

The functors

RealSqZ/S ∶ IndCoh(X × S)/T (X)∣X×S ⇄ FormModX×S/ /S ∶ T (X × S/−)

give rise to a pair of natural transformations

(5.5) P1 ⇄ P2,

see Sect. 5.4.1 below for the notation.

5.3.4. We regard P1 and P2 as endowed with the trivial action of the monoid A1

(we refer the reader to Chapter 9, Sect. 1.2 for the formalism of actions of monoids
on presheaves of categories). The functors in (5.5) are (obviously) A1-equivariant.

5.3.5. We now consider the presheaf of categories P0, represented by the monoid
A1, equipped with an action on itself by multiplication.

The object (F
γ
→ T (X)) ∈ IndCoh(X)/T (X)) gives rise to a natural transforma-

tion

(5.6) P0 → P1

defined as follows: the corresponding object of P1(A1
) is

F ∣X×A1

γscaled
Ð→ T (X)∣X×A1 ,

where the value of γscaled over λ ∈ A1 is λ ⋅ γ.

It is easy to see that the above natural transformation P0 → P1 has a canonical
structure of left-lax equivariance with respect to A1.

5. SQUARE-ZERO EXTENSIONS AND LIE ALGEBROIDS 347

Note that by Chapter 9, Lemma 1.5.5(a), the category of left-lax equivariant
functors A1

→ P
1 identifies with

(IndCoh(X)
Fil,≥0

)/T (X).

Under this identification, the above functor (5.6) is given by

F
γ
→ T (X),

where F (resp., T (X)) is regarded as a filtered object placed in degree 1 (resp., 0).

5.3.6. Thus, we obtain that the composite functor

P0 → P1 → P2 → P1

has a structure of left-lax equivariance with respect to A1.

The corresponding object of (IndCoh(X)
Fil,≥0

)/T (X) is the desired lift of

oblvLieAlgbroid /T ○ freeLieAlgbroid(F → T (X)).

�

5.4. Pullbacks of square-zero extensions. In this subsection we will show that
the functor

RealSqZ ∶ IndCoh(X)/T (X) → FormModX /

introduced above, is compatible with base change.

This will allow us, in the next subsection, to compare RealSqZ with another
notion of square-zero extension of a prestack, namely, the one from Chapter 1, Sect.
10.1.

5.4.1. Let X0 be an object of PreStklaft-def , and let X ∈ (PreStklaft-def)/X0
. The

functor RealSqZ defines a functor

RealSqZ/X0
∶ IndCoh(X)/T (X /X0) → (PreStklaft-def)X / /X0

.

5.4.2. Let f0 ∶ Y0 → X0 be a map in PreStklaft-def , and set Y ∶= Y0 ×
X0

X . Let f

denote the resulting map X → Y. Tautologically,

f !
(T (X /X0)) ≃ T (Y/Y0).

By adjunction, for

(FX
γX
Ð→ T (X /X0)) ∈ IndCoh(X)/T (X /X0)

and its pullback by means of f !

(FY
γY
Ð→ T (Y/Y0)) ∈ IndCoh(Y)/T (Y/Y0),

we have a canonical map in (PreStklaft-def)Y/ /Y0

(5.7) RealSqZ/Y0
(γY)→ Y0 ×

X0

RealSqZ/X0
(γX).

We claim:

Proposition 5.4.3. The map (5.7) is an isomorphism.

348 8. LIE ALGEBROIDS

We can depict the assertion of Proposition 5.4.3 by the commutative diagram

(5.8)

IndCoh(Y)/T (Y/Y0)
f !

←ÐÐÐÐ IndCoh(X)/T (X /X0)

RealSqZ/Y0

×
×
×
Ö

×
×
×
Ö

RealSqZ/X0

(PreStklaft-def)Y/ /Y0

Y0 ×
X0
−

←ÐÐÐÐ (PreStklaft-def)X / /X0
.

5.4.4. Proof of Proposition 5.4.3. We have a commutative diagram

IndCoh(Y)
f !

←ÐÐÐÐ IndCoh(X)

×
×
×
Ö

×
×
×
Ö

IndCoh(Y)/T (Y/Y0)
f !

←ÐÐÐÐ IndCoh(X)/T (X /X0),

where the vertical arrows are as in Lemma 2.2.6. Since the essential image of

IndCoh(X)→ IndCoh(X)/T (X /X0)

generates the target category under sifted colimits, and since the horizontal arrows
in (5.8) commute with colimits, it suffices to show that the outer diagram in

IndCoh(Y)
f !

←ÐÐÐÐ IndCoh(X)

×
×
×
Ö

×
×
×
Ö

IndCoh(Y)/T (Y/Y0)
f !

←ÐÐÐÐ IndCoh(X)/T (X /X0)

RealSqZ/Y0

×
×
×
Ö

×
×
×
Ö

RealSqZ/X0

(PreStklaft-def)Y/ /Y0

Y0 ×
X0
−

←ÐÐÐÐ (PreStklaft-def)X / /X0

commutes.

However, by Lemma 2.2.6, the outer diagram identifies with

IndCoh(Y)
f !

←ÐÐÐÐ IndCoh(X)

freeLie

×
×
×
Ö

×
×
×
Ö

freeLie

LieAlg(IndCoh(Y))
f !

←ÐÐÐÐ LieAlg(IndCoh(X))

BY○exp
×
×
×
Ö

×
×
×
Ö

BX ○exp

Ptd((PreStklaft-def)/Y)

Y0 ×
X0
−

←ÐÐÐÐ Ptd((PreStklaft-def)/X)

×
×
×
Ö

×
×
×
Ö

(PreStklaft-def)Y/ /Y0

Y0 ×
X0
−

←ÐÐÐÐ (PreStklaft-def)X / /X0
.

Now, the commutativity of the latter diagram is manifest, since the middle
vertical arrows are equivalences.

�

5. SQUARE-ZERO EXTENSIONS AND LIE ALGEBROIDS 349

5.5. Relation to another notion of square-zero extension. In this subsec-
tion, we will relate the category IndCoh(X)/T (X) and the functor RealSqZ to the
construction considered in Chapter 1, Sect. 10.1.

5.5.1. Assume for a moment that X =X ∈ Schaft and let us start with a map

T ∗(X)→ I, I ∈ Coh(X)
≤−1.

On the one hand, the construction of Chapter 1, Sect. 5.1, produces from
T ∗(X)→ I an object

RealSqZ(T ∗(X)→ I) ∈ (Schaft)nil-isom from X ⊂ (Schaft)X/.

On the other hand, setting F = DSerre
X (I), we obtain an object

(F → T (X)) ∈ IndCoh(X)/T (X).

It follows from that under the embedding

(Schaft)nil-isom from X ↪ FormModX/,

we have an isomorphism

RealSqZ(T ∗(X)→ I) ≃ RealSqZ(F → T (X)),

functorially in
(T ∗(X)→ I) ∈ ((Coh(X)

≤−1
)T ∗(X)/)

op.

Indeed, both objects satisfy the same universal property on the category FormModX/.

5.5.2. Let X be an object of PreStk, and let I ∈ QCoh(X)
≤0. In this case, the

construction of Chapter 1, Sect. 10.1.1 produces a category (in fact, a space)
SqZ(X ,I), equipped with a forgetful functor

(5.9) SqZ(X ,I)→ PreStkX / .

5.5.3. Assume now that X ∈ PreStklaft-def . Assume, moreover, that I, regarded
as an object of

QCoh(X)
≤0

⊂ Pro(QCoh(X)
−
)
fake,

belongs to
Pro(QCoh(X)

−
)
fake
laft ⊂ Pro(QCoh(X)

−
)
fake,

see Chapter 1, Sect. 4.3.6 for what this means.

This condition can be rewritten as follows: for any S ∈ (Schaff
aft)/X , the pullback

I ∣S ∈ QCoh(S)≤0 has coherent cohomologies.

5.5.4. Set
F ∶= DSerre

X (I[1]) ∈ IndCoh(X).

We claim:

Proposition 5.5.5. There exists a canonically defined isomorphism of spaces

SqZ(X ,I) ≃ MapsIndCoh(X)(F , T (X))

that makes the diagram

SqZ(X ,I) ÐÐÐÐ→ PreStkX /

∼
Õ
×
×
×

Õ
×
×
×

MapsIndCoh(X)(F , T (X))
RealSqZ
ÐÐÐÐ→ FormModX /

350 8. LIE ALGEBROIDS

commute.

The rest of this subsection is devoted to the proof of Proposition 5.5.5.

5.5.6. Note that

MapsIndCoh(X)(F , T (X)) ≃ MapsPro(QCoh(X)−)fake
laft

(T ∗(X),I[1]).

Hence, we have a map

SqZ(X ,I)→MapsIndCoh(X)(F , T (X)),

given by the construction in Chapter 1, Sect. 10.2.

We will now construct the inverse map.

5.5.7. For (FX
γX
→ T (X)) ∈ IndCoh(X)/T (X) set

(X ↪ X
′
) ∶= RealSqZ(γX) ∈ FormModX / .

We claim that the object

(X ↪ X
′
) ∈ PreStkX /,

constructed above has a natural structure of an object of SqZ(X ,I).

It will be clear by unwinding the constructions that the two functors

SqZ(X ,I)↔MapsIndCoh(X)(F , T (X))

are inverses of each other.

5.5.8. Let S′ be an object of Schaff
aft, equipped with a map f ′ ∶ S′ → X ′. Set

S ∶= S′ ×
X ′
X ,

and let f denote the resulting map S → X . Denote FS ∶= f
!
(FX).

Note that Proposition 5.4.3 implies that S → S′ has a canonical structure of
square-zero extension by means of IS ∶= DSerre

S (FS)[−1]. Hence, it remains to show

that S ∈ Schaff
aft.

5.5.9. To prove that S ∈ Schaff
aft, it is enough to show that T ∗(S)∣redS ∈ Coh(redS)≤0.

We have an exact triangle

T ∗(S/S′)∣redS → T ∗(S)∣redS → T ∗(S′)∣redS ,

so it suffices to show that T ∗(S/S′)∣redS ∈ Coh(redS)≤0.

We have:

T ∗(S/S′)∣redS = DSerre
redS (T (S/S′)∣redS),

where DSerre is understood in the sense of Chapter 1, Corollary 4.3.8.

By Proposition 5.3.2, T (S/S′)∣redS has a canonical filtration indexed by pos-
itive integers, with the d-th sub-quotient isomorphic to the d graded component
(oblvLie ○ freeLie(FredS))

d of oblvLie ○ freeLie(FredS).

The required assertion follows now from the fact that for every d,

DSerre
redS ((oblvLie ○ freeLie(FredS))

d
) ≃ (Lie(d)⊗ IredS[1]

⊗d
)

Σd
,

and hence lives in cohomological degrees ≤ −d.

5. SQUARE-ZERO EXTENSIONS AND LIE ALGEBROIDS 351

5.6. What is the general framework for the definition of Lie algebroids?
Here is a general categorical framework for the definition of ‘broids’ that our con-
struction of Lie algebroids fits in.

5.6.1. Let C be an ∞-category with finite limits, and in particular, a final object
∗ ∈ C. Let C∗ be the corresponding pointed category, i.e., C∗ ∶= C∗/.

Let D denote the stabilization of C∗, i.e., the category of spectrum objects
on C∗. According to [Lu2, Corollary 1.4.2.17], this is a stable ∞-category. Let
RealSplitSqZ denote the forgetful functor D → C∗, i.e., what is usually denoted Ω∞.

5.6.2. Consider the functor

D
RealSplitSqZ
Ð→ C∗ → C,

where the second arrow is the forgetful functor.

Let us assume that this functor has a left adjoint, to be denoted coTan.

5.6.3. Note that for any y ∈ C we have a tautologically defined map coTan(y) →
coTan(∗).

Consider now the functor

(5.10) coTanrel ∶ C → DcoTan(∗)/, coTanrel(y) ∶= coFib(coTan(y)→ coTan(∗)).

Assume that this functor also admits a left adjoint, to be denoted

RealSqZ ∶ DcoTan(∗)/ → C.

Consider the comonad
coTanrel ○RealSqZ

acting on DcoTan(∗)/.

The ‘broids’ that we have in mind are by definition objects of the category

(coTanrel ○RealSqZ)-comod(DcoTan(∗)/).

The functor coTanrel of (5.10) upgrades to a functor

coTanenh
rel ∶ C → (coTanrel ○RealSqZ)-comod(DcoTan(∗)/).

The above functor coTanenh
rel is not an equivalence in general, but it happens to

be one in our particular example, see Sect. 5.6.5.

5.6.4. By contrast, the category of ‘bras’ is constructed as follows. We consider
the functor

RealSplitSqZ ○[1] ∶ D → C∗,

and its left adjoint

C∗ → C
coTanrel
Ð→ D;

we denote it by coTanrel by a slight abuse of notation.

The category of ‘bras’ is:

(coTanrel ○RealSplitSqZ ○[1])-comod(D).

The functor coTanrel upgrades to a functor

coTanenh
rel ∶ C∗ → RealSplitSqZ ○[1])-comod(D).

This functor coTanenh
rel is also not an equivalence in general, but it happens to

be one in the example of Sect. 5.6.5.

352 8. LIE ALGEBROIDS

5.6.5. In our case, we apply the above discussion to C = (FormModX /)
op, so that

C∗ = Ptd(FormMod/X).

Recall that by Chapter 7, Proposition 3.7.12, the functor

RealSplitSqZ ∶ IndCoh(X)→ Ptd(FormMod/X)

identifies (IndCoh(X))
op with the stabilization of Ptd(FormMod/X)

op.

Now, we claim that the notion of ‘broid’ (resp. ‘bra’) defined above recovers
the notion of Lie algebroid on X (resp., Lie algebra in IndCoh(X)). Indeed, this
follows from Corollary 5.2.5 (resp., Chapter 7, Corollary 3.7.6).

6. IndCoh of a square-zero extension

The goal of this section is to describe the category of ind-coherent sheaves on
a square-zero extension.

First, we show that every ind-coherent sheaf on X has a canonical action of the
Lie algebra inertX . We then use this fact to give an algebraic description of the
category of ind-coherent sheaves on a square-zero extension.

Subsequently, we show that the dualizing sheaf of a square-zero extension of
X is naturally an extension of the direct image of the ‘defining ideal’ by the direct
image image of the dualizing sheaf of X .

6.1. Modules for the inertia Lie algebra. In this subsection we observe that
any object of IndCoh(−) acquires a canonical action of the inertia Lie algebra.

6.1.1. Let X be an object of PreStklaft-def . Recall the infinitesimal inertia group
Inertinf

X and its Lie algebra inertX .

By Chapter 7, Sect. 5.2.1, we have:

inertX -mod(IndCoh(X)) ≃ IndCoh((X ×X)
∧
),

where the forgetful functor

oblvinertX ∶ inertX -mod(IndCoh(X))→ IndCoh(X)

corresponds to

∆!
X ∶ IndCoh((X ×X)

∧
)→ IndCoh(X),

and the functor

trivinertX ∶ IndCoh(X)→ inertX -mod(IndCoh(X))

corresponds to

p!
s ∶ IndCoh(X)→ IndCoh((X ×X)

∧
).

6. IndCoh OF A SQUARE-ZERO EXTENSION 353

6.1.2. Note, however, that the functor

p!
t ∶ IndCoh(X)→ IndCoh((X ×X)

∧
)

gives rise to another symmetric monoidal functor, denoted

can ∶ IndCoh(X)→ inertX -mod(IndCoh(X)),

equipped with an isomorphism

(6.1) oblvinertX ○ can = IdIndCoh(X) .

The datum of the functor can and the isomorphism (6.1) is equivalent to a
functorial assignment to any F ∈ IndCoh(X) of a structure of inertX -module.

6.1.3. By construction, for F ∈ IndCoh(X), a datum of isomorphism

can(F) ≃ trivinertX (F) ∈ inertX -mod(IndCoh(X))

is equivalent to that of an isomorphism

p!
s(F) ≃ p!

t(F) ∈ IndCoh((X ×X)
∧
).

This datum is strictly weaker than that of descent of F with respect to the
groupoid (X ×X)

∧, i.e., a structure of crystal.

6.1.4. Assume for a moment that F = ΥX (E) for E ∈ QCoh(X)
perf .

Consider the canonical map in LieAlg(IndCoh(X)):

inertX → ker-anch(At(E)) ≃ ΥX (End(E)).

By Proposition 4.1.6, the datum of such a map is equivalent to that of structure
of inertX -module on ΥX (E). One can show that this is the same structure as given
by the functor can, applied to ΥX (E).

6.2. The canonical split square-zero extension. In this section we observe
that for any object F ∈ IndCoh(X) there exists a canonical (a.k.a. Atiyah) map

T (X)[−1]
!
⊗F → F .

We will see that this map is induced by the action of the Lie algebra inertX on
F , using the fact that oblvLieAlg(inertX) = T (X)[−1].

6.2.1. Consider again the object

∆X ∶ X → (X ×X)
∧
∶ ps

in Ptd(FormMod/X). We have

T ((X ×X)
∧
/X)X ≃ T (X).

Hence, applying Chapter 7, Proposition 3.7.3 to the identity map T (X) →

T (X), we obtain a canonically defined map

RealSplitSqZ(T (X))→ (X ×X)
∧,

such that the composition

RealSplitSqZ(T (X))→ (X ×X)
∧ ps
→ X

is the tautological projection RealSplitSqZ(T (X))→ X .

354 8. LIE ALGEBROIDS

6.2.2. Consider now the composition

RealSplitSqZ(T (X))→ (X ×X)
∧ pt
→ X ;

we denote it by d (cf. Chapter 1, Sect. 4.5.1).

By Lemma 5.1.3, the map d corresponds to a particular choice of the null-
homotopy of the map

T (X)[−1]
0
→ T (X)

id
Ð→ T (X).

Unwinding the definitions, the above null-homotopy is given by the identity
map on T (X).

6.2.3. Identifying

IndCoh(RealSplitSqZ(T (X))) ≃ freeLie(T (X)[−1])-mod(IndCoh(X))

(see Chapter 7, Sect. 5.2.1), we obtain a functor

IndCoh(X)
can
Ð→ IndCoh((X ×X)

∧
)→

→ IndCoh(RealSplitSqZ(T (X))) ≃ freeLie(T (X)[−1])-mod(IndCoh(X)).

We denote this functor by

canfree ∶ IndCoh(X)→ freeLie(T (X)[−1])-mod(IndCoh(X)).

Its composition with the forgetful functor

oblvfreeLie(T (X)[−1]) ∶ freeLie(T (X)[−1])-mod(IndCoh(X))→ IndCoh(X)

is the identity functor, i.e.,

(6.2) oblvfreeLie(T (X)[−1]) ○ canfree ≃ IdIndCoh(X) .

6.2.4. The datum of the functor canfree and the isomorphism (6.2) is equivalent
to a functorial assignment to any F ∈ IndCoh(X) of a map

(6.3) αF ∶ T (X)[−1]
!
⊗F → F .

Note that by construction, for F ′ ∈ IndCoh(XdR), the map

(6.4) α(pX ,dR)!(F ′) ∶ T (X)[−1]
!
⊗ (pX ,dR)

!
(F

′
)→ (pX ,dR)

!
(F

′
)

is canonically trivialized.

6.2.5. By construction, the map

freeLie(T (X)[−1])→ inertX

coming from the identification oblvLie(inertX) ≃ T (X)[−1], induces a commutative
diagram

IndCoh(X)
can
ÐÐÐÐ→ inertX -mod(IndCoh(X))

Id
×
×
×
Ö

×
×
×
Ö

IndCoh(X)
canfree
ÐÐÐÐ→ freeLie(T (X)[−1])-mod(IndCoh(X))

Id
×
×
×
Ö

×
×
×
Ö

oblvfreeLie(T (X)[−1])

IndCoh(X)
Id

ÐÐÐÐ→ IndCoh(X).

6. IndCoh OF A SQUARE-ZERO EXTENSION 355

6.3. Description of IndCoh of a square-zero extension. In this subsection
we will give an explicit description of the category IndCoh(−) on a square-zero
extension.

6.3.1. Let γ ∶ F → T (X) be an object of IndCoh(X)/T (X). Consider the following
category, denoted Annul(F , γ):

It consists of objects F ′ ∈ IndCoh(F), equipped with a null-homotopy for the
map

F[−1]
!
⊗F

′
→ T (X)[−1]

!
⊗F

′ α
′
F
→ F

′.

We have a tautological forgetful functor

Annul(F , γ)→ IndCoh(X).

6.3.2. Consider now the object

RealSqZ(F , γ) ∈ FormModX / .

In this subsection we will prove (cf. Chapter 1, Sect. 5.1.1):

Theorem 6.3.3. There exists a canonically defined equivalence of categories

Annul(F , γ) ≃ IndCoh(RealSqZ(F , γ))

that commutes with the forgetful functors to IndCoh(X).

The rest of this subsection is devoted to the proof of Theorem 6.3.3.

6.3.4. Step 1. We first construct the functor

(6.5) IndCoh(RealSqZ(F , γ))→ Annul(F , γ).

Let f ∶ X → Y be an object of FormModX /. It follows from the definitions, that
for F ′ ∈ IndCoh(Y), the map

T (X /Y)[−1]
!
⊗ f !

(F
′
)→ T (X)[−1]

!
⊗ f !

(F
′
)

α
f!(F)

Ð→ f !
(F

′
)

is equipped with a canonical null-homotopy.

Applying this to Y ∶= RealSqZ(F , γ), and composing with the tautological map

F → T (X /RealSqZ(F , γ)),

we obtain the desried functor (6.5).

6.3.5. Step 2. It is easy to see that the forgetful functor

Annul(F , γ)→ IndCoh(X)

is monadic. Let MF,γ denote the corresponding monad.

By Step 1, we obtain a map of monads

(6.6) MF,γ → U(freeLieAlgbroids(F , γ)).

To prove the proposition, it remains to show that the map (6.6) is an isomor-
phism.

356 8. LIE ALGEBROIDS

6.3.6. Step 3. We claim that both sides in (6.6), and the map between them, can
be naturally upgraded to the category

AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

) .

Indeed, this enhancement corresponds to the A1-family that deforms γ to the
0 map, as in Sect. 5.3.5.

Since the functor ass.gr. is conservative on (Functcont(IndCoh(X , IndCoh(X)))
Fil,≥0

,
it suffices to show that the map (6.6) induces an isomorphism at the associated
graded level.

This reduces the verification of the isomorphism (6.6) to the case when γ is the
0 map.

6.3.7. Step 4. Note that when γ = 0, the category Annul(F , γ) identifies with that
of objects F ′ ∈ IndCoh(X), equipped with a map

F

!
⊗F

′
→ F

′.

I.e., Annul(F ,0) ≃ freeAssoc(F)-mod(IndCoh(X)), and the monad MF,γ is
given by tensor product with freeAssoc(F).

Similarly, the monad U(freeLieAlgbroids(F ,0)) is given by tensor product with
U(freeLie(F)).

Unwinding the definitions, we obtain that the map (6.6) corresponds to the
map

freeAssoc(F)→ U(freeLie(F)),

and hence is an isomorphism.

6.4. The dualizing sheaf of a square-zero extension. As a corollary of The-
orem 6.3.3 we obtain the following fact that justifies the terminology ‘square-zero
extension’.

6.4.1. Let X ,F , γ be as above. Denote

X
′
∶= RealSqZ(F , γ) ∈ FormModX /,

Let i ∶ X → X ′ denote the canonical map.

We claim:

Proposition 6.4.2. There is a canonical fiber sequence IndCoh(X ′
)

(6.7) iIndCoh
∗ (ωX)→ ωX ′ → iIndCoh

∗ (F)[1].

The rest of this subsection is devoted to the proof of the proposition.

6. IndCoh OF A SQUARE-ZERO EXTENSION 357

6.4.3. Step 1. We will construct a fiber sequence

iIndCoh
∗ (F)→ iIndCoh

∗ (ωX)→ ωX ′ .

We interpret the category IndCoh(X ′
) as

Annul(F , γ) ≃MF,γ-mod(IndCoh(X)).

Under this identification, the functor iIndCoh
∗ corresponds to indMF,γ .

The object ωX ′ corresponds to ωX ∈ IndCoh(X), where the null-homotopy for

F[−1]
!
⊗ ωX → T (X)[−1]

!
⊗ ωX

αX
Ð→ ωX

comes from (6.4).

6.4.4. Step 2. The datum of a map iIndCoh
∗ (F)→ iIndCoh

∗ (ωX) is equivalent to that
of a map

F →MF,γ(ωX)

in IndCoh(X).

Consider the canonical filtration on MF,γ , see Sect. 6.3.6. We have a fiber
sequence

ωX →MFil,≤1
F,γ (ωX)→ F .

Moreover, the composition

ωX →MFil,≤1
F,γ (ωX)→MF,γ(ωX)→ ωX ,

(where the last arrow is obtained by adjunction from iIndCoh
∗ (ωX) → ωX ′), is the

identity map.

Hence, we obtain a splitting

MFil,≤1
F,γ (ωX) ≃ F ⊕ ωX ,

and in particular a map

F →MF,γ(ωX),

whose composition with MF,γ(ωX)→ ωX is zero.

This gives rise to a map

indMF,γ (F)→ indMF,γ (ωX)

in MF,γ-mod(IndCoh(X)), whose composition with the map

indMF,γ (ωX)→ ωX

is zero.

6.4.5. Step 3. Thus, it remains to show that

oblvMF,γ ○ indMF,γ (F)→ oblvMF,γ ○ indMF,γ (ωX)→ ωX

is an exact triangle.

It is enough to establish the exactness at the associated graded level. However,
in this case, the maps in question identity with

(oblvAssoc ○ freeAssoc(F))

!
⊗F → (oblvAssoc ○ freeAssoc(F))→ ωX ,

and the exactness is manifest.

358 8. LIE ALGEBROIDS

7. Global sections of a Lie algebroid

In this section we address the following question: one expects that global sec-
tions of a Lie algebroid form a Lie algebra. This is done in two steps:

First for the tangent Lie algebroid and then in general. For the tangent Lie
algebroid, the idea is that its global sections can be identified with the Lie algebra
of the group of (formal) automorphisms of X . To implement the second step, we
relate actions of a free Lie algebra to free Lie algebroids.

7.1. Action of the free Lie algebra and Lie algebroids. In this subsection we
show that the quotient of a prestack with respect to an action of a free Lie algebra
is given by a square-zero extension of that prestack.

7.1.1. For V ∈ Vect, consider freeLie(V) ∈ LieAlg(Vect). Consider the correspond-
ing object

exp(freeLie(V)) ∈ Grp(FormMod/pt).

Let X be an object of PreStklaft-def . Recall that according to Chapter 7, The-
orem 6.1.5, the datum of an action of exp(freeLie(V)) on X is equivalent to that
of map

V ⊗ ωX → T (X)

in IndCoh(X).

7.1.2. Given an action of exp(freeLie(V)) on X , consider

exp(freeLie(V)) ×X

as a formal groupoid over X .

Let
X / exp(freeLie(V))

denote the corresponding object of FormModX /.

We claim:

Proposition 7.1.3. There is a canonical isomorphism in FormModX /

X / exp(freeLie(V)) ≃ RealSqZ(V ⊗ ωX → T (X)).

The above proposition can be reformulated as follows.

Corollary 7.1.4. The Lie algebroid corresponding to the formal groupoid
exp(freeLie(V)) ×X identifies canonically with

freeLieAlgbroid(V ⊗ ωX → T (X)).

7.1.5. Proof of Proposition 7.1.3. Let f ∶ X → Y be an object of FormModX /. We
need to show that the datum of a map

X / exp(freeLie(V))→ Y

in FormModX / is canonically equivalent to that of a map

(V ⊗ ωX → T (X))→ (T (X /Y)→ T (X))

in IndCoh(X)/T (X).

However, the latter follows from Chapter 7, Theorem 6.1.5, applied to X , viewed
as an object of (PreStklaft-def)/Y .

�

7. GLOBAL SECTIONS OF A LIE ALGEBROID 359

7.2. The Lie algebra of vector fields. In this subsection we will show that
global vector fields on prestack form a Lie algebra.

7.2.1. Let X be an object of PreStklaft-def .

Consider the (discontinuous) functor

(p!
X)

R
∶ IndCoh(X)→ Vect,

right adjoint to p!
X .

Remark 7.2.2. Note that when X is an eventually coconnective scheme X,
the functor (p!

X)
R is continuous and identifies with

Γ(X,−) ○ΥR
X ,

where ΥR
X is the right adjoint of the functor

ΥX ∶ QCoh(X)→ IndCoh(X), E ↦ E ⊗ ωX .

7.2.3. Consider the object (p!
X)

R
(T (X)) ∈ Vect. We claim:

Proposition-Construction 7.2.4. The object (p!
X)

R
(T (X)) can be canon-

ically lifted to an object VF(X) ∈ LieAlg(Vect).

Proof. Recall the object

Autinf
(X) ∈ Grp((FormModlaft)/pt),

see Chapter 7, Sect. 6.2.1.

Define

VF(X) ∶= Liept(Autinf
(X)).

We need to show that

oblvLie(VF(X)) ≃ (p!
X)

R
(T (X)).

This is equivalent to showing that for V ∈ Vect,

MapsLieAlg(Vect)(freeLie(V),VF(X)) ≃ MapsVect(V, (p
!
X)

R
(T (X))).

However, the latter follows from Chapter 7, Theorem 6.1.5.
�

Remark 7.2.5. Note that by the construction of Autinf
(X), for h ∈ LieAlg(Vect),

the space

MapsLieAlg(Vect)(h,VF(X))

identifies canonically with that of actions of the formal group exp(h) on X .

7.3. Construction of the Lie algebra structure. In this subsection we will
finally construct a structure of Lie algebra on global sections of a Lie algebroid, see
Proposition 7.3.3.

360 8. LIE ALGEBROIDS

7.3.1. Let X be an object of PreStklaft-def . We define a functor

(7.1) p!
X ∶ LieAlg(Vect)/VF(X) → LieAlgbroid(X)

as follows.

By definition, we can think of an object

(h→ VF(X)) ∈ LieAlg(Vect)/VF(X)

as a datum of action of exp(h) on X .

We let p!
X (h → VF(X)) ∈ LieAlgbroid(X) be the Lie algebroid corresponding

to the formal groupoid exp(h) ×X .

7.3.2. We claim:

Proposition 7.3.3. The functor p!
X of (7.1) admits a right adjoint, denoted

(p!
X)

R
/VF(X). The composition

LieAlgbroid(X)

(p!
X)R/VF(X)
Ð→ LieAlg(Vect)/VF(X)

oblvLie
Ð→ Vect/(p!

X
)R(T (X))

is the functor

LieAlgbroid(X)

oblvLieAlgbroid /T

Ð→ IndCoh(X)/T (X)
(p!
X)R
Ð→ Vect/(p!

X
)R(T (X)) .

Proof. Follows immediately from Corollary 7.1.4. �

7.3.4. Note that by construction, we have a commutative diagram

LieAlgbroid(X)

(p!
X)R/VF(X)

ÐÐÐÐÐÐ→ LieAlg(Vect)/VF(X)

ker-anch
×
×
×
Ö

×
×
×
Ö

LieAlg(IndCoh(X))

(p!
X)R

ÐÐÐÐ→ LieAlg(Vect)

where the right vertical arrow is the functor

(h
γ
→ VF(X))↦ Fib(γ).

It is easy to see, however, that the diagram, obtained from the above one by
passing to left adjoints along the vertical arrows, is also commutative:

(7.2)

LieAlgbroid(X)

(p!
X)R/VF(X)

ÐÐÐÐÐÐ→ LieAlg(Vect)/VF(X)

diag
Õ
×
×
×

Õ
×
×
×

LieAlg(IndCoh(X))

(p!
X)R

ÐÐÐÐ→ LieAlg(Vect),

where the right vertical arrow sends

h↦ (h
0
→ VF(X)).

7. GLOBAL SECTIONS OF A LIE ALGEBROID 361

7.3.5. Let us denote by (p!
X)

R the composition

LieAlgbroid(X)

(p!
X)R/VF(X)

Ð→ LieAlg(Vect)/VF(X) → LieAlg(Vect),

where the second arrow is the forgetful functor.

From (7.3), we obtain a commutative diagram

(7.3)

LieAlgbroid(X)

(p!
X)R

ÐÐÐÐ→ LieAlg(Vect)

diag
Õ
×
×
×

Õ
×
×
×

id

LieAlg(IndCoh(X))

(p!
X)R

ÐÐÐÐ→ LieAlg(Vect),

7.3.6. Consider now the functor

(7.4) LieAlgbroid(X)
Ωfake

Ð→ LieAlg(IndCoh(X))

(p!
X)R
Ð→ LieAlg(Vect).

We claim:

Proposition 7.3.7. The functor (7.4) identifies canonically with

LieAlgbroid(X)

oblvLieAlgbroid

Ð→ IndCoh(X)

(p!
X)R
Ð→ Vect

[−1]
Ð→ Vect

trivLie
Ð→ LieAlg(Vect).

Proof. Using (7.3), we rewrite the functor (7.4) as

LieAlgbroid(X)
Ωfake

Ð→ LieAlg(IndCoh(X))
diag
Ð→ LieAlgbroid(X)

(p!
X)R
Ð→ LieAlg(Vect).

Using Sect. 3.1.4, we further rewrite this as

(7.5) LieAlgbroid(X)→ LieAlgbroid(X)

(p!
X)R
Ð→ LieAlg(Vect)

where the first arrow is
L↦ 0 ×

L
0.

This the functor LieAlgbroid(X)

(p!
X)R
Ð→ LieAlg(Vect) commutes with fiber prod-

ucts, the functor in (7.5) identifies with

(7.6) oblvGrp ○ΩLie ○ (p
!
X)

R.

Now, recall that according to Chapter 6, Proposition 1.7.2, we have

oblvGrp ○ΩLie ≃ trivLie ○ [−1] ○ oblvLie.

Hence, (7.6) identifies with

trivLie ○ [−1] ○ oblvLie ○ (p
!
X)

R
≃ trivLie ○ [−1] ○ oblvLie ○ (p

!
X)

R
○ oblvLieAlgbroid,

as required.
�

Remark 7.3.8. Propositions 7.3.3 and 7.3.7 can be summarized as follows:
for a Lie algebroid L on X , consider the corresponding object oblvLieAlgbroid(L) ∈

IndCoh(X). Of course, it does not have a structure of Lie algebra in IndCoh(X).
Yet, (p!

X)
R
(oblvLieAlgbroid(L)) does have a structure of Lie algebra.

Now, oblvLieAlgbroid(L)[−1] does have a structure of Lie algebra, but it is not
obtained by looping another object in LieAlg(IndCoh(X)). Despite this, the Lie

362 8. LIE ALGEBROIDS

algebra of global sections of oblvLieAlgbroid(L)[−1] is obtained by looping the Lie
algebra of global sections of oblvLieAlgbroid(L).

8. Lie algebroids as modules over a monad

In this section we develop the idea borrowed from [Fra]:

Lie algebroids on X can be expressed as modules over a certain canonically
defined monad acting on the category LieAlgbroid(IndCoh(X)). This monad is
given by the operation of ‘semi-direct product’ with the inertia Lie algebra inertX .

8.1. The inertia monad. In this subsection we will work in the category of
spaces. Given a spaceX, we will define a monad acting on the category Grp(Spc/X),

modules for which ‘almost’ reproduce the category Grpoid(X).

8.1.1. For X ∈ Spc, consider the above pair of adjoint functors

diag ∶ Grp(Spc/X)⇄ Grpoid(X) ∶ Inert .

It gives rise to a monad on Grp(Spc/X) that we will denote by MInertX , and
refer to it as the inertia monad on X.

8.1.2. For H ∈ Grp(Spc/X), the object MInertX (H) ∈ Grp(Spc/X) has the following
pieces of structure:

● We have a map H →MInertX (H), corresponding to the unit in MInertX ;
● We have a map MInertX (H) → InertX , corresponding to the map H → X

and the identification

MInertX (X) = Inert(diagX) = InertX ;

● A right inverse InertX → MInertX (H) of the above map MInertX (H) →

InertX , corresponding to the map X →H.

It is easy to see that the maps

H →MInertX (H)→ InertX

form a fiber sequence in Grp(Spc/X).

Monads having these properties will be axiomatized in Sect. 8.2 under the name
special monads.

8.1.3. Note that the fiber sequence and the section of the second arrow

H →MInertX (H)⇄ InertX

makes MInertX (H) look like a semi-direct product

InertX ⋉H.

In particular, we obtain a canonically defined action of InertX on any H ∈

Grp(Spc/X).

8. LIE ALGEBROIDS AS MODULES OVER A MONAD 363

8.1.4. Consider the category

MInertX -mod(Grp(Spc/X)),

equipped with a pair of adjoint functors

indMInertX
∶ Grp(Spc/X)⇄MInertX -mod(Grp(Spc/X)) ∶ oblvMInertX

.

As we shall presently see, the category MInertX -mod(Grp(Spc/X)) is ‘almost

equivalent’ to Grpoid(X).

8.1.5. By construction, the functor Inert factors though a canonically defined func-
tor

Inertenh
∶ Grpoid(X)→MInertX -mod(Grp(Spc/X)),

so that

Inert(R) = oblvMInertX
(Inertenh

(R)).

It is easy to see that the above functor R ↦ Inertenh
(R) admits a left adjoint;

we will denote it by

diagenh
∶MInertX -mod(Grp(Spc/X))→ Grpoid(X).

Proposition 8.1.6. The functor diagenh is fully faithful. Its essential image
consists of those R ∈ Grpoid(X), for which the map

π0(Inert(R))→ π0(R)

is surjective.

Proof. First, we have the following general claim:

Lemma 8.1.7. Let F ∶ C ⇄ D ∶ G be a pair of adjoint functors between ∞-
categories, where G commutes G-split geometric realizations. Then the resulting
functor

Fenh
∶ (G ○ F)-mod(C)→D

is fully faithful.

The fact that diagenh is fully faithful follows immediately from the lemma. The
essential image of diagenh lies in the specified subcategory of Grpoid(X) because
this is so for diag, and because this subcategory is closed under colimits.

To prove the proposition it remains to show that the functor Inert is conser-
vative on the specified subcategory of Grpoid(X) and commutes with geometric
realizations. The former is straightforward. The latter follows from Chapter 5,
Lemma 2.1.3.

�

8.2. Special monads. In this subsection we introduce a certain class of monads
that we call special. They will be useful in studying Lie algebroids. However, we
believe that this notion has other applications as well.

364 8. LIE ALGEBROIDS

8.2.1. Assumption on the category. Let T be a pointed (∞,1)-category; denote its
final/initial object by ∗ ∈ T.

We shall make the following general assumptions:

● (i) T admits limits;
● (ii) Sifted colimits in T exist and are universal (=commute with base

change);
● (iii) Groupoids in T are universal (see [Lu1, Definition 6.1.2.14] for what

this means).

Note that for any t̃→ t, the map

(8.1) ∣̃t●/t∣→ t

is a monomorphism (here t̃●/t is the simplicial object of T equal to the Čech nerve
of t̃→ t).

We shall say that t̃ → t is an effective epimorphism if the map (8.1) is an
isomorphism. Let (T/t)epi be the full subcategory of T/t spanned by effective epi-
morphisms.

8.2.2. We shall now make the following additional assumption on T:

For any t ∈ T, the functor

(T/t)epi → T, (t̃→ t)↦ t̃ ×
t
∗

is conservative.

8.2.3. Examples. Here are two examples of this situation:

One is Grp(Spc/X), where X ∈ Spc.

Another is LieAlg(O), where O is a symmetric monoidal DG category.

8.2.4. One corollary of the property in Sect. 8.2.2 is that the inclusion

Grp(T)↪Monoid(T)

is an equality.

Indeed, for t ∈ Monoid(T), we need to show that the map

t × t
(id,mult)
Ð→ t × t

is an isomorphism. However, the above map is a map on (T/t)epi, where both sides
map to t via the first projection, while the base change of the above map with
respect to ∗→ t is the identity map.

8.2.5. Definition of special monad. Let (T,∗) be as above. Let Monad(T) denote
the category of all monads acting on T.

We let Monad(T)
spl

⊂ Monad(T) denote the full subcategory spanned by mon-
ads M satisfying the following condition:

For every t ∈ T, the maps
t→M(t)→M(∗)

form a fiber sequence, i.e., the map

t→M(t) ×
M(∗)

∗

is an isomorphism.

8. LIE ALGEBROIDS AS MODULES OVER A MONAD 365

Here t→M(t) is given by the unit of the monad M, and M(t)→M(∗) is given
by the canonical map t→ ∗. We will refer to such monads as special monads.

8.2.6. Note that for any t ∈ T, the above map

M(t)→M(∗)

admits a section, given by applying M to the canonical map t ← ∗. So, we have a
diagram

(8.2) t→M(t)⇄M(∗).

8.2.7. Basic properties of special monads. Note that (8.2) implies that for t ∈ T,
the map M(t)→M(∗) is an effective epimorphism. From here, we obtain:

Lemma 8.2.8. The monad M, considered as a mere endo-functor of T, com-
mutes with sifted colimits.

Proof. We have to show that for a sifted family ti the map

colimM(ti)→M(colim ti)

is an isomorphism. By Sect. 8.2.2, it is enough to show that

(colimM(ti)) ×
M(∗)

∗→M(colim ti) ×
M(∗)

∗ ≃ colim ti

is an isomorphism. However, since sifted colimits in T are universal,

(colimM(ti)) ×
M(∗)

∗ ≃ colim (M(ti) ×
M(∗)

∗) ≃ colim ti,

as required. �

Corollary 8.2.9. The category M-mod(T) admits sifted colimits and the for-
getful functor

oblvM ∶M-mod(T)→ T

commutes with sifted colimits.

8.3. Infinitesimal inertia monad. We will now adapt the material in Sect. 8.1
to the setting of formal geometry.

8.3.1. As in Sect. 8.1, the pair of adjoint functors

diag ∶ Grp(FormMod/X)⇄ FormGrpoid(X) ∶ Inertinf

defines a monad, denoted MInertinf
X

on Grp(FormMod/X).

Moreover, is easy to see that MInertinf
X

is special.

366 8. LIE ALGEBROIDS

8.3.2. Consider the resulting pair of adjoint functors

(8.3) diagenh
∶MInertinf

X
-mod (Grp(FormMod/X))⇄ FormGrpoid(X) ∶ Inertinf,enh .

We now claim:

Proposition 8.3.3. The functor diagenh and Inertinf,enh of (8.3) are mutually
inverse equivalences of categories.

Proof. We need to show that the functor Inertinf satisfies the conditions of
the Barr-Beck-Lurie theorem. The fact that the functor Inertinf commutes with
sifted colimits (and, in particular, geometric realizations) follows from Chapter 5,

Corollary 2.2.4. Hence, it remains to see that Inertinf is conservative. This follows,
e.g., from the fact that the functor ΩX is conservative, via the fiber sequence (1.1).

�

8.4. The inertia monad on Lie algebras and Lie algebroids. In this sub-
section we show that the category LieAlg(IndCoh(X)) carries a canonical monad,
given by semi-direct product with the inertia Lie algebra, and that Lie algebroids
identify with the category of modules over this monad.

8.4.1. Let X be an object of PreStklaft-def . Recall the equivalence

LieX ∶ Grp(FormMod/X)⇄ LieAlg(IndCoh(X)) ∶ exp

of Chapter 7, Theorem 3.6.2.

Hence, the monad MInertinf
X

acting on Grp(FormMod/X) defines a special monad,

denoted MinertX , on LieAlg(IndCoh(X)).

8.4.2. From Proposition 8.3.3, we obtain:

Corollary 8.4.3. The category LieAlgbroid(X), equipped with the forgetful
functor ker.anch. is canonically equivalent to the category MinertX -mod(LieAlg(IndCoh(X))),
equipped with the forgetful functor oblvMinertX

.

8.4.4. By adjunction, under the identification of Corollary 8.4.3, the functor

diag ∶ LieAlg(IndCoh(X))→ LieAlgbroid(X)

identifies with

indMinertX
∶ LieAlg(IndCoh(X))→MinertX -mod(LieAlg(IndCoh(X))).

The zero Lie algebroid, i.e., the initial object of LieAlgbroid(X), corresponds
to

indMinertX
(0) ∈MinertX -mod(LieAlg(IndCoh(X))).

Under the identification of Corollary 8.4.3 the tangent algebroid T (X) (i.e.,
the final object in LieAlgbroid(X)) corresponds to

0 ∈MinertX -mod(LieAlg(IndCoh(X))).

8. LIE ALGEBROIDS AS MODULES OVER A MONAD 367

8.4.5. Note that

MinertX (0) = oblvMinertX
○ indMinertX

(0) = inertX .

As was mentioned already, the monad MinertX is special. Hence, for h ∈

LieAlg(IndCoh(X)), from (8.2) we obtain a split fiber sequence

(8.4) h→MinertX (h)⇄ inertX .

Hence, we can think of MinertX (h) as a semi-direct product

inertX ⋉h

for a canonically defined action of inertX on h.

Remark 8.4.6. When we forget the Lie algebra structure on h, we recover the
canonical action of inertX on objects of IndCoh(X) from Sect. 6.1.2.

Vice versa, since the functor can of Sect. 6.1.2 is symmetric monoidal, it defines
an action of inertX on every h ∈ LieAlg(IndCoh(X)), and one can show that this
is the same action as defined above.

8.4.7. Recall the functor

Ωfake
∶ LieAlgbroid(X)→ LieAlg(IndCoh(X)).

In terms of the equivalence of Corollary 8.4.3, it sends L ∈ LieAlgbroid(X), to
the fiber of the composite map

(8.5) inertX →MinertX (h)→ h,

where the first arrow is the canonical splitting of (8.4), and the second arrow is
given by the action of MinertX on h.

8.4.8. We have the following identifications

ker-anch ○diag(h) ≃MinertX (h) ≃ inertX ⋉h;

Ωfake
○ diag(h) ≃ ΩLie(h);

oblvLieAlgbroid /T ○ diag(h) ≃ (oblvLie(h)
0
→ T (X)).

Remark 8.4.9. Note that there are the following two ways to relate the cate-
gory LieAlgbroid(X) to a more linear category.

One is given by Corollary 8.4.3, which implies that we can interpret LieAlgbroid(X)

as MinertX -mod(LieAlg(IndCoh(X))).

The other is as modules for the monad

oblvLieAlgbroid /T ○ freeLieAlgbroid ≃ T (X /−) ○RealSqZ

in the category IndCoh(X)/T (X).

This former has the advantage that the monad involved, i.e., MinertX , is ‘smaller’:
it is given by semi-direct product with inertX .

The latter has the advantage that the recipient category, i.e., IndCoh(X)/T (X)
is more elementary than LieAlg(IndCoh(X)).

368 8. LIE ALGEBROIDS

9. Relation to classical Lie algebroids

In this section we let X be a classical scheme locally of finite type. Our goal
is to show that Lie algebroids, as defined in Sect. 2.1, whose underlying object of
IndCoh is ‘classical’ are the same as classical Lie algebroids.

9.1. Classical Lie algebroids. In this subsection we recall the notion of classi-
cal Lie algebroid on a classical scheme and state the main result of this section,
Theorem 9.1.5.

9.1.1. First, we introduce the object T naive
(X) ∈ QCoh(X)

♡ as follows.

Recall the functor

ΥX ∶ QCoh(X)→ IndCoh(X)

(see Volume I, Chapter 6, Sect. 3.2.5). Let ΥR
X denote its right adjoint. 3

We start with T (X) ∈ IndCoh(X), and consider the object

ΥR
X(T (X)) ∈ QCoh(X).

It follows from the definitions that

ΥR
X(T (X)) ≃ Hom(T ∗(X),OX),

where Hom is internal Hom in the symmetric monoidal category QCoh(X).

In particular, ΥR
X(T (X)) ∈ QCoh(X)

≥0. Finally, we set

T naive
(X) ∶=H0

(ΥR
X(T (X))).

I.e., T naive
(X) is the usual naive tangent sheaf of a classical scheme.

9.1.2. Let us recall the notion of classical Lie algebroid over X (see [BB, Sect.
2]).

By definition, this is a data of

(1) Lcl
∈ QCoh(X)

♡;
(2) a map anch ∶ Lcl

→ T naive
(X);

(3) a Lie bracket on Lcl, which is a differential operator of order 1,

such that

● The map anch is compatible with the Lie brackets;
● The [ξ1, f ⋅ ξ2] = f ⋅ [ξ1, ξ2] + (anch(ξ1)(f)) ⋅ ξ2.

9.1.3. Let LieAlgbroid(X)
cl denote the category of classical Lie algebroids on X.

We have a tautological forgetful functor

oblvLieAlgbroidcl /Tnaive ∶ LieAlgbroid(X)
cl
→ (QCoh(X)

♡
)/Tnaive(X),

and it is easy to see that it admits a left adjoint, denoted freeLieAlgbroidcl .

The pair

freeLieAlgbroidcl ∶ (QCoh(X)
♡
)/Tnaive(X) ⇄ LieAlgbroid(X)

cl
∶ oblvLieAlgbroidcl /Tnaive

is easily seen to be monadic.

3Since X is classical, and in particular, eventually coconnective, the functor ΥR
X is continuous,

see [Ga1, Corollary 9.6.3].

9. RELATION TO CLASSICAL LIE ALGEBROIDS 369

9.1.4. The goal of this section is to prove the following:

Theorem 9.1.5. There exists a canonical equivalence between LieAlgbroid(X)
cl

and the full subcategory of LieAlgbroid(X) that consists of those objects for which
oblvAlgbroid(L) belongs to the essential image of QCoh(X)

♡ under the (fully faith-
ful) functor

ΥX ∶ QCoh(X)→ IndCoh(X).

This equivalence makes the diagram

LieAlgbroid(X)
cl

ÐÐÐÐ→ LieAlgbroid(X)

oblv
LieAlgbroidcl /Tnaive

×
×
×
Ö

×
×
×
Ö

oblvLieAlgbroid /T

(QCoh(X)
♡
)/Tnaive(X)

ΥX
ÐÐÐÐ→ IndCoh(X)/T (X)

commute.

9.2. The locally projective case. In this subsection we consider a special case
of Theorem 9.1.5 where the groupoid corresponding to the algebroid in question is
itself classical and formally smooth over X .

9.2.1. Let QCoh(X)
♡,proj,ℵ0

⊂ QCoh(X)
♡ be the full subcategory consisting of

objects that are Zariski-locally projective and countably generated.

As a first step towards the proof of Theorem 9.1.5 we will establish its particular
case:

Theorem 9.2.2. The following four categories are naturally equivalent:

(a) The full subcategory of LieAlgbroid(X)
cl, consisting of those Lcl, for which the

object

oblvLieAlgbroidcl /Tnaive(Lcl
) ∈ QCoh(X)

♡

belongs to QCoh(X)
♡,proj,ℵ0

(a’) The full subcategory of FormGrpoid(X), spanned by those objects R that:

● R is an indscheme, which is classical and ℵ0 (see [GaRo1, Sect. 1.4.11]
for what this means);

● R is classically formally smooth (see [GaRo1, Defn. 8.1.1] for what this
means) relative to X with respect to the projection ps ∶R→X.

(b) The full subcategory of LieAlgbroid(X), consisting of those objects L, for which

oblvAlgbroid(L) ∈ IndCoh(X),

belongs to the essential image under ΥX of the full subcategory

QCoh(X)
♡,proj,ℵ0

⊂ QCoh(X).

(b’) The full subcategory of FormGrpoid(X), spanned by those objects R that:

● R is an indscheme, which is weakly ℵ0 (see [GaRo1, Sect. 1.4.11] for
what this means);

● R is formally smooth relative to X (see Chapter 1, Sect. 7.3.1 for what
this means) with respect to the projection ps ∶R→X.

The rest of the subsection is devoted to the proof of Theorem 9.2.2.

370 8. LIE ALGEBROIDS

9.2.3. The equivalence of (a) and (a’). This is standard in the theory of classical
Lie algebroids.

9.2.4. The equivalence of (b) and (b’). Follows by combining Chapter 2, Corollary
3.3.5, [GaRo1, Corollary 8.3.6] and the following fact (see [BD, Proposition 7.12.6
and Theorem 7.12.8]):

Lemma 9.2.5. Let F ∈ QCoh(X)
♡ be Zariski-locally countably generated. Then

the following conditions are equivalent:

(i) F is Zariski-locally projective.

(ii) The functor

QCoh(X)
♡
→ Vect♡, F

′
↦H0

(Γ(X,F ⊗F
′
))

can be written as
colim
i∈Z≥0

Hom(Fi,F
′
),

where the maps Fi → Fj for j ≥ i are surjective.

9.2.6. The equivalence of (a’) and (b’). This is a relative version of [GaRo1, Corol-
lary 9.1.7].

9.3. The general case. In this subsection we will finish the proof of Theo-
rem 9.1.5 by reducing the general case to the projective one by a trick that involves
monads.

9.3.1. As will be evident from the proof, the assertion of Theorem 9.1.5 is Zariski-
local on X. So, henceforth, we will assume that X is affine.

Consider the full subcategories

(QCoh(X)
♡,proj,ℵ0

)/Tnaive(X) ⊂ (QCoh(X)
♡
)/Tnaive(X) ⊂ (QCoh(X)

≤0
)/ΥR

X
(T (X))

and

(ΥX(QCoh(X)
♡,proj,ℵ0

))/T (X) ⊂ (ΥX(QCoh(X)
♡
))/T (X) ⊂ (ΥX(QCoh(X)

≤0
))/T (X) ⊂

⊂ IndCoh(X)/T (X).

The functor ΥX defines equivalences

(QCoh(X)
♡,proj,ℵ0

)/Tnaive(X)
∼

ÐÐÐÐ→ (ΥX(QCoh(X)
♡,proj,ℵ0

))/T (X)
×
×
×
Ö

×
×
×
Ö

(QCoh(X)
♡
)/Tnaive(X)

∼
ÐÐÐÐ→ (ΥX(QCoh(X)

♡
))/T (X)

×
×
×
Ö

×
×
×
Ö

(QCoh(X)
≤0

)/Tnaive(X)
∼

ÐÐÐÐ→ (ΥX(QCoh(X)
≤0

))/T (X)

Note also that the inclusions

(QCoh(X)
♡
)/Tnaive(X) ⊂ (QCoh(X)

≤0
)/Tnaive(X)

and
(ΥX(QCoh(X)

♡
))/T (X) ⊂ (ΥX(QCoh(X)

≤0
))/T (X)

admit left adjoints, given by truncation. We denote these functors in both contexts
by τ≥0

QCoh.

9. RELATION TO CLASSICAL LIE ALGEBROIDS 371

9.3.2. Consider the monad oblvLieAlgbroid /T ○freeLieAlgbroid acting on IndCoh(X)/T (X).
We have:

Lemma 9.3.3. The monad oblvLieAlgbroid /T ○ freeLieAlgbroid preserves the full
subcategories

(ΥX(QCoh(X)
♡,proj,ℵ0

))/T (X) ⊂ (ΥX(QCoh(X)
≤0

))/T (X) ⊂ IndCoh(X)/T (X).

The map of functors

τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid)→

→ τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid) ○ τ

≥0
QCoh

is an isomorphism.

Proof. Follows from Proposition 5.3.2. �

9.3.4. From Lemma 9.3.3 we obtain that the endo-functor

τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid)

of

(ΥX(QCoh(X)
♡
))/T (X) → (ΥX(QCoh(X)

♡
))/T (X)

has a natural structure of monad, and the category

(9.1) τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid)-mod((ΥX(QCoh(X)

♡
))/T (X))

identifies canonically with the full subcategory of

(oblvLieAlgbroid /T ○ freeLieAlgbroid)-mod((ΥX(QCoh(X)
≤0

))/T (X)),

equal to the preimage of

(ΥX(QCoh(X)
♡
))/T (X) ⊂ (ΥX(QCoh(X)

≤0
))/T (X)

under the forgetful functor

(oblvLieAlgbroid /T ○ freeLieAlgbroid)-mod((ΥX(QCoh(X)
≤0

))/T (X))→

→ (ΥX(QCoh(X)
≤0

))/T (X).

Thus, we obtain that the full subcategory of LieAlgbroid(X) appearing in
Theorem 9.1.5, identifies canonically with the category (9.1).

Hence, to prove Theorem 9.1.5, it suffices to show that under the equivalence
(of ordinary (!) categories)

(QCoh(X)
♡
)/Tnaive(X) ≃ (ΥX(QCoh(X)

♡
))/T (X),

the monad

oblvLieAlgbroidcl /Tnaive ○ freeLieAlgbroidcl

identifies with the monad

τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid).

372 8. LIE ALGEBROIDS

9.3.5. Note, however, that from Theorem 9.2.2, we obtain that the two monads
are canonically identified when restricted to

(QCoh(X)
♡,proj,ℵ0

)/Tnaive(X) ≃ (ΥX(QCoh(X)
♡,proj,ℵ0

))/T (X).

Moreover, it is easy to see that the monad oblvLieAlgbroidcl /Tnaive○freeLieAlgbroidcl

commutes with sifted colimits. The corresponding fact holds also for the monad

τ≥0
QCoh ○ (oblvLieAlgbroid /T ○ freeLieAlgbroid),

by Corollary 8.2.9.

9.3.6. Now, the desired isomorphism of monads follows from the following fact:
for any object γ ∈ (QCoh(X)

♡
)/Tnaive(X), the category

((QCoh(X)
♡,proj,ℵ0

)/Tnaive(X))/γ

is sifted and the canonical map

colim
γ′∈((QCoh(X)♡,proj,ℵ0)

/Tnaive(X)
)
/γ

→ γ

is an isomorphism.

9.4. Modules over classical Lie algebroids. In this subsection we compare we
will compare the category L-mod(IndCoh(X)), as defined above, with the corre-
sponding category for a classical Lie algebroid on a classical scheme.

9.4.1. Let X be a classical scheme of finite type, and let Lcl be a classical Lie
algebroid on X. Throughout this subsection we wil assume that Lcl is flat as an
OX -module.

Let

(QCoh(X ×X)∆X
)
♡
rel.flat

be the monoidal category introduced in Chapter 4, Sect. 4.1.1.

According to [BB, Sect. 2], to Lcl one associates its universal enveloping alge-
bra U(Lcl

) which is an associative algebra object in (QCoh(X ×X)∆X
)
♡
rel.flat.

9.4.2. We have a canonically defined fully faithful monoidal functor

(QCoh(X ×X)∆X
)
♡
rel.flat → QCoh(X ×X)

and a monoidal equivalence

QCoh(X ×X)→ Functcont(QCoh(X),QCoh(X)).

Composing, we obtain a fully faithful functor
(9.2)
AssocAlg((QCoh(X×X)∆X

)
♡
rel.flat)→ AssocAlg (Functcont(QCoh(X),QCoh(X))) .

Hence, we obtain that U(Lcl
) gives rise to a monad acting on QCoh(X). In

particular, it makes sense to talk about the category

U(Lcl
)-mod(QCoh(X)).

This is, by definition, the category of modules over the classical Lie algebroid
Lcl, denoted Lcl-mod(QCoh(X)).

9. RELATION TO CLASSICAL LIE ALGEBROIDS 373

Remark 9.4.3. The category Lcl-mod(QCoh(X)) has a t-structure uniquely
characterized by the property that the forgetful functor to QCoh(X) is t-exact.
Now, as in [GaRo2, Proposition 4.7.3] one can show that if Lcl is flat as an object
of QCoh(X), then the naturally defined functor

D((Lcl-mod(QCoh(X)))
♡
)→ Lcl-mod(QCoh(X))

is an equivalence.

9.4.4. Let L be the object of LieAlgbroid(X), corresponding to Lcl under the
equivalence of Theorem 9.1.5.

The next assertion follows from Chapter 9, Theorem 6.1.2 (which will be proved
independently):

Lemma 9.4.5. For Lcl flat as an OX-module, the endo-functor oblvAssoc(U(L))

preserves the essential image of the (fully faithful) functor ΥX ∶ QCoh(X) →

IndCoh(X).

Hence, we obtain that U(L) defines a monad, denoted U(L)∣QCoh(X), on QCoh(X).
Moreover, the functor ΥX gives rise to a fully faithful functor

U(L)-mod(QCoh(X))→ U(L)-mod(IndCoh(X)) ∶= L-mod(IndCoh(X)).

9.4.6. We are going to prove:

Theorem 9.4.7. The monads U(Lcl
) and U(L)∣QCoh(X) on QCoh(X) are

canonically isomorphic.

As a corollary, we obtain:

Corollary 9.4.8. The category Lcl-mod(QCoh(X)) is canonically equivalent
to the full subcategory of L-mod(IndCoh(X)), consisting of objects, whose image
under the forgetful functor

L-mod(IndCoh(X))→ IndCoh(X)

lies in the essential image of ΥX ∶ QCoh(X)→ IndCoh(X).

9.4.9. Proof of Theorem 9.4.7, Step 1. First, the assumption on Lcl and Chapter 9,
Theorem 6.1.2 imply that U(L)∣QCoh(X) lies in the essential image of the functor
(9.2).

Hence, the assertion of the the theorem is about comparison of associative
algebras in the ordinary monoidal category (QCoh(X ×X)∆X

)
♡
rel.flat.

In particular, the assertion is Zariski-local on X, and hence we can assume that
X is affine.

9.4.10. Proof of Theorem 9.4.7, Step 2. We claim that the stated isomorphism of
associative algebras holds when

oblvLieAlgbroidcl(Lcl
) ∈ QCoh(X)

♡,proj,ℵ0 .

Indeed, this follows by unwinding the construction of the equivalence in Theo-
rem 9.2.2.

374 8. LIE ALGEBROIDS

9.4.11. Proof of Theorem 9.4.7, Step 3. We claim that the assignments

L↝ U(Lcl
) and L↝ U(L)∣QCoh(X)

commute with sifted colimits.

Indeed, for U(Lcl
) this follows from the construction. For U(L)∣QCoh(X), this

follows from Proposition 2.1.3(a) and Chapter 9, Theorem 6.1.2.

9.4.12. Proof of Theorem 9.4.7, Step 4. The required isomorphism follows from
Step 3, since our Lcl can be written as a sifted colimit of Lie algebroids as in Step
2, see Sect. 9.3.6. �

A. An application: ind-coherent sheaves on push-outs

In this section we will use the material from Sect. 6.3 to show that the cate-
gories IndCoh(−) and QCoh(−)perf behave well with respect to push-outs of affine
schemes.

A.1. Behavior of ind-coherent sheaves with respect to push-outs. In this
subsection we will consider the case of IndCoh.

A.1.1. Let

(A.1)

X ′
1

f ′

ÐÐÐÐ→ X ′
2

g1

Õ
×
×
×

Õ
×
×
×

g2

X1
f

ÐÐÐÐ→ X2

be a push-out diagram in Schaff
aft, where the vertical maps are closed embeddings, and

the horizontal maps are finite. Consider the corresponding commutative diagram
of categories

(A.2)

IndCoh(X ′
1)

(f ′)!

←ÐÐÐÐ IndCoh(X ′
2)

g!
1

×
×
×
Ö

×
×
×
Ö

g!
2

IndCoh(X1)
f !

←ÐÐÐÐ IndCoh(X2).

The goal of this subsection is to prove the following result:

Theorem A.1.2. The diagram (A.2) is a pullback square.

The rest of this subsection is devoted to the proof of Theorem A.1.2.

A.1.3. Reduction step 1. Note that in Chapter 1, Proposition 1.4.5 we showed that
the functor

(A.3) IndCoh(X ′
2)→ IndCoh(X ′

1) ×
IndCoh(X1)

IndCoh(X2)

is fully faithful. So, it remains to show that the functor (A.3) is essentially surjec-
tive.

Let IndCoh(X ′
1)X1 ⊂ IndCoh(X ′

1) (resp., IndCoh(X ′
2)X2 ⊂ IndCoh(X ′

2)) be the
full subcategory consisting of objects with set-theoretic support on X1 (resp., X2).
It is easy to see that it is sufficient to show that the corresponding functor

(A.4) IndCoh(X ′
2)X2 → IndCoh(X ′

1)X1 ×
IndCoh(X1)

IndCoh(X2)

A. AN APPLICATION: IND-COHERENT SHEAVES ON PUSH-OUTS 375

is an equivalence.

Indeed, the essential surjectivity of (A.4) will imply the same property of (A.3),
which follows from the localization sequences of DG categories

IndCoh(X ′
2)X2 → IndCoh(X ′

2)→ IndCoh(X ′
2 ∖X2)

and

IndCoh(X ′
1)X1 ×

IndCoh(X1)
IndCoh(X2)→ IndCoh(X ′

1) ×
IndCoh(X1)

IndCoh(X2)→ IndCoh(X ′
2∖X2).

A.1.4. Reduction step 2. The formal completion of X1 in X ′
1 can be written as a

filtered colimit of schemes X ′
1,α, where each X1 → X ′

1,α is a nilpotent embedding.
Then the formal completion of X2 in X ′

2 can be written as the colimit of the schemes

X ′
2,α ∶=X

′
1,α ⊔

X1

X2,

see [GaRo1, Proposition 6.7.4].

The functors

IndCoh(X ′
2)X2 → lim

α
IndCoh(X ′

2,α) and IndCoh(X ′
1)X1 → lim

α
IndCoh(X ′

1,α)

are both equivalences (see [GaRo1, Proposition 7.4.5]).

This reduces us to the case when X1 →X ′
1 is a nilpotent embedding.

A.1.5. Reduction step 3. Using Chapter 1, Proposition 5.5.3 and the convergence
property of IndCoh (see Volume I, Chapter 5, Proposition 6.4.3) we can further
reduce to the case when the map

X1 →X ′
1

has a structure of a square-zero extension.

A.1.6. Proof in the case when X1 →X ′
1 is a square-zero extension. Let the square-

zero extension X1 →X ′
1 be given by a map

T ∗(X1)→ F , F[−1] ∈ Coh(X1).

Then X2 →X ′
2 is also a square-zero extension, given by

T ∗(X2)
(df)∗
Ð→ f∗(T

∗
(X1))→ f∗(F).

Denote

F̃1 ∶= DSerre
X1

(F), F̃2 ∶= DSerre
X2

(f∗(F)).

Since f is finite, we have

f IndCoh
∗ (F̃1) ≃ F̃2.

According to Theorem 6.3.3, the category IndCoh(X ′
1) can be described as

consisting of pairs F ′1 ∈ IndCoh(X1), equipped with a null-homotopy of the com-
position

F̃1[−1]
!
⊗F

′
1 → T (X1)[−1]

!
⊗F

′
1 → F

′
1,

and similarly for IndCoh(X ′
2).

376 8. LIE ALGEBROIDS

Now, this makes the assertion of Theorem A.1.2 manifest: an object of the
fiber product IndCoh(X ′

1) ×
IndCoh(X1)

IndCoh(X2) is an object F ′2 ∈ IndCoh(X2),

equipped with a null-homotopy for the composition

F̃1[−1]
!
⊗ f !

(F
′
2)→ T (X1)[−1]

!
⊗ f !

(F
′
2)→ f !

(F
′
2),

which by adjunction is the same as a null-homotopy of the map

f IndCoh
∗ (F̃1[−1]

!
⊗ f !

(F
′
2))→ f IndCoh

∗ (T (X1)[−1]
!
⊗ f !

(F
′
2))→ F

′
2,

while the latter, by the projection formula identifies with the map

f IndCoh
∗ (F1)[−1]

!
⊗F

′
2 → f IndCoh

∗ (T (X1))[−1]
!
⊗F

′
2 → F

′
2,

and the latter map identifies with

F̃2[−1]
!
⊗F

′
2 → T (X2)[−1]

!
⊗F

′
2 → F

′
2.

�

A.2. Deformation theory for the functor QCoh(−)perf . In this subsection we
will study the behavior of the category QCoh(−)perf with respect to push-outs.

A.2.1. First, we claim that Theorem A.1.2 admits the following corollary:

Corollary A.2.2. Under the assumptions of Theorem A.1.2, the diagram

(A.5)

QCoh(X ′
1)

perf (f ′)∗
←ÐÐÐÐ QCoh(X ′

2)
perf

g∗1

×
×
×
Ö

×
×
×
Ö

g∗2

QCoh(X1)
perf f∗

←ÐÐÐÐ QCoh(X2)
perf

is a pullback square.

Proof. Follows from the fact that we have a commutative diagram of sym-
metric monoidal functors

QCoh(X ′
2) ÐÐÐÐ→ QCoh(X ′

1) ×
QCoh(X1)

QCoh(X2)

Υ
×
×
×
Ö

×
×
×
Ö

Υ

IndCoh(X ′
2) ÐÐÐÐ→ IndCoh(X ′

1) ×
IndCoh(X1)

IndCoh(X2),

combined with Volume I, Chapter 6, Lemma 3.3.7:

Indeed, Theorem A.1.2 implies that the bottom horizontal arrow identifies the
category of dualizable objects in IndCoh(X ′

2) with

IndCoh(X ′
1)

dualizable
×

IndCoh(X1)dualizable
IndCoh(X2)

dualizable.

�

A. AN APPLICATION: IND-COHERENT SHEAVES ON PUSH-OUTS 377

A.2.3. We now claim that the diagram (A.5) is a pullback square for any diagram
of affine schemes (A.2), in which the vertical arrows are closed embeddings and
horizontal maps finite.

Indeed, the laft property of the functor QCoh(−)perf , we reduce the assertion

to the case when X1,X
′
1 and X2 belong to Schaff

aft.

A.2.4. We are now ready to finish the proof of the fact that the prestack Perf
admits deformation theory.

From Corollary A.2.2 it follows that Perf admits pro-cotangent spaces and is
infinitesimally cohesive. Hence, it remains to show that it admits a pro-cotangent
complex.

By Chapter 1, Lemma 4.2.4(b), it suffices to prove the following. Let f ∶X1 →

X2 be a map in Schaff
aft, and let F1 be an object of Coh(X1)

≤0, and let (X1)F1

denote the corresponding split square-zero extension of X1.

For every F2 ∈ Coh(X2)
≤0 equipped with a map f∗(F2) → F1, consider the

map

(X1)F1 → (X2)F2 ,

and the corresponding functor

QCoh((X2)F2)
perf

→ QCoh((X1)F1)
perf

×

QCoh(X1)perf
QCoh(X2)

perf .

We need to show that the functor

colim
F2∈Coh(X2)≤0,f∗(F2)→F1

QCoh((X2)F2)
perf

→ QCoh((X1)F1)
perf

×

QCoh(X1)perf
QCoh(X2)

perf

is an equivalence.

We will deduce this from Theorem 6.3.3 and Volume I, Chapter 6, Lemma
3.3.7.

A.2.5. We rewrite the category QCoh((X1)F1)
perf as consisting of pairs F ′ ∈

QCoh(X1)
perf , equipped with a map

DSerre
X1

(F1)
!
⊗ΥX1(F

′
)→ ΥX1(F

′
)

in IndCoh(X1), which is equivalent to a map

End(F ′)→ F1,

in QCoh(X1), and similarly for QCoh((X2)F2)
perf .

For a given F ′ ∈ QCoh(X2)
perf , denote E ∶= End(F ′) ∈ QCoh(X2)

perf . Thus,
we have to show that the map

(A.6) colim
F2∈Coh(X2)≤0,f∗(F2)→F1

MapsQCoh(X2)(E ,F2)→

→MapsQCoh(X1)(f
∗
(E),F1) ≃ MapsQCoh(X2)(E , f∗(F1))

is an isomorphism.

378 8. LIE ALGEBROIDS

A.2.6. We note that the index category

F2 ∈ Coh(X2)
≤0, f∗(F2)→ F1

that appears in the above formula identifies by adjunction with

F2 ∈ Coh(X2)
≤0,F2 → f∗(F1),

i.e., with (Coh(X2)
≤0

)/f∗(F1).

Since f∗(F1) ∈ QCoh(X2)
≥0, this category is filtered and the map

colim
F2∈Coh(X2)≤0,F2→f∗(F1)

F2 → f∗(F1)

is an isomorphism.

Now, the isomorphism in (A.6) follows from the fact that E ∈ QCoh(X2) is
compact.

CHAPTER 9

Infinitesimal differential geometry

Introduction

0.1. What do we mean by ‘infinitesimal differential geometry’? The goal
of this chapter is to make sense in the context of derived algebraic geometry of
a number of notions of differential nature that are standard when working with
schemes. These notions include:

● Deformation to the normal cone of a closed embedding;
● The notion of the n-th infinitesimal neighborhood of a scheme embedded

into another one;
● The PBW filtration on the universal enveloping algebra of a Lie algebroid

(over a smooth scheme);
● The Hodge filtration (a.k.a. de Rham resolution) of the dualizing D-

module (again, over a smooth scheme).

A feature of the above objects in the setting of classical schemes is that they
are constructed by explicit formulas.

For example, the PBW filtration on the universal enveloping algebra of a Lie
algebroid is defined by letting the n-th term of the filtration be generated by n-fold
products of sections of the Lie algebroid, a notion that is hard to make sense in the
context of higher algebra, and hence derived algebraic geometry.

The de Rham resolution

ωX ⊗
OX

Λn(T (X))→ ...→ ωX ⊗
OX

T (X)→ ωX

is also defined by explicitly writing down the differential, something that we cannot
do in higher algebra.

But our task is even harder: not only do we want to have the above notions for
derived schemes, but we want to have them for objects (and maps) in the category
PreStklaft-def . So, an altogether different method is needed to define these objects.

0.1.1. Continuing with the example of U(L) for a Lie algebroid L, the initial idea
of how to produce a filtration is pretty clear: the category of filtered objects in Vect
identifies with QCoh(A1

)
Gm , and similarly, for a DG category C, the category CFil

of filtered objects in C identifies with

(C⊗QCoh(A1
))

Gm .

Now, the category CFil,≥0 of non-negatively filtered objects identifies with

(C⊗QCoh(A1
))

A1
left-lax ,

379

380 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

where the superscript A1
left-lax stands for the structure of left-lax equivariance with

respect to the monoid A1; see Sect. 1.2.3 where this notion is introduced.

For L ∈ LieAlgbroid(X), we regard U(L) as an algebra object in the monoidal
category Functcont(IndCoh(X), IndCoh(X)), and we wish to lift it to an object
(0.1)

U(L)
Fil

∈ AssocAlg ((Functcont(IndCoh(X), IndCoh(X))⊗QCoh(A1
))

A1
left-lax) .

We shall now explain how to produce such a U(L)
Fil, and this will bring us to

the idea of deformation to the normal cone (rather, normal bundle in the present
context), central for this chapter.

0.1.2. Our main construction is the following. For X ∈ PreStklaft-def and Y ∈

FormModX / we construct a family

Yscaled ∈ FormModX×A1/ /Y×A1 ,

i.e., a family of objects of FormModX / /Y parameterized by points of A1.

The fiber Yλ of this family over 0 ≠ λ ∈ A1 is be (canonically) isomorphic to
the initial Y. Its fiber Y0 over 0 ∈ A1 identifies canonically with the vector-prestack
VectX (T (X /Y)[1]) (see Chapter 7, Sect. 1.4), where we can think of T (X /Y)[1]
as the normal to X in Y.

Crucially, the above A1-family has the following extra structure: it is left-
lax equivariant with respect to the monoid A1 acting on itself by multiplication.
Concretely, this means that for λ, a ∈ A1, we have a system of maps

Ya⋅λ → Yλ

that satisfy a natural associativity condition.

We will denote the resulting object of (FormModX×A1/ /Y×A1)
A1

left-lax by Yscaled,A1
left-lax

.

It is the existence of this object that will allow us to carry out the ‘differential’ con-
structions mentioned earlier.

0.1.3. Here is how the deformation Yscaled,A1
left-lax

can be used in order to produce

the object (0.1).

The datum of U(L) is encoded by the category L-mod(IndCoh(X)), equipped
with the forgetful functor oblvL ∶ L-mod(IndCoh(X))→ IndCoh(X).

As will be explained in Sects. 6.2 and 6.3, constructing U(L)
Fil is equivalent to

finding a right-lax equivariant extension of the pair (L-mod(IndCoh(X)),oblvL).

Let (X
f
→ Y) ∈ FormModX / be the formal moduli problem corresponding to L.

According to Chapter 8, Sect. 4.1.2, we have an identification

L-mod(IndCoh(X)) ≃ IndCoh(Y)

under which the functor oblvL corresponds to f !.

We define the sought-for left-lax equivariant extension for IndCoh(Y) to be the
category IndCoh(Yscaled), and for the functor f ! to be the pullback along

X ×A1
→ Yscaled.

The right-lax equivariant structure on IndCoh(Yscaled) is given by the left-lax equi-
variant structure on Yscaled, given by Yscaled,A1

left-lax
.

INTRODUCTION 381

0.2. The n-th infinitesimal neighborhood and the Hodge filtration. The
deformation Y ↝ Yscaled,A1

left-lax
is used also for the construction of n-th infinitesimal

neighborhoods and of the Hodge filtration on the dualizing D-module (crystal).

0.2.1. The idea of infinitesimal neighborhoods

(0.2) X = X
(0)
→ X

(1)
→ ...→ X (n)

→ ...→ Y

is that each X (n) is a square-zero extension of X (n−1) by means of the object of
IndCoh(X (n−1)

) equal to the direct image of Symn
(T (X /Y)[1]) under X → X (n−1).

We remind that T (X /Y)[1] should be thought of as the normal bundle to X inside
Y.

To specify such an extension we need to specify a map

(0.3) Symn
(T (X /Y)[1])→ T (X

(n−1)
)/Y)∣X .

For example, for n = 1, the map (0.3) is the identity. However, for n ≥ 2 we
encounter a problem: which map should it be?

Here the deformation Y ↝ Yscaled,A1
left-lax

comes to our rescue.

0.2.2. We modify the problem, and instead of the system (0.2), we want to con-
struct its filtered version

(0.4) X ×A1
= X

(0)
scaled → X

(1)
scaled → ...→ X

(n)
scaled → ...→ Yscaled

in (FormModX×A1/ /Y×A1)
A1

left-lax .

In particular, instead of the map (0.3), we now need to construct the map

(0.5) Symn
(T (X /Y)[1])→ T (X

(n−1)
scaled)/Y)∣X×A1 ,

in
IndCoh(X ×A1

)
A1

left-lax ≃ IndCoh(X)
Fil,≥0,

where Symn
(T (X /Y)[1]) is placed in degree n.

Now, the point is that one can prove that T (X
(n−1)
scaled)/Y)∣X×A1 belongs to

IndCoh(X)
Fil,≥n

⊂ IndCoh(X)
Fil,≥0,

and its n-th associated graded is isomorphic precisely to Symn
(T (X /Y)[1]), and

this gives rise to the desired map (0.5).

0.2.3. When X → Y is a closed embedding, it is intuitively clear what the n-th
infinitesmal neighborhood X (n) of X in Y is doing.

But we can apply our construction to any map between objects of PreStklaft-def .
In particular, we can take the map

pX ,dR ∶ X → XdR.

What is the n-th infinitesmal neighborhood of X in XdR?

A concrete version of this question is the following: consider the filtration on
ωXdR

, whose n-th term is the direct image of ωX (n) under X (n)
→ XdR.

This filtration is the Hodge filtration on ωXdR
. Its n-th associated graded is

inddR,X (Symn
(T (X)[1])) ∈ IndCoh(XdR) ≃ Crys(X).

If X =X is a smooth scheme, this filtration incarnates the de Rham resolution
of the dualizing D-module.

382 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

0.3. Constructing the deformation. We now address the question of how the
object

Yscaled,A1
left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax

is constructed.

0.3.1. To construct Yscaled,A1
left-lax

we will use the equivalence of Chapter 5, The-

orem 2.3.2, and will instead construct the corresponding (A1 left-lax equivariant)
A1-family of formal groupoids over X .

This A1-family of groupoids, denoted R●
scaled, is constructed by a certain uni-

versal procedure, explained to us by J. Lurie.

0.3.2. Namely, the prestacksRnscaled are obtained as mapping spaces from a certain
universal family of affine schemes Bifurcnscaled over A1, i.e., for a point λ ∈ A1, we
have

R
n
λ = Maps((Bifurcnscaled)λ,X) ×

Maps((Bifurcnscaled)λ,Y)
Y.

The simplicial structure on the assignment n↦Rnscaled comes from the structure
on the assignment

n↦ Bifurcnscaled

of simplicial object Bifurc●scaled in the category ((Schaff
)/A1)

op.

0.3.3. Once said in the above way, it is clear what Bifurc●scaled must be. For n = 0

we have Bifurc0
scaled = A1, because we want X 0

λ to be just X for any λ ∈ A1.

For 0 ≠ λ ∈ A1 we want X ●
λ to be the Čech nerve of the map X → Y. So,

(Bifurc●scaled)λ is the groupoid in (Schaff
)
op given by

(Bifurcnscaled)λ = pt⊔... ⊔ pt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1

.

I.e., this is the Čech nerve of the map ∅→ pt in (Schaff
)
op.

Now, since we want X 1
0 to be VectX (T (X /Y)[1]), we want (Bifurc1

scaled)0 to be

the scheme of dual numbers. From here, it is easy to to guess that all of Bifurc1
scaled

should be

Spec(k[u,λ]/(u − λ) ⋅ (u + λ)),

where the variable u corresponds to the projection Bifurc1
scaled → A1.

The structure on (Bifurc1
scaled)λ of groupoid in (Schaff

)
op is completely deter-

mined by what it is when localized away from 0 = λ ∈ A1.

0.4. What else is done in this chapter?
0.4.1. In Sect. 2 we perform the main construction of this chapter–that of the
deformation

Yscaled,A1
left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax .

INTRODUCTION 383

0.4.2. In Sect. 3 we translate the construction Y ↝ Yscaled,A1
left-lax

to the language

of Lie algebroids.

We obtain that any Lie algebroid L canonically gives rise to a non-negatively
filtered Lie algebroid, denoted LFil, which technically means an object of

LieAlgbroid(X ×A1
/A1

),

equipped with a structure of left-lax equivariance with respect to A1.

The associated graded of LFil, i.e., the fiber of the above family over 0 ∈ A1 is the
trivial Lie algebroid corresponding to the object oblvLieAlgbroid(L) ∈ IndCoh(X).

We show that the construction L↝ LFil is compatible with the forgetful functor

oblvLieAlgbroid /T ∶ LieAlgbroid(X)→ IndCoh(X)/T (X).

Namely, the object

oblvLieAlgbroid /T (L
Fil

) ∈ (IndCoh(X)
Fil,≥0

)/T (X) ≃ (IndCoh(X×A1
)/T (X)∣

X×A1
)
A1

left-lax

is the A1-family, whose value at λ ∈ A1 is obtained by scaling the original anchor
map

oblvLieAlgbroids(L)→ T (X)

by λ.

0.4.3. In Sect. 4 we prove the following result: let H be a formal group over X ,
and consider the corresponding pointed formal moduli problem BX (H).

On the one hand, the procedure of deformation to the normal bundle yields the
family (BX (H))scaled,A1

left-lax
, which by functoriality is an object of

Ptd ((FormMod/X×A1)
A1

left-lax) .

On the other hand, using the equivalence

Grp(FormMod/X) ≃ LieAlg(IndCoh(X))

and using the canonical deformation of any Lie algebra h ↝ hFil (see Chapter 6,
Sect. 1.5), we obtain an object

Hscaled,A1
left-lax

∈ Grp ((FormMod/X×A1)
A1

left-lax) .

We prove that there is a canonical isomorphism:

BX×A1(Hscaled,A1
left-lax

) ≃ (BX (H))scaled,A1
left-lax

.

I.e., the procedure of deforming a moduli problem, which was defined geomet-
rically via the schemes Bifurc●scaled,A1

left-lax
, reproduces the procedure of scaling the

Lie algebra.

384 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

0.4.4. In Sect. 5 we carry out the constriction of the n-th infinitesimal neighbor-
hood of a nil-isomorphism X → Y.

We show that the natural map

colim
n
X

(n)
→ Y

is an isomorphism.

We use the above isomorphism to construct a filtration on ωY whose n-th term
is

(fn)
IndCoh
∗ (ωX (n)),

where fn denotes the map X (n)
→ Y. When we interpret IndCoh(Y) as L-mod(IndCoh(X))

for the corresponding Lie algebroid L, the n-th associated graded of the above fil-
tration is

indL(Symn
(oblvLieAlgbroid(L)[1])).

When Y = XdR we recover the Hodge filtration.

0.4.5. In Sect. 6 we construct the filtration on the universal enveloping algebra of
a Lie algebroid.

We also show that the n-th term of the filtration is given by pull-push along

X
ps
←Ð

′
X

(n) pt
Ð→ X ,

where ′
X

(n) denotes the n-th infinitesimal neighborhood of X under the unit map
X →R, where R is the total space of the groupoid corresponding to L.

0.4.6. Finally, in Sect. 7.1 we apply some elements of the theory developed above
to the study of regular embeddings.

We say that a map f ∶ X → Y between objects of PreStkdef is a regular embed-
ding of relative dimension n if

T ∗(X /Y)[−1] ∈ Pro(QCoh(X)
−
)

belongs to QCoh(X)
− and is a vector bundle of rank n.

We show that for a regular embedding of relative dimension n, the functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

admits a left adjoint, to be denoted f IndCoh,∗, and we prove Grothendiek’s formula

f IndCoh,∗
≃ Symn

(T ∗(X /Y))⊗ f !,

where we note that Symn
(T ∗(X /Y)) ∈ QCoh(X) is a line bundle placed in coho-

mological degree n.

As a corollary, we deduce that for a schematic smooth map g ∶ X → Z of relative
dimension n, the functor

gIndCoh,∗
∶ IndCoh(Z)→ IndCoh(X),

left adjoint to gIndCoh
∗ , is defined and we have

g!
≃ Symn

(T ∗(X /Z)[1])⊗ gIndCoh,∗.

1. FILTRATIONS AND THE MONOID A1 385

1. Filtrations and the monoid A1

Let C be a functor
(PreStk)op

→ 1-Cat .

For example, C(X) = QCoh(X) or C(X) = LieAlg(QCoh(X)).

Suppose now that a prestack X is acted on by a monoid G. In this section we
introduce the notion of what it means for an object c ∈ C(X) to be left-lax (resp.,
right-lax) equivariant with respect to G. This notion generalizes the much more
well-known one when G is a group (and when instead of lax equivariance we have
the usual equivariance).

Taking X = A1 and G = A1, acting on itself by multiplication, we will see that
the category

(C⊗QCoh(A1
))

A1
left-lax

(here C is an arbitrary DG category) is equivalent to that of non-negatively filtered
objects in C.

This observation produces a mechanism of creating non-negatively filtered ob-
jects from algebraic geometry, as long as we can replace the initial geometric object
by an A1-family, which is left-lax equivariant with respect to the action of A1 on
itself.

1.1. Equivariance with respect to a monoid. The notion of equivariance with
respect to a group-action is completely standard. The situation with monoids may
be less familiar: in fact, there are three different notions of equivariance: right-lax
equivariance, left-lax equivariance and just (or strict) equivariance.

1.1.1. Let C1 and C2 be two ∞-categories, each equipped with an action of a
monoid-object of Spc, denoted G. Let Φ ∶ C1 → C2 be a functor.

Informally, a structure of right-lax equivariance (resp., left-lax equivariance) on
Φ with respect to G is a homotopy-coherent system of assignments for every point
g ∈ G of a natural transformation g ○ Φ → Φ ○ g (resp., Φ ○ g → g ○ Φ), in a way
compatible with the monoid structure.

A structure of (strict) equivariance is when the above maps are isomorphisms.

If G is a group, then the above maps are automatically isomorphisms.

1.1.2. Formally, the notion of right-lax equivariance falls into the paradigm of
right-lax module functors between two module categories over a given monoidal
category: we can view G as a monoidal ∞-category.

Equivalently, this definition can be formalized as follows. Consider the corre-
sponding simplicial object G● in Spc, and consider the ∞-category

BG ∶= L(G●
),

see Volume I, Chapter 10, Sect. 1.3.2 for the notation.

I.e., BG is a category with one object, whose monoid of endomorphisms is
identified with G.

The datum of action of G on an ∞-category C is equivalent to that of a co-
Cartesian fibration

CBG → BG,

386 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

that fits into a pullback diagram

C ÐÐÐÐ→ CBG

×
×
×
Ö

×
×
×
Ö

∗ ÐÐÐÐ→ BG.

A structure right-lax equivariance on Φ with respect to G is by definition a
datum of extension of Φ to a functor

ΦBG ∶ (C1)BG → (C2)BG

over BG.

A structure of right-lax equivariance on Φ is a structure of (strict) equivariance
if ΦBG sends co-Cartesian arrows to co-Cartesian arrows. Equivalently, this is a
natural transformation between the functors

BG→ 1-Cat,

classifying the co-Cartesian fibrations (C1)BG and (C2)BG, respectively.

A structure of left-lax equivariance on Φ is a structure of right-lax equivariance
on the functor

Φop
∶ C

op
1 → C

op
2 .

1.1.3. It is clear that the composition of functors, each endowed with a structure
of right-lax (resp., left-lax) equivariance, has a structure of right-lax (resp., left-lax)
equivariance.

It is also clear that if a functor Φ has a structure of right-lax (resp., left-lax)
equivariance, then its left (resp., right) adjoint, if it exists, has a natural structure
of left-lax (resp., right-lax) equivariance.

1.2. Equivariance in algebraic geometry. In this subsection we will adapt
the notion of equivariant functor, where instead of just ∞-categories we consider
contravariant functors on Schaff with values in ∞-categories.

As a particular case, we will obtain the notion of left-lax or right-lax equivariant
quasi-coherent sheaf on a prestack, equipped with an action of a monoid.

1.2.1. Let C be a presheaf of categories, i.e., a functor

(Schaff
)
op
→ 1-Cat .

Let G be a monoidal prestack, i.e., a monoid-object in PreStk, equivalently, a
functor

(Schaff
)
op
→Monoid(Spc).

Informally, an action of G on C is by definition a system of actions of G(S) on

C(S) for S ∈ Schaff , compatible with pullbacks.

Formally, an action of G on C is a datum of a functor

CBG ∶ (Schaff
)
op
→ 1-Cat,

1. FILTRATIONS AND THE MONOID A1 387

equipped with a natural transformation CBG → BG and a pullback diagram

C ÐÐÐÐ→ CBG
×
×
×
Ö

×
×
×
Ö

pt ÐÐÐÐ→ BG,

such that for every S ∈ Schaff , the corresponding functor

CBG(S)→ BG(S)

is a co-Cartesian fibration.

1.2.2. Let C1,C2 be two presheaves of categories, each equipped with an action of
G.

For a natural transformation Φ ∶ C1 → C2, a datum of right-lax equivariance
(resp., left-lax equivariance) with respect to G is a compatible system of structures
of right-lax equivariance (resp., left-lax equivariance) on the functors

ΦS ∶ C1(S)→ C2(S).

1.2.3. A particular case of this situation is when C1 = X ∈ PreStk, i.e., is a functor

(Schaff
)
op
→ Spc.

In this case we can think of a functor Φ from X to C = C2 as a section p ∈ C(X),
where we regard C as a functor

PreStkop
→ 1-Cat

by right Kan-extending the original (Schaff
)
op C
→ 1-Cat along (Schaff

)
op
↪ PreStkop.

Thus, we obtain the notion of a section p ∈ C(X) to be right-lax equivariant
(resp., left-lax equivariant, (strictly) equivariant) with respect to G.

We will denote the resulting categories by

C(X)
Gright-lax , C(X)

Gleft-lax and C(X)
G ,

respectively. We have the fully faithful embeddings

C(X)
Gright-lax

↩ C(X)
G
↪ C(X)

Gleft-lax .

1.2.4. An example of the situation in Sect. 1.2.3 is when

C = QCoh∗,

where the action of G on QCoh∗ is trivial.

Thus, for X ∈ PreStk and F ∈ QCoh(X), a datum of right-lax equivariance
(resp., left-lax equivariance) with respect to G assigns to every x ∈ Maps(S,X) and
g ∈ Maps(S,G) a map

x∗(F)→ (g ⋅ x)∗(F) (resp., (g ⋅ x)∗(F)→ x∗(F)),

in a way compatible with products of g’s and pullbacks S1 → S2.

We let QCoh(X)
Gright-lax (resp., QCoh(X)

Gleft-lax) denote the category of objects
in QCoh(X), equipped with a structure of right-lax (resp., left-lax) equivariance
with respect to G. We let QCoh(X)

G be the category of objects equipped with a
structure of (strict) G-equivariance.

388 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

1.2.5. Here are several other examples of presheaves C that we will use (for now,
all of them have the trivial action of G):

(i) Take C(S) = C⊗QCoh(S) for a fixed DG category C.

(ii) Take C(S) ∶= P -Alg(O⊗QCoh(S)) for a fixed symmetric monoidal DG category
O and an operad P.

(iii) Take C(S) ∶= QCoh(S)-mod, the category of module categories over QCoh(S).

(iv) Take C(S) ∶= PreStk/S . In this case, for a prestack X , a map p ∶ X → C amounts
to a prestack Y over X . Given a G-action on X , a datum of right-lax equivariance
on p is equivalent to that of a lift of the given G-action on X to a G-action on Y.
This structure is a (strict) equivariance if and only if the square

G ×Y
action
ÐÐÐÐ→ Y

×
×
×
Ö

×
×
×
Ö

G ×X
action
ÐÐÐÐ→ X

is Cartesian.

1.3. The category of filtered objects. It is well-known that the formalism of
equivariance with respect to the multiplicative group allows to give an algebro-
geometric interpretation to the notion of filtered object in a given DG category.

We will review this construction in the present subsection.

1.3.1. Let C be a DG category. Recall the notation

CFil
∶= Funct(Z,C),

see Chapter 6, Sect. 1.3.

1.3.2. Consider the presheaf of categories C ⊗ QCoh(−) from Example (i) in
Sect. 1.2.5.

We will take our group-prestack G to be Gm. We take X = A1, where Gm acts
on A1 by multiplication.

Proposition-Construction 1.3.3. There is a canonical equivalence

(1.1) CFil
≃ (C⊗QCoh(A1

))
Gm

.

Proof. By [Ga3, Theorem 2.2.2], the natural functor

C⊗ (QCoh(A1
))

Gm
→ (C⊗QCoh(A1

))
Gm

is an equivalence. It is equally easy to see that the functor

C⊗VectFil
→CFil

is an equivalence. Hence, it is sufficient to treat the case C = Vect.

We construct the functor

(QCoh(A1
))

Gm
→ VectFil

as follows. Given F ∈ (QCoh(A1
))

Gm
we define the corresponding functor Z→ Vect

by
n↦ Γ(A1,F(n ⋅ {0}))Gm ,

1. FILTRATIONS AND THE MONOID A1 389

where the superscript Gm stands for taking Gm-invariants, and F(n ⋅ {0}) means
twisting F by the corresponding Cartier divisor.

The fact that this functor is an equivalence is a straightforward check.
�

1.3.4. Consider the functor

(C⊗QCoh(A1
))

Gm
→C⊗QCoh(A1

)→C,

given by restriction to {1} ∈ A1. Under the identification (1.1), this functor corre-
sponds to the functor of ‘forgetting the filtration’

oblvFil ∶ C
Fil
→C.

1.4. The category of graded objects. In this subsection we will consider a
variant of the material in Sect. 1.3, where instead of filtered objects we consider
graded ones.

1.4.1. Consider the category
Cgr

∶= CZ.

As in Proposition 1.3.3, we have:

CZ
≃ CGm ,

i.e., this is the Gm-equivariant category for the presheaf of categories C⊗QCoh(−)
over X = pt.

1.4.2. The forgetful functor
CGm

→C

corresponds to the functor of ‘forgetting the grading’

oblvgr ∶ C
gr
→C.

1.4.3. The adjoint functors

(gr→ Fil) ∶ Cgr
⇄CFil

∶ Rees

(Chapter 6, Sect. 1.3.3) correspond to the functors of pullback and push-forward
along the projection A1

→ pt.

1.4.4. Consider the functor of the ‘associated graded’

ass-gr ∶ CFil
→Cgr,

see Chapter 6, Sect. 1.3.4.

In terms of the identification

(1.2) CFil
≃ (C⊗QCoh(A1

))
Gm

,

the functor ass-gr corresponds to

F ↦ (IdC⊗i0)
∗
(F),

where i0 ∶ {0}→ A1.

1.5. Positive and negative filtrations. It turns out that if in the discussion
in Sect. 1.3, we replace the group Gm by the monoid A1, the corresponding extra
structure will single out non-negative filtrations (in the case of left-lax equivariance)
or non-positive filtrations (in the case of right-lax equivariance).

390 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

1.5.1. Consider again the presheaf of categories from Example (i) in Sect. 1.2.5.

Let us now take the monoid-prestack G = A1, where A1 is a monoid with
respect to the operation of multiplication. We take X = A1, where A1 acts on itself
by multiplication. We consider Gm as a sub-monoid of A1.

We have:

Lemma 1.5.2.

(a) The forgetful functor

(C⊗QCoh(A1
))

A1
left-lax

→ (C⊗QCoh(A1
))

Gm

is fully faithful and its essential image identifies with CFil,≥0
⊂ CFil.

(b) The forgetful functor

(C⊗QCoh(A1
))

A1
right-lax

→ (C⊗QCoh(A1
))

Gm

is fully faithful and its essential image identifies with CFil,≤0
⊂ CFil.

1.5.3. We also have the following graded analog of Lemma 1.5.2:

Lemma 1.5.4.

(a) The forgetful functor

CA1
left-lax →CGm

is fully faithful and its essential image identifies with Cgr,≥0
⊂ Cgr.

(b) The forgetful functor

CA1
right-lax →CGm

is fully faithful and its essential image identifies with Cgr,≤0
⊂ Cgr.

1.6. Scaling the structure of a P-algebra. In this subsection we make a di-
gression and explain that the construction in Chapter 6, Sect. 1.4 of endowing an
algebra B over an operad P with a filtration can be viewed as the operation of
‘scaling’ the structure maps P(n)⊗B⊗n

→ B.

1.6.1. Let O be a symmetric monoidal category, and let P be an operad. Recall
the presheaf of categories

C(S) ∶= O⊗QCoh(S),

endowed with the trivial action of a monoid G.

The operad P defines an algebra object in the monoidal category of G-equivariant
endomorphisms of C. It follows that for a prestack X , equipped with an action of
G, the forgetful functor

(P-mod(C(X)))
A1

left-lax → (C(X))
A1

left-lax

is monadic, with the corresponding monad being given by the action of P on

(C(X))
A1

left-lax as a symmetric monoidal DG category. Hence, we obtain an identi-
fication

(P-mod(C(X)))
A1

left-lax ≃ P-mod(C(X)
A1

left-lax).

2. DEFORMATION TO THE NORMAL BUNDLE 391

1.6.2. We apply this to G = X = A1, acting on itself by multiplication. Thus, we
obtain an identification

(P -Alg(O⊗QCoh(A1
)))

A1
left-lax ≃ P -Alg((O⊗QCoh(A1

))
A1

left-lax).

Using Lemma 1.5.2(a), we identify

P -Alg((O⊗QCoh(A1
))

A1
left-lax) ≃ P -Alg(OFil,≥0

).

Thus, we obtain a canonical equivalence:

(1.3) (P -Alg(O⊗QCoh(A1
)))

A1
left-lax ≃ P -Alg(OFil,≥0

).

1.6.3. Recall the functor

AddFil ∶ P -Alg(O)→ P -Alg(OFil,≥0
).

see Chapter 6, Sect. 1.4.2.

We obtain that it gives rise to a functor

ScaleA
1
left-lax ∶ P -Alg(O)→ (P -Alg(O⊗QCoh(A1

)))
A1

left-lax .

Composing with the forgetful functor

(P -Alg(O⊗QCoh(A1
)))

A1
left-lax → P -Alg(O⊗QCoh(A1

)),

we obtain a functor

Scale ∶ P -Alg(O)→ P -Alg(O⊗QCoh(A1
)).

Sometimes we will use the short-hand notation

Bscaled ∶= Scale(B) and Bscaled,A1
left-lax

∶= ScaleA
1
left-lax(B).

1.6.4. The functor Scale has the following properties:

● oblvP(Bscaled) ≃ oblvP(B)⊗OA1 ;

● i∗λ(Bscaled) ≃ B for any 0 ≠ λ ∈ A1;

● i∗0(Bscaled) ≃ trivP ○ oblvP(B).

Remark 1.6.5. One can endow the functor Scale with a structure of associa-
tivity with respect to the monoid structure on A1. This gives rise to a non-trivial
action of the monoid A1 on presheaf of categories P -Alg(O⊗QCoh(−)).

2. Deformation to the normal bundle

In this section we introduce a key construction that deforms a nil-isomorphism
X → Y to its normal bundle. It is a derived analog of the deformation of a closed
embedding to its normal cone.

In subsequent sections, this procedure will give rise to naturally defined fil-
trations on various objects constructed out of Lie algebroids (e.g., the universal
enveloping algebra of a Lie algebroid).

The geometric input into the main construction in this section, explained in
Sect. 2.2, was suggested to us by J. Lurie.

392 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

2.1. The idea. Before we give the formal construction, let us explain its idea.
It is the following: given a nil-closed embedding X → Y we will construct the
deformation of Y to the normal bundle by deforming the corresponding groupoid
X ×
Y
X .

The sought-for A1-family of groupoids of X will obtained by mapping into the
original X a particular A1-family of groupoids in the category (

clSchaff
)
op, denoted

(Bifurc●scaled)λ, λ ∈ A1.

In this subsection we will informally describe what this family looks like.

We draw the reader’s attention to the fact that groupoid objects in the category
(
clSchaff

)
op are not very familiar gadgets.

2.1.1. For any λ ∈ A1, the scheme (Bifurc0
scaled)λ of objects in (Bifurc●scaled)λ is

just pt. The scheme (Bifurc1
scaled)λ of 1-morphisms is described as follows: if λ ≠ 0,

then

(Bifurc1
scaled)λ = {λ} ⊔ {−λ} ⊂ A1.

I.e., (Bifurc●scaled)λ is the free groupoid in (
clSchaff

)
op with the scheme of objects

being pt.

When λ = 0, then (Bifurc1
scaled)0 is the scheme of dual numbers Spec(k[ε]/ε2).

I.e., we should think of Spec(k[ε]/ε2) the limit of {λ} ∪ {−λ} as λ→ 0.

2.1.2. For any λ ∈ A1 and X ∈ PreStk, we obtain a groupoid object in PreStk by
considering the prestack of maps from (Bifurc●scaled)λ into it:

Maps((Bifurc●scaled)λ,X).

Note that for λ ≠ 0, the groupoid Maps((Bifurc●scaled)λ,X) is just X ×X ⇉ X .

However, for λ = 0, the groupoid Maps((Bifurc●scaled)λ,X) is the total space of
the tangent complex on X .

2.2. A family of co-groupoids. We will now spell out the construction described
above in a more formal way.

2.2.1. In the category of connective DG algebras, consider the Čech nerve, denoted
A●, of the map

k → 0.

Explicitly, A0
= k, A1

= k ⊕ k and, in general, Ai = k ⊕ ...⊕ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i+1

. In particular, all

Ai are classical.

2.2.2. We now claim that the groupoid A● in classical commutative algebras can
be naturally lifted to one in the category of non-negatively filtered classical com-
mutative algebras, denoted (AFil

)
●.

Indeed, we define the filtration on Ai to be

(Ai)n =

⎧
⎪⎪
⎨
⎪⎪
⎩

A for n ≥ 1

k for n = 0.

In particular, (A0
)n = A

0 for all n.

2. DEFORMATION TO THE NORMAL BUNDLE 393

Remark 2.2.3. Note that (AFil
)
1 is the the filtered algebra that we used in

Chapter 6, Sect. 1.4.1 in order to construct a canonical filtration on algebras over
operads.

2.2.4. Note that

(2.1) ass-gr((AFil
)
●
) ≃ k ⊕ ε(B●

(k)), ε2 = 0, deg(ε) = 1.

In other words, ass-gr((AFil
)
●
) is the classifying space simplicial object in the

category of classical augmented commutative algebra, corresponding to the com-
mutative group object

k[ε]/ε2, deg(ε) = 1.

2.2.5. Applying the equivalence of (1.3), we turn the groupoid (AFil
)
● in the

category of non-negatively filtered commutative connective DG algebras into a
groupoid, denoted

A●
scaled,A1

left-lax

in the category of commutative connective algebras in QCoh(A1
), equipped with a

structure of left-lax equivariance with respect to A1.

Denote by A●
scaled the groupoid in the category of commutative connective al-

gebras in QCoh(A1
), obtained from A●

scaled,A1
left-lax

by forgetting the left-lax equiv-

ariance with respect to A1.

Explicitly,
A0

scaled = k[u],

and
A1

scaled = Spec(k[u, ε]/(u − ε) ⋅ (u + ε)).

The two maps
A1

scaled ⇉ A0
scaled

are given by
ε↦ u and ε↦ −u,

respectively.

The degeneracy map A0
scaled → A1

scaled is u ↦ u. The inverse for the groupoid
is the map

A1
scaled → A1

scaled, u↦ u, ε↦ −ε.

2.2.6. Passing to spectra (in the sense of algebraic geometry), we obtain a groupoid
object, denoted

Bifurc●scaled,A1
right-lax

in the category

(((Schaff
)/A1)

A1
right-lax)

op
.

Let
s, t ∶ Bifurc0

scaled,A1
right-lax

⇉ Bifurc1
scaled,A1

right-lax

denote the two face maps (source and target, respectively).

Let Bifurc●scaled denote the groupoid object in the category

((Schaff
)/A1)

op
,

394 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

obtained from Bifurc●scaled,A1
right-lax

by forgetting the the left-lax equivariance with

respect to A1.

Note that by construction, for any 0 ≠ λ ∈ A1, we have

(Bifurciscaled)λ = pt⊔... ⊔ pt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i+1

,

and the groupoid structure is that of the Čech nerve of the map

∅→ pt,

viewed as a morphism in (Schaff
)
op.

Remark 2.2.7. Note that according to Sect. 1.2.5, Example (iv), the datum
of upgrading of Bifurc●scaled to Bifurc●scaled,A1

right-lax
amounts simply to the action of

the monoid A1 on Bifurc●scaled, compatible with the projection to A1.

2.3. The canonical deformation of a groupoid. We will now use Bifurc●scaled,A1
left-lax

to deform the Čech nerve of a nil-isomorphism in PreStklaft-def to the total space
of its relative tangent complex.

2.3.1. Let X → Y be a map in PreStk, and let R● be its Čech nerve. Consider the
A1-family of simplicial objects of PreStk equal to

(2.2) Weil
Bifurc●scaled

A1 (X ×Bifurc●scaled) ×

Weil
Bifurc●

scaled
A1 (Y×Bifurc●scaled)

(Y ×A1
),

where the notation Weil is as in Sect. A.1.

I.e., for an affine scheme S, a point of the space of maps from S to i-simplices
of (2.2) consists of the data of:

● a map S → A1;
● a map y ∶ S → Y;
● a map S ×

A1
Bifurciscaled → X ;

● an identification of the composition S ×
A1

Bifurciscaled → X → Y with the

map

S ×
A1

Bifurciscaled → S
y
→ Y.

Note that, by construction, the simplicial object (2.2) in (PreStk)/A1 is aug-
mented by Y.

By Sects. A.2.3 and A.2.1, we have:

Lemma 2.3.2. Assume that X and Y belong to PreStklaft (resp., PreStklaft-def).
Then the same will be true for the terms of the simplicial prestack (2.2).

2. DEFORMATION TO THE NORMAL BUNDLE 395

2.3.3. Assume now that X and Y belong to PreStklaft-def and that X → Y is a
nil-isomorphism. Denote the simplicial prestack (2.2) by R●

scaled.

Denote

Rscaled ∶=R
1
scaled.

We have a canonical (unit) map X ×A1
→R

●
scaled, and it is clear that this map

is a nil-isomorphism. We claim:

Lemma 2.3.4. The simplicial object R●
scaled is a groupoid object of (PreStklaft-def)/A1 .

Proof. We need to show that for any n ≥ 2, the canonical map

(2.3) R
n
scaled →Rscaled ×

X×A1
... ×
X×A1

Rscaled

´¹¹¹¸¹¹¶
n times

is an isomorphism.

By Chapter 1, Proposition 8.3.2, it is enough to show that the map in question
induces an isomorphism of the tangent spaces along the unit section.

By (A.4), for an affine scheme S and a point

S
x,λ
Ð→ X ×A1,

the pullback of the tangent space of the left-hand side of (2.3) relative to Y identifies
with

Tx(X /Y) ⊗

k[u]
Γ(Bifurcnscaled,OBifurcnscaled

),

while that of the right-hand side with

Tx(X /Y) ⊗

k[u]
Γ(Bifurc1

scaled,OBifurc1
scaled

) ×
Tx(X /Y)⊗k[u]

...

... ×
Tx(X /Y)⊗k[u]

Tx(X /Y) ⊗

k[u]
Γ(Bifurc1

scaled,OBifurc1
scaled

).

Now, the required assertion follows from the fact that

Γ(Bifurcnscaled,OBifurcnscaled
) ≃ Γ(Bifurc1

scaled,OBifurc1
scaled

) ×
k[u]

... ×
k[u]

Γ(Bifurc1
scaled,OBifurc1

scaled
).

�

2.3.5. Let us calculate the fiber R●
0 of R●

scaled over 0 ∈ A1. First, by Sect. 2.2.4,
the groupoid R●

0 is actually a group, and furthermore a commutative group-object
in FormMod/X .

We now claim:

Proposition 2.3.6. The commutative group-object R●
0 ∈ FormMod/X identifies

canonically with VectX (T (X /Y)).

Proof. We will consider both sides as functors on the category Ptd(FormMod/X).

396 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

The commutative group-objectR●
0 ∈ FormMod/X assigns to Z ∈ Ptd(FormMod/X)

the space equal to the fiber of the restriction map

(2.4)

∗ ×
Maps(Z,X)

Maps(Z × Spec(k[λ]/λ2
),X) ×

Maps(Z×Spec(k[λ]/λ2),Y)
Maps(Z,Y)→

→ ∗ ×
Maps(X ,X)

Maps(X × Spec(k[λ]/λ2
),X) ×

Maps(X×Spec(k[λ]/λ2),Y)
Maps(X ,Y),

where the map in the above formula is given by restriction along X → Z, and where
the commutative group structure coming from the structure of commutative group
on

Spec(k[λ]/λ2
) ∈ ((Schaff

)pt /)
op.

By Chapter 7, Corollary 3.6.7, the commutative group-object VectX (T (X /Y))

in the category FormMod/X assigns to

(Z
π
→ X) ∈ Ptd(FormMod/X)

the space

(2.5) MapsIndCoh(X)(coFib(ωX → πIndCoh
∗ (ωZ)), T (X /Y)).

Note that

Z × Spec(k[λ]/λ2
) ≃ RealSplitSqZ(ωZ),

see Chapter 7, Sect. 3.7 for the notation.

Hence, we can rewrite the fiber of the map (2.4) as

Fib (MapsZ/ /Y(RealSplitSqZ(ωZ),X)→MapsX / /Y(RealSplitSqZ(ωX),X)) ,

and further as

Fib (MapsIndCoh(Z)(ωZ , T (X /Y)∣Z)→MapsIndCoh(X)(ωX , T (X /Y))) ,

identifies with (2.5), as required.
�

2.4. Deformation of a formal moduli problem to the normal bundle. We
will now use the deformation

R
●
↝R

●
scaled

to construct the deformation

Y ↝ Y
●
scaled.

2.4.1. Let X be an object of PreStklaft-def and let Y be an object of FormModX /.

Consider the formal groupoid R●
scaled over X (and relative to Y×A1). Applying

Chapter 5, Theorem 2.3.2, we obtain an object

Yscaled ∈ FormModX×A1/ /Y×A1 ,

i.e., an A1-family of objects Yscaled ∈ FormModX /.

2. DEFORMATION TO THE NORMAL BUNDLE 397

2.4.2. By construction, the fiber Y{λ} at 0 ≠ λ ∈ A1 identifies with the original Y.

On the other hand, by Proposition 2.3.6 the fiber Y0 at 0 ∈ A1 identifies canon-
ically with

VectX (T (X /Y)[1]),

where T (X /Y)[1] =∶ N(X /Y) can be thought of as the normal bundle to X in Y.

2.4.3. Example. Let us take Y = XdR. Then the object

(XdR)scaled ∈ FormModX×A1/ /Y×A1

is the Dolbeault degeneration of XdR to VectX (T (X)[1]).

Remark 2.4.4. One can show that when X = X is a classical scheme, and Y
is the obtained as the formal completion of a classical scheme Y along a regular
closed embedding X → Y , then Yscaled is a nil-schematic ind-scheme (i.e., formal
scheme) equal to the formal completion along X × A1 of the scheme given by the
usual deformation of Y to the normal cone.

2.5. The action of the monoid A1. Above to any Y ∈ FormModX / we have

assigned an A1-family Yscaled of objects of FormModX /. However, this family pos-
sesses an extra structure: that of left-lax equivariance with respect to the monoid
A1.

According to Sect. 1.5, this is exactly the kind of structure that allows to endow
linear objects attached to Y with a non-negative filtration. The latter observation
will be extensively used in the sequel.

2.5.1. Recall that by construction, the groupoid

Bifurc●scaled ∈ ((Schaff
)/A1)

op

could be naturally upgraded to

Bifurc●scaled,A1
right-lax

∈ (((Schaff
)/A1)

A1
right-lax)

op
.

Consider now the functor

FormModX×−/ /Y×− ∶ (Schaff
aft)

op
→ 1-Cat, S ↦ FormModX×S/ /Y×S .

By transport of structure, we obtain that for Y ∈ FormModX /, the object

Yscaled ∈ FormModX×A1/ /Y×A1 ,

viewed as a natural transformation

A1
→ FormModX×−/ /Y×−

has a natural structure of left-lax equivariance with respect to A1, where the target
presheaf of categories FormModX×−/ /Y×− is endowed with the trivial action of A1.

Thus, we obtain a well-defined object

Yscaled,A1
left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax .

398 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

2.5.2. Restricting along {0}→ A1, we obtain the object

Y0,A1
left-lax

∈ (FormModX /)
A1

left-lax ,

that according to Proposition 2.3.6 identifies with

VectX (T (X /Y)[1]),

where T (X /Y) is regarded as an object of

IndCoh(X) ≃ IndCoh(X)
gr,=1

⊂ IndCoh(X)
gr,≥0

≃ IndCoh(X)
A1

left-lax .

3. The canonical filtration on a Lie algebroid

In this section we will show that any Lie algebroid on X gives rise, in a canonical
way, to a filtered Lie algebroid. This construction is a generalization of the con-
struction in Sect. 1.6 that assigns to a Lie algebra in IndCoh(X) (or any symmetric
monoidal DG category) a filtered Lie algebra.

The associated graded of this filtration will yield the trivial Lie algebroid, and
this fact will be subsequently used to establish various properties of formal moduli
problems.

When working in the setting of classical algebraic geometry, the above filtered
structure can be constructed ‘by hand’. However, in the context of derived algebraic
geometry we will use the deformation to the normal bundle to produce it.

3.1. Deformation to the normal bundle and Lie algebroids. In this subsec-
tion we will adapt the material of Sect. 2.5 to the language of Lie algebroids.

3.1.1. Consider the presheaf of categories

LieAlgbroid(X × −/−) ∶ (Schaff
aft)

op
→ 1-Cat, S ↦ LieAlgbroid(X × S/S).

We obtain that for any L ∈ LieAlgbroid(X) there is a canonically defined object

LFil
∈ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax .

Moreover, this assignment is functorial in L. We denote the resulting functor

LieAlgbroid(X)→ (LieAlgbroid(X ×A1
/A1

))
A1

left-lax

by AddFil.

3.1.2. Let us denote by ass-gr the functor

(LieAlgbroid(X ×A1
/A1

))
A1

left-lax
→ (LieAlgbroid(X))

A1
left-lax ,

given by taking the fiber at 0 ∈ A1.

By Sect. 2.4.2, the composite functor

ass-gr ○AddFil ∶ LieAlgbroid(X)→ LieAlgbroid(X)

equals the composition

LieAlgbroid(X)

oblvLieAlgbroid

Ð→ IndCoh(X)
deg=1
Ð→ IndCoh(X)

gr
≃ IndCoh(X)

A1
left-lax →

trivLie
Ð→ LieAlg(IndCoh(X)

A1
left-lax) ≃ LieAlg(IndCoh(X))

A1
left-lax

diag
Ð→ LieAlgbroid(X)

A1
left-lax .

3. THE CANONICAL FILTRATION ON A LIE ALGEBROID 399

Remark 3.1.3. As in Remark 1.6.5, one can show that the above functor

AddFil ∶ LieAlgbroid(X)→ (LieAlgbroid(X ×A1
/A1

))
A1

left-lax

is part of a richer structure. Namely, the functor

LieAlgbroid(X × −/−) ∶ (Schaff
aft)

op
→ 1-Cat

carries a canonical action of the monoid A1.

3.2. Compatibility with the forgetful functor. We shall now study how the
above canonical filtration on a Lie algebroid is compatible with the forgetful functor

oblvLieAlgbroid /T ∶ LieAlgbroid(X)→ IndCoh(X)/T (X).

3.2.1. Consider presheaf of categories

IndCoh(X × −)/T (X)∣X×− , (Schaff
aft)

op
→ 1-Cat, S ↦ IndCoh(X × S)/T (X)∣X×S .

The functor oblvLieAlgbroid /T defines a natural transformation

LieAlgbroid(X × −/−)→ IndCoh(X × −)/T (X)∣X×− .

We endow IndCoh(X × −)/T (X)∣X×− with the trivial action of the monoid A1,

and the above natural transformation is (obviously) A1-equivariant.

In particular, we obtain a functor

oblvLieAlgbroid /T ∶ (LieAlgbroid(X ×A1
/A1

))
A1

left-lax
→

(IndCoh(X ×A1
)/T (X)∣

X×A1
)
A1

left-lax .

3.2.2. Note that by Lemma 1.5.2(a), the category (IndCoh(X ×A1
)/T (X)∣

X×A1
)
A1

left-lax

identifies with

(3.1) (IndCoh(X)
Fil,≥0

)/T (X).

Above we view T (X) as an object of IndCoh(X)
Fil,≥0 via the functor (gr →

Fil) ○ (deg = 0), i.e.,

IndCoh(X) ≃ IndCoh(X)
Fil,≥0,≤0

⊂ IndCoh(X)
Fil,≥0.

3.2.3. Recall now that in Chapter 8, Sect. 5.3.5, we defined a functor

IndCoh(X)/T (X) → (IndCoh(X ×A1
)/T (X)∣

X×A1
)
A1

left-lax .

Namely, for F
γ
→ T (X) ∈ IndCoh(X)/T (X), the underlying object (F

γ
→ T (X))scaled

of IndCoh(X ×A1
)/T (X)∣

X×A1
is given by

F ∣X×A1

γscaled
Ð→ T (X)∣X×A1 ,

where the value of γscaled over λ ∈ A1 equals λ ⋅ γ.

The structure of left-lax A1-equivariance on (F
γ
→ T (X))scaled is defined natu-

rally. Denote this functor by AddFil.

400 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

3.2.4. In terms of the identification (3.1), the functor AddFil sends F
γ
→ T (X) to

(gr→ Fil) ○ (deg = 1)(F)
γ
→ (gr→ Fil) ○ (deg = 0)(T (X)).

Here for i ≥ 0, we recall that (gr→ Fil) ○ (deg = i) denotes the functor

IndCoh(X) ≃ IndCoh(X)
Fil,≥i,≤i

⊂ IndCoh(X)
Fil,≥i

⊂ IndCoh(X)
Fil,≥0

(i.e., we take an object of IndCoh(F) and place it in degree i).

3.2.5. The goal of this section is to establish the following:

Proposition 3.2.6. The following diagram of functors commutes:

(3.2)

LieAlgbroid(X)
AddFil
ÐÐÐÐ→ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax

oblvLieAlgbroid /T

×
×
×
Ö

×
×
×
Ö

oblvLieAlgbroid /T

IndCoh(X)/T (X)
AddFil
ÐÐÐÐ→ (IndCoh(X ×A1

)/T (X)∣
X×A1

)
A1

left-lax .

Remark 3.2.7. Note that by adjunction from the commutative diagram (3.2),
we obtain a diagram that commutes up to a natural transformation:

(3.3)

LieAlgbroid(X)
AddFil
ÐÐÐÐ→ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax

freeLieAlgbroid

Õ
×
×
×

Õ
×
×
×

freeLieAlgbroid

IndCoh(X)/T (X)
AddFil
ÐÐÐÐ→ (IndCoh(X ×A1

)/T (X)∣
X×A1

)
A1

left-lax .

We note, however, that the above natural transformation is not an isomor-
phism. Indeed, the two circuits give a different result even after applying the
functor ass-gr.

I.e., the structure of filtered Lie algebroid on filtration on freeLieAlgbroid(F
γ
→

T (X)), given by the construction in Chapter 8, Sect. 5.3 is different from the
canonical filtration that exists on an arbitrary Lie algebroid, given by the construc-
tion in Sect. 3.1.

3.3. Proof of Proposition 3.2.6.
3.3.1. For L ∈ LieAlgbroid(X) the object

oblvLieAlgbroid /T ○AddFil(L) ∈ (IndCoh(X ×A1
)/T (X)∣

X×A1
)
A1

left-lax

can be described as follows.

Let Y be the object of FormModX /, corresponding to L. Consider the corre-
sponding prestack

Rscaled ∶= Weil
Bifurc1

scaled

A1 (X ×Bifurc1
scaled) ×

Weil
Bifurc1

scaled
A1 (Y×Bifurc1

scaled)

(Y ×A1
),

equipped with a structure of left-lax equivariance with respect to A1.

Consider the object

T (Rscaled/X ×A1
)∣X×A1 ∈ IndCoh(X ×A1

),

3. THE CANONICAL FILTRATION ON A LIE ALGEBROID 401

where Rscaled → X × A1 is induced by the map t ∶ A1
→ Bifurc1

scaled. The map

s ∶ A1
→ Bifurc1

scaled induces a map

T (Rscaled/X ×A1
)∣X×A1 → T (X)∣X×A1 ,

and the resulting object of IndCoh(X ×A1
)/IndCoh(X×A1)/T (X)∣

X×A1
naturally lifts to

(IndCoh(X ×A1
)/T (X)∣

X×A1
)
A1

left-lax ,

which is our oblvLieAlgbroid ○AddFil(L).

We need to show that the above object is obtained from the tautological map

T (X /Y)→ T (X)

by the scaling procedure of Sect. 3.2.3.

3.3.2. We identify

T (Rscaled/X ×A1
)∣X×A1 ≃ Fib (T (Rscaled/Y ×A1

)∣X×A1 → T (X ×A1
/Y ×A1

)) ,

which, by (A.4), identifies with

T (X /Y)⊗ Fib(Γ(Bifurc1
scaled,OBifurc1

scaled
)
t∗

→ Γ(A1,OA1)) ,

and its map to

IndCoh(X ×A1
)/T (X)∣

X×A1
≃ T (X)⊗ Γ(A1,OA1)

identifies with

T (X /Y)⊗ Fib(Γ(Bifurc1
scaled,OBifurc1

scaled
)
t∗

→ Γ(A1,OA1))→

→ T (X /Y)⊗ Γ(Bifurc1
scaled,OBifurc1

scaled
)
s∗

→

→ T (X /Y)⊗ Γ(A1,OA1)→ T (X)⊗ Γ(A1,OA1).

3.3.3. Thus, we need to show that the composite arrow

Fib(Γ(Bifurc1
scaled,OBifurc1

scaled
)
t∗

→ Γ(A1,OA1))→

→ Γ(Bifurc1
scaled,OBifurc1

scaled
)
s∗

→ Γ(A1,OA1),

viewed as an object of

(QCoh(A1
)/OA1

)
A1

left-lax ,

is obtained by the scaling procedure of Sect. 3.2.3 from the identity map OA1 → OA1 .

3.3.4. We identify the above map with

Fib((AFil
)
1
→ k)→ (AFil

)
1
→ k,

where (AFil
)
1 is the filtered algebra from Sect. 2.2.2. Here the two maps k ⊕ k ≃

A1
⇉ k ⊕ k are the projection on the first and the second copy of k

The resulting map in VectFil,≥0 is

(gr→ Fil) ○ (deg = 1)(k)→ (gr→ Fil) ○ (deg = 0)(k),

as required.
�

402 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

4. The case of groups

In this section we will show that assignment L ↝ LFil of Sect. 3.1 reproduces
in the case of Lie algebras the construction of scaling the Lie algebra structure

h↝ hFil,

see Chapter 6, Sect. 1.4.3.

This is not altogether obvious, since the filtration in the case of Lie algebras was
produced purely algebraically, and in the case of Lie algebroids we used geometry
(specifically, the co-simplicial scheme Bifurc●scaled).

4.1. Deformation to the normal cone in the pointed case. In thus subsection
we will consider the deformation

Y ↝ Yscaled,A1
left-lax

when Y is an object of Ptd(FormMod/X). Denote

H ∶= ΩX (Y).

In this case, by functoriality, Yscaled,A1
left-lax

is an object of

(Ptd(FormMod/X×A1))
A1

left-lax .

4.1.1. Consider the corresponding object

Hscaled ∶= ΩX (Yscaled)

in (Grp(FormMod/X×A1)).

By functoriality, it lifts to an object

Hscaled,A1
left-lax

∈ (Grp(FormMod/X×A1))
A1

left-lax .

4.1.2. Applying the functor

LieZ ∶ Grp(FormMod/Z)→ LieAlg(IndCoh(Z))

(see Chapter 7, Sect. 3.6), we obtain an object

LieX×A1(Hscaled,A1
left-lax

) ∈ (LieAlg(IndCoh(X ×A1
))

A1
left-lax .

Using the equivalence of (1.3), we regard it as an object, denoted

LieX (H
Fil

) ∈ LieAlg(IndCoh(X)
Fil≥0

).

We claim:

Theorem 4.1.3. The above object LieX (H
Fil

) ∈ LieAlg(IndCoh(X)
Fil≥0

) iden-
tifies canonically with the object (LieX (H))

Fil of Chapter 6, Sect. 1.4.3.

4. THE CASE OF GROUPS 403

4.1.4. It will follow from the proof that the isomorphism in Theorem 4.1.3 is
compatible with the corresponding forgetful functors.

Namely, it follows from Proposition 3.2.6 that there is a canonical isomorphism

(4.1) oblvLie(LieX (H
Fil

)) ≃ (gr→ Fil) ○ (deg = 1) ○ oblvLie(LieX (H)).

In addition, by construction,

(4.2) oblvLie((LieX (H))
Fil

) ≃ (gr→ Fil) ○ (deg = 1) ○ oblvLie(LieX (H)).

Now, the isomorphisms (4.1) and (4.2) are compatible via the isomorphism of
Theorem 4.1.3.

4.1.5. Translating to the language of Lie algebroids we obtain:

Corollary 4.1.6. The following diagram canonically commutes

LieAlg(IndCoh(X))
AddFil
ÐÐÐÐ→ (LieAlg(IndCoh(X ×A1

))
A1

left-lax

diag
×
×
×
Ö

×
×
×
Ö

diag

LieAlgebroids(X)
AddFil
ÐÐÐÐ→ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax .

4.1.7. The compatibility in Sect. 4.1.4 amounts to the fact that the data of com-
mutativity of the outer square in

LieAlg(IndCoh(X))
AddFil
ÐÐÐÐ→ (LieAlg(IndCoh(X ×A1

))
A1

left-lax

diag
×
×
×
Ö

×
×
×
Ö

diag

LieAlgebroids(X)
AddFil
ÐÐÐÐ→ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax

oblvLieAlgrboid /T (X)

×
×
×
Ö

×
×
×
Ö

oblvLieAlgrboid /T (X)

IndCoh(X)/T (X)
AddFil
ÐÐÐÐ→ (IndCoh(X ×A1

)/T (X)∣
X×A1

)
A1

left-lax ,

equals one in the outer square of

LieAlg(IndCoh(X))
AddFil
ÐÐÐÐ→ (LieAlg(IndCoh(X ×A1

))
A1

left-lax

×
×
×
Ö

×
×
×
Ö

IndCoh(X)

(gr→Fil)○(deg=1)
ÐÐÐÐÐÐÐÐÐ→ IndCoh(X ×A1

)
A1

left-lax

×
×
×
Ö

×
×
×
Ö

IndCoh(X)/T (X)
AddFil
ÐÐÐÐ→ (IndCoh(X ×A1

)/T (X)∣
X×A1

)
A1

left-lax ,

where the lower vertical arrows are given by

F ↦ (F
0
→ T (X)).

404 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

Remark 4.1.8. By adjunction, the next diagram commutes up to a natural
transformation:

LieAlg(IndCoh(X))
AddFil
ÐÐÐÐ→ (LieAlg(IndCoh(X ×A1

))
A1

left-lax

ker-anch
Õ
×
×
×

Õ
×
×
×

ker-anch

LieAlgebroids(X)
AddFil
ÐÐÐÐ→ (LieAlgbroid(X ×A1

/A1
))

A1
left-lax .

We note, however, that this natural transformation is not an isomorphism.

4.1.9. The rest of this section is devoted to the proof of Theorem 4.1.3.

4.2. A digression: category objects and group-objects. We will now explain
a general categorical paradigm that will be used in the proof of Theorem 4.1.3.

4.2.1. Let C be a pointed category with finite limits. Let c● be a Segal-object
(a.k.a., category-object) of C; see Volume I, Chapter 5, Sect. 5.1.1 for what this
means.

On the one hand, we consider the simplicial object of C equal to

(4.3) ′c● ∶= ∗ ×
c●
c0,

where c0 → cn is given by the degeneracy map.

It is easy to see that ′c● is a groupoid-object in C with ′c0 = ∗, i.e., it defines a
structure of group-object on ′d ∶= ′c1.

4.2.2. On the other hand, consider the group-objects Ω(c1) and Ω(c0). The ‘tar-
get’ map t ∶ c1 → c0 defines a homomorphism Ω(c1)→ Ω(c0). Define

′′d ∶= Fib(Ω(c1)→ Ω(c0)).

We claim:

Proposition 4.2.3. Under the above circumstances, there is a canonical iso-
morphism of group-objects in C

′d ≃ ′′d.

Proof. Consider the category-object in Grp(C) given by Ω(c●). We can regard
it as a group-object in the category of category-objects in C and as such it acts on
′c●. This action defines an action of the group-object Ω(c1) on the object of C
underlying ′c1.

The action of the group Fib(Ω(c1)→ Ω(c0)) on ′c1 has an additional structure:
it commutes with the action of the group-object ′c1 on itself by right translations.

This defines a homomorphism ′′d → ′d. At the level of the underlying objects
of C, this map is the map

∗ ×
∗×
c0
∗
(∗ ×

c1
∗)→ ∗ ×

c1
∗→ ∗ ×

c1
c0,

which is an isomorphism since the degeneracy map c0 → c1 is a right inverse to
t ∶ c1 → c0.

�

4.3. Proof of Theorem 4.1.3.

5. INFINITESIMAL NEIGHBORHOODS 405

4.3.1. Step 1. We claim that the objectHscaled,A1
left-lax

∈ (Grp(FormMod/X×A1))
A1

left-lax

is given by

(4.4) Weil
X×Bifurc1

scaled

X×A1 (H ×Bifurc1
scaled) ×

H×A1
(X ×A1

),

with its natural left-lax equivariant structure with respect to A1, and the map

Weil
X×Bifurc1

scaled

X×A1 (H ×Bifurc1
scaled)→Weil

X×Bifurc0
scaled

X×A1 (H ×Bifurc0
scaled) =H ×A1

is induced by t ∶ Bifurc0
scaled → Bifurc1

scaled.

Indeed, we apply the setting of Sect. 4.2 to the category

C ∶= (Ptd(FormMod/X×A1)))
A1

left-lax

and

c● ∶= Weil
X×Bifurc1

scaled

X×A1 (Y ×Bifurc1
scaled).

Then the object ′d of Sect. 4.2.1 identifies with

Weil
Bifurc●scaled

A1 (X ×Bifurc●scaled) ×

Weil
Bifurc●

scaled
A1 (Y×Bifurc●scaled)

(Y ×A1
) =Hscaled.

This is while the object ′′d of Sect. 4.2.1 identifies with (4.4).

Note that the group structure on (4.4) is induced by that on H (i.e., the

groupoid structure on Bifurc1
scaled is not involved).

4.3.2. Step 2. From the commutativity of the diagram (A.7), we obtain a canonical

identification of objects of objects of LieAlg(IndCoh(X)⊗QCoh(A1
))

A1
left-lax

LieX×A1(Weil
X×Bifurc1

scaled

X×A1 (H ×Bifurc1
scaled) ×

H×A1
(X ×A1

)) ≃

≃ Fib(Weil
X×Bifurc1

scaled

X×A1 (LieX (H)∣X×Bifurc1
scaled

)→ LieX (H)∣X×A1) .

Now, it follows from Remark 2.2.3 that the latter expression is canonically
isomorphic to (LieX (H))

Fil. �

5. Infinitesimal neighborhoods

Let X → Y be a closed embedding of classical schemes. In this case we can
consider the n-infinitesimal neighborhood of X inside Y (it corresponds to the n-th
power of the defining X in Y).

However, the derived version of this construction is not so evident (what do we
mean by the n-th power of an ideal?).

In this section we will define the corresponding derived version in the general
context of formal moduli problems. The key tool will be deformation to the normal
bundle from Sect. 2.

406 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

5.1. The n-th infinitesimal neighborhood. Let X → Y be a map objects of
PreStklaft-def . In this subsection we will construct a sequence of objects

X = X
(0)
→ X

(1)
→ ...→ X (n)

→ ...→ Y,

with X (n)
∈ FormMod/X .

The prestacks X (n) will generalize the construction of the ‘n-th infinitesimal
neighborhood of X in Y ’ for a closed embedding of classical schemes X → Y . (In
the case when the embedding is regular, the derived construction will agree with the
classical construction. However, in general, even if both X and Y are classical, the
derived n-th infinitesimal neighborhood will have a non-trivial derived structure.)

It will follow from the construction that X (1) is the square-zero extension cor-
responding to the map T (X /Y)→ T (X), i.e.,

RealSqZ(T (X /Y)→ T (X)),

see Chapter 8, Sect. 5.1.1.

5.1.1. We will construct the objects X (n) inductively, starting from n = 0. In fact,
we will construct their filtered enhancements, denoted

X
(n)
scaled,A1

left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax .

Let

X
(n)
scaled ∈ FormModX×A1/ /Y×A1

be the object obtained from X
(n)
scaled,A1

left-lax

by forgetting the structure of left-lax

equivariance with respect to A1, so that X (n) is the fiber of X
(n)
scaled at 1 ∈ A1.

Set X
(0)
scaled,A1

left-lax

∶= X ×A1. Assume that X
(n−1)
scaled,A1

left-lax

, equipped with a map

X
(n−1)
scaled,A1

left-lax

→ Yscaled,A1
left-lax

has been constructed.

5.1.2. Consider the object

T (X
(n−1)

/Y)∣X ∈ IndCoh(X).

It canonically lifts to an object in IndCoh(X)
Fil,≥0

∈ IndCoh(X)
Fil, denoted (T (X

(n−1)
/Y)∣X)

Fil.
Namely, we consider

T (X
(n−1)
scaled /Yscaled)∣X×A1 ∈ IndCoh(X ×A1

),

equipped with the natural structure of left-lax equivariance with respect to A1, and
thus giving rise to the sought-for

(T (X
(n−1)

/Y)∣X)
Fil

∈ IndCoh(X ×A1
)
A1

left-lax ≃ IndCoh(X)
Fil,≥0.

We will prove:

Theorem 5.1.3. The object (T (X
(n−1)

/Y)∣X)
Fil belongs to IndCoh(X)

Fil,≥n,
and the n-th term of the filtration identifies canonically with

Symn
(T (X /Y)[1]) [−1].

5. INFINITESIMAL NEIGHBORHOODS 407

Here, by a slight abuse of notation, we denote by Symn
(T (X /Y)[1])[−1] the

object of

IndCoh(X)
Fil,≥n

⊂ IndCoh(X)
Fil,≥0

that should properly be denoted

(gr→ Fil) ○ (deg = n)(Symn
(T (X /Y)[1])[−1]).

5.1.4. Let in−1 denote the map X → X (n−1), and let in−1,scaled denote the map

X ×A1
→ X

(n−1)
scaled .

Assuming Theorem 5.1.3, we obtain a canonically defined map

(in−1,scaled)
IndCoh
∗ (Symn

(T (X /Y)[1])[−1])→ T (X
(n−1)
scaled /Yscaled).

5.1.5. We let X
(n)
scaled denote the square-zero extension of X

(n−1)
scaled corresponding to

the composite map

(in−1,scaled)
IndCoh
∗ (Symn

(T (X /Y)[1])[−1])→ T (X
(n−1)
scaled /Yscaled)→ T (X

(n−1)
scaled).

By transport of structure, the object

X
(n)
scaled ∈ FormModX×A1/ /Y×A1

lifts to an object

X
(n)
scaled,A1

left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax ,

the map X
(n−1)
scaled,A1

left-lax

→ Yscaled,A1
left-lax

is equipped with an extension to a map

X
(n)
scaled,A1

left-lax

→ Yscaled,A1
left-lax

.

5.2. Computing the colimit. In this subsection we will show that the colimit
of the n-th infinitesimal neighborhoods recovers the ambient prestack.

5.2.1. Recall that according to Chapter 5, Corollary 2.3.6, the category FormModX /
admits sifted, and in particular, filtered colimits. Consider the object

colim
n
X

(n)
∈ FormModX /,

which is equipped with a canonically defined map to Y.

Proposition 5.2.2. The map

colim
n
X

(n)
→ Y

is an isomorphism in FormModX /.

Proof. By Chapter 1, Proposition 8.3.2, it suffices to show that the map in
question induces an isomorphism at the level of tangent spaces

T (X /colim
n
X

(n)
)→ T (X /Y).

By Chapter 5, Corollary 2.3.6, the natural map

colim
n

T (X /X
(n)

)→ T (X /colim
n
X

(n)
)

is an isomorphism.

408 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

Hence, it suffices to show that the colimit

colim
n

T (X
(n)

/Y)∣X

vanishes.

However, this follows from Theorem 5.1.3. Indeed, the above colimit lifts to an
object of IndCoh(X)

Fil,≥0, which belongs to IndCoh(X)
Fil,≥n for any n.

�

By combining with Chapter 5, Corollary 2.3.7, we obtain:

Corollary 5.2.3. The map

colim
n
X

(n)
→ Y

is an isomorphism in (PreStklaft)X /.

5.2.4. By combining Proposition 5.2.2 with Chapter 7, Corollary 5.3.3(b) (or,
alternatively, just using Corollary 5.2.3) above, we obtain:

Corollary 5.2.5. For Y ∈ FormModX /, there is a canonical isomorphism

colim
n

(fn)
IndCoh
∗ (ωX (n))→ ωY ,

where fn denotes the map X (n)
→ Y.

5.3. The Hodge filtration (a.k.a., de Rham resolution). Let L be a Lie
algebroid on X . In the classical setting, the object ωX , when equipped with the
canonical structure of L-module, admits a canonical ‘de Rham’ resolution with
terms induced from

Symn
(oblvLieAlgbroid(L)[1])[−n].

In this subsection we will carry out the corresponding construction in the derived
setting.

The statement will be that the unit object in the category L-mod(IndCoh) has
a canonical filtration with subquotients indL (Symn

(oblvLieAlgbroid(L)[1])).

Applying this to L = T (X), we recover the Hodge filtration on

ωXdR
∈ IndCoh(XdR).

5.3.1. Let L be a Lie algebroid on X ∈ PreStklaft-def , corresponding to an object

(f ∶ X → Y) ∈ FormModX / .

Let ωX ,L denote the object of L-mod(IndCoh(X)) corresponding to ωY ∈

IndCoh(Y). Tautologically,

oblvL(ωX ,L) = ωX .

We will prove the following:

Proposition-Construction 5.3.2. There exists a canonical lift of ωX ,L to
an object

(ωX ,L)
Fil

∈ L-mod(IndCoh(X))
Fil,≥0,

such that
ass-grn(ωX ,L) = indL (Symn

(oblvLieAlgbroid(L)[1])) .

5. INFINITESIMAL NEIGHBORHOODS 409

5.3.3. Proof of Proposition 5.3.2. Let X (n) be the n-th infinitesimal neighborhood
of X in Y, see Sect. 5. Let in, in−1,n and fn denote the maps

X → X
(n), X (n−1)

→ X
(n) and X (n)

→ Y,

respectively.

We let

(ωX ,L)
≤n

∶= (fn)
IndCoh
∗ (ωX (n)).

Recall that by Corollary 5.2.5, the canonical map

colim
n

(fn)
IndCoh
∗ (ωX (n))→ ωY

is an isomorphism.

Hence, it remains to construct the isomorphisms

(5.1) coFib ((fn−1)
IndCoh
∗ (ωX (n−1))→ (fn)

IndCoh
∗ (ωX (n))) ≃

≃ f IndCoh
∗ (Symn

(oblvLieAlgbroid(L)[1])) .

The left-hand side in (5.1) identifies with

(fn)
IndCoh
∗ (coFib ((in−1,n)

IndCoh
∗ (ωX (n−1))→ ωX (n))) .

Let us recall that by construction, the map in−1,n ∶ X
(n−1)

→ X
(n) has a struc-

ture of square-zero extension corresponding to

(in−1)
IndCoh
∗ (Symn

(T (X /Y)[1]) [−1]) ∈ IndCoh(X (n−1
).

Hence, by Chapter 8, Proposition 6.4.2,

coFib ((in−1,n)
IndCoh
∗ (ωX (n−1))→ ωX (n)) ≃

≃ (in−1,n)
IndCoh
∗ ○ (in−1)

IndCoh
∗ (Symn

(T (X /Y)[1])) ≃

≃ (in)
IndCoh
∗ (Symn

(T (X /Y)[1])) .

And hence, the left-hand side in (5.1) identifies with

(fn)
IndCoh
∗ ○ (in)

IndCoh
∗ (Symn

(T (X /Y)[1])) ≃ f IndCoh
∗ (Symn

(T (X /Y)[1])) ,

where

T (X /Y) ≃ oblvLieAlgbroid(L),

as desired.
�

5.4. Proof of Theorem 5.1.3: reduction to the case of vector groups. In
this subsection we will reduce the assertion of Theorem 5.1.3 to the case when Y is
of the form VectX (F) for F ∈ IndCoh(X).

5.4.1. Since the functor

ass-gr ∶ IndCoh(X)
Fil,≥0

→ IndCoh(X)
gr,≥0

is conservative, it is enough to prove that in

ass-gr((T (X
(n−1)

/Y)∣X)
Fil

) ∈ IndCoh(X)
gr,≥0

the lowest graded piece is in degree n, and is canonically isomorphic to Symn
(T (X /Y)[1]) [−1].

410 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

5.4.2. By Sect. 2.5.2 and the compatibility of the functor RealSqZ with base change
(see Chapter 8, Proposition 5.4.3) this reduces the assertion of the proposition to
considering the case of

Y ∶= VectX (F) ∈ (FormMod/X)
A1

left-lax ,

for

F ∈ IndCoh(X) ≃ IndCoh(X)
gr,=1

⊂ IndCoh(X)
gr,≥0

≃ IndCoh(X)
A1

left-lax .

5.5. Proof of Theorem 5.1.3: the case of vector groups. When dealing with
vector groups we ‘know’ what the n-infinitesimal neighborhood must be, and this
is what we will establish, along with the assertion of Theorem 5.1.3 in this case.

5.5.1. Consider the symmetric monoidal category IndCoh(X)
gr,≥0. Let

CocomCoalgaug
(IndCoh(X)

gr,>0
) ⊂ CocomCoalgaug

(IndCoh(X)
gr,≥0

)

be the full subcategory consisting of objects, for which the augmentation co-ideal
belongs to IndCoh(X)

gr,>0.

Consider also the category

LieAlg(IndCoh(X)
gr,>0

).

We have a pair of adjoint functors
(5.2)

Chevenh
∶ LieAlg(IndCoh(X)

gr,>0
)⇄ CocomCoalgaug

(IndCoh(X)
gr,>0

) ∶ coChevenh .

By [FraG, Proposition 4.1.2], the adjoint functors in (5.2) are mutually inverse
equivalences.

5.5.2. For

F ∈ IndCoh(X) ≃ IndCoh(X)
gr,=1

⊂ IndCoh(X)
gr,≥0

we consider the objects

Sym(F) and Sym≤n
(F) ∈ CocomCoalgaug

(IndCoh(X)
gr,>0

).

Note that there is a canonical isomorphism

coChevenh
(Sym(F)) = trivLie(F[−1]).

(The above isomorphism is a particular case of Chapter 6, Theorem 4.2.4, but is
much simpler, since we are in the graded category, and the functors in (5.2) are
equivalences.)

Note that
BX (trivLie(F[−1])) ≃ VectX (F).

Denote
g(n) ∶= coChevenh

(Sym≤n
(F)).

For example,

g(1) = freeLie(F[−1]).

(Again, this isomorphism holds because the functors in (5.2) are equivalences.)

Denote
VectX (F)

(n)
∶= BX (g(n)) ∈ (FormModX /)

A1
left-lax .

Let ĩn denote the map X → VectX (F)
(n).

5. INFINITESIMAL NEIGHBORHOODS 411

5.5.3. Consider
Y ∶= VectX (F) ∈ (FormMod/X)

A1
left-lax ,

and the corresponding object X (n)
∈ (FormModX /)

A1
left-lax .

We are going to prove that there exists a canonical isomorphism in (FormModX /)
A1

left-lax .

VectX (F)
(n)

≃ X
(n),

and that the assertion of Theorem 5.1.3 holds for VectX (F)
(n). More precisely, we

will prove the following assertion:

Proposition 5.5.4.

(a) The lowest graded terms in the objects of IndCoh(X)
A1

left-lax ≃ IndCoh(X)
gr,≥0

T (VectX (F)
(n−1)

/VectX (F)
(n)

)∣X and T (VectX (F)
(n−1)

/VectX (F))∣X

are in degree n; the map

T (VectX (F)
(n−1)

/VectX (F)
(n)

)∣X → T (VectX (F)
(n−1)

/VectX (F))∣X

induces an isomorphism of degree n terms, and both identify canonically with Symn
(F)[−1].

(b) The map

RealSqZ ((̃in−1)
IndCoh
∗ (Symn

(F)[−1])→ T (VectX (F)
(n−1)

))→ VectX (F)
(n),

induced by the identification in (a), is an isomorphism.

5.5.5. The assertion of Proposition 5.5.4 implies the required properties of VectX (F)
(n)

and X (n) by induction on n.

5.6. Proof of Proposition 5.5.4. The proof of Proposition 5.5.4 will involve
some ‘cheating’: instead of performing the crucial computation, we will reduce
it to the case of classical algebraic geometry, namely, the embedding of 0 into a
finite-dimensional vector space.

5.6.1. Before we prove Proposition 5.5.4, let us translate its assertion into the
language of Lie algebras.

Point (a) says that the objects

Fib (oblvLie(g
(n−1)

)→ oblvLie(g
(n)

)) and Fib (oblvLie(g
(n−1)

)→ F[−1])

both live in degrees ≥ n, and their degree n part is isomorphic to Symn
(F)[−2].

Point (b) says the following. Let Fn denote the object

coFib (Symn
(F)[−2]→ oblvLie(g

(n−1)
)) ∈ IndCoh(X)

gr,≥0.

We have a canonical map

oblvLie(g
(n−1)

)→ Fn.

Let
freeLieAlg

g(n−1)/
(Fn)

be the corresponding free object in the category of Lie algebras in IndCoh(X) under

g(n−1).

By point (a) of Proposition 5.5.4, we have a canonical map

(5.3) freeLieAlg
g(n−1)/

(Fn)→ g(n).

412 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

Now, point (b) of Proposition 5.5.4 is equivalent to the fact that the map (5.3)
is an isomorphism.

5.6.2. The above reformulation of Proposition 5.5.4 makes sense when IndCoh(X)

is replaced by an arbitrary symmetric monoidal DG category O. Furthermore, the
assertion of both points of Proposition 5.5.4 is about the comparison of pairs of
functors O→O, given by symmetric sequences.

Hence, we can replace IndCoh(X) by Vect, and we can assume that F is a
finite-dimensional vector space that lives in the cohomological degree 0.

In the latter case, the assertion of Proposition 5.5.4 is manifest. �

6. Filtration on the universal enveloping algebra of a Lie algebroid

Let L be a Lie algebroid on X . Recall that in Chapter 8, Sect. 4.2 to L we
associated its universal enveloping algebra U(L), which was an algebra object in
the monoidal DG category

Functcont(IndCoh(X), IndCoh(X)).

In this subsection we define a crucial piece of structure that U(L) possesses,
namely, the canonical (a.k.a. PBW) filtration.

6.1. The statement. In this subsection we state the main result of the present
section, Theorem 6.1.2.

6.1.1. Consider the monoidal category

(Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

.

We claim:

Theorem 6.1.2. The object

U(L) ∈ AssocAlg (Functcont(IndCoh(X), IndCoh(X))) ,

canonically lifts to an object

U(L)
Fil

∈ AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

) .

The corresponding associated graded identifies canonically with the monad given by
tensor product with freeCom ○ oblvLieAlgbroid(L).

The theorem will be proved in Sects 6.2-6.4.

6.1.3. The following corollary results from the construction of the filtration and
Theorem 4.1.3:

Corollary 6.1.4. For L = diag(h), the filtration on U(L) defined in Theo-
rem 6.1.2 identifies with the one coming from the canonical filtration on U(h).

6.2. Constructing the filtration. As a first step, we will construct U(L)
Fil as

an object of the category

AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil

) ,

where we identify the latter with

Functcont(IndCoh(X), IndCoh(X))⊗QCoh(A1
)
Gm .

6. FILTRATION ON THE UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBROID413

6.2.1. Consider the forgetful functor

(FormModX×A1/ /Y×A1)
A1

left-lax
→ (FormModX×A1/ /Y×A1)

Gm
.

Let us consider the resulting prestacks

X ×A1
/Gm and Yscaled/Gm

over A1
/Gm.

The map fscaled ∶ X ×A1
→ Yscaled gives rise to a QCoh(A1

/Gm)-linear functor

(fscaled/Gm)
!
∶ IndCoh(Yscaled/Gm)→ IndCoh(X ×A1

/Gm).

Since the symmetric monoidal category QCoh(A1
/Gm) is rigid, the left adjoint

of the functor (fscaled/Gm)
!, i.e., (fscaled/Gm)

IndCoh
∗ , is also QCoh(A1

/Gm)-linear.

Hence, by Volume I, Chapter 1, Sect. 8.4.4, the composition

(fscaled/Gm)
!
○ (fscaled/Gm)

IndCoh
∗

has a natural structure of algebra object on the monoidal category

FunctQCoh(A1/Gm)(IndCoh(X ×A1
/Gm), IndCoh(X ×A1

/Gm)),

while the latter identifies with

Functcont(IndCoh(X), IndCoh(X))⊗QCoh(A1
)
Gm .

This provides the sought-for lifting.

6.2.2. Our task is now to show that the object

U(L)
Fil

∈ AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil

)

constructed above, belongs to the essential image of the (fully faithful) functor

AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

)→

→ AssocAlg ((Functcont(IndCoh(X), IndCoh(X)))
Fil

) .

Note, however, that for any monoidal DG category O the following diagram is
a pullback square:

AssocAlg (OFil,≥0
) ÐÐÐÐ→ AssocAlg (OFil

)

oblvAssoc

×
×
×
Ö

×
×
×
Ö

oblvAssoc

OFil,≥0
ÐÐÐÐ→ OFil.

Hence, we obtain that it suffices to show that the object

oblvAssoc(U(L)
Fil

) ∈ (Functcont(IndCoh(X), IndCoh(X)))
Fil

in fact belongs to (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

.

6.3. The categorical setting for the non-negative filtration. In this subsec-
tion we explain a general categorical paradigm for establishing that the filtration
on

oblvAssoc(U(L)
Fil

)

is non-negative.

414 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

6.3.1. Consider the following presheaf of categories

(6.1) (Schaff
)
op
→ 1-Cat, S ↦ QCoh(S)-mod,

see Example (iii) in Sect. 1.2.5.

We denote the value of this functor on Z ∈ PreStk by ShvCat(Z).

6.3.2. We regard (6.1) as equipped with the trivial action of a monoid G.

According to Sect. 1.2.3, for a prestack Z, equipped with an action of G one
can talk about the category

ShvCat(Z)
Gleft-lax .

6.3.3. Assume now that Z = Z ∈ Schaff . Let C, D and D′ be three objects in
ShvCat(Z)

Gright-lax , and let G ∶ C→D and F′ ∶ C→D′ be morphisms.

Applying the forgetful functor

ShvCat(Z)
Gright-lax

→ ShvCat(Z) ≃ QCoh(Z)-mod,

the objects C, D and D′ give rise to QCoh(Z)-module categories, and G and F′ to
QCoh(Z)-linear functors.

Assume that G, viewed as a functor between QCoh(Z)-linear categories admits
a left adjoint, denoted F. Since the monoidal category QCoh(Z) is rigid, the functor
F is also naturally QCoh(Z)-linear.

6.3.4. Assume now that D and D′ are of the form

D0 ⊗QCoh(Z) and D′
0 ⊗QCoh(Z),

respectively, where the structure on D and D′ of objects of ShvCat(Z)
Gright-lax is

induced by the structure on QCoh(Z) of an object of ShvCat(Z)
Gright-lax (in fact,

ShvCat(Z)), arising from the G-action on Z.

We have:

Lemma 6.3.5. Under the above circumstances, the object

F′ ○ F ∈ FunctQCoh(Z)(D,D
′
) ≃ Functcont(D0,D

′
0)⊗QCoh(Z)

corresponding to G ○ F, admits a canonical lift to an object in the category

Functcont(D0,D
′
0)⊗QCoh(Z)

Gleft-lax .

6.4. Implementing the categorical setting. We will now apply the setting of
Sect. 6.4 to deduce the filtration on U(L).

6.4.1. We take the monoid G to be A1 and Z = A1, equipped with an action on
itself by multiplication.

We take D0,D
′
0 = IndCoh(X).

6. FILTRATION ON THE UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBROID415

6.4.2. We take C to be IndCoh(Yscaled), where the structure on C of an object of

the category ShvCat(A1
)
A1

left-lax is given by the lift of Yscaled to the object of

Yscaled,A1
left-lax

∈ ((PreStklaft)/A1)
A1

left-lax .

We take G and F′ to both be the functor of pullback along the map

X ×A1
→ Yscaled.

The functor oblvAssoc(U(L)) is then one corresponding to F′ ○ F. The lifting
of Lemma 6.3.5 defines the sought-for filtered structure.

6.4.3. The associated graded of U(L)
Fil has the prescribed shape by Sect. 2.5.2.

6.5. The filtration via infinitesimal neighborhoods. In this subsection we
realize the following (intuitively clear) idea: the canonical filtration on U(L) stated
in Theorem 6.1.2, can be realized by considering n-th infinitesimal neighborhoods
of the diagonal in the corresponding groupoid.

6.5.1. For (f ∶ X → Y) ∈ FormModX /, consider the corresponding groupoid

R ∶= X ×
Y
X ,

and the algebroid L.

Let ps, pt denote the two projections R ⇉ X . Let ∆X /Y denote the diagonal
(i.e., unit) map X →R.

Let ′
X

(n) denote the n-th infinitesimal neighborhood of X in R, defined as in

Sect. 5.1. Let p
(n)
i denote the restriction of pi to ′

X
(n), i = s, t.

6.5.2. Consider the object of (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

given by

(6.2) n↦ (p
(n)
t)

IndCoh
∗ ○ (p(n)s)

!, Z≥0
→ Functcont(IndCoh(X), IndCoh(X))

Let as assume Theorem 6.1.2. From it we will deduce:

Theorem 6.5.3. There exists a canonical isomorphism between the object (6.2)
and

oblvAssoc(U(L)
Fil

)

in the category (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

.

The rest of this subsection is devoted to the proof of this theorem.

6.5.4. Proof of Theorem 6.5.3, Step 1. To prove the proposition, we need to con-
struct a compatible family of maps

(p
(n)
t)

IndCoh
∗ ○ (p(n)s)

!
→ oblvAssoc(U(L))

≤n,

so that the induced maps

coFib ((p
(n−1)
t)

IndCoh
∗ ○ (p(n−1)

s)
!
→ (p

(n)
t)

IndCoh
∗ ○ (p(n)s)

!
)→

→ coFib (oblvAssoc(U(L))
≤n−1

→ oblvAssoc(U(L))
≤n

)

are isomorphisms.

First, the base change isomorphism

oblvAssoc(U(L)) ∶= f !
○ f IndCoh

∗ ≃ (pt)
IndCoh
∗ ○ p!

s

416 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

of Chapter 3, Proposition 2.1.2 defines a compatible system of maps

(6.3) (p
(n)
t)

IndCoh
∗ ○ (p(n)s)

!
→ oblvAssoc(U(L)).

6.5.5. Proof of Theorem 6.5.3, Step 2. As in Sects. 6.3 and 6.4, the prestack

′
X

(n)
scaled,A1

left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax ,

and the corresponding maps

(p(n),Fil
s), (p

(n),Fil
t) ∶ X

(n)
scaled,A1

left-lax

→ X ×A1,

lift the system (6.2) to an assignment

n↦ (p
(n),Fil
t)

IndCoh
∗ ○(p(n),Fil

s)
!, Z≥0

→ (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

.

In addition, the system of maps (6.3) lifts to a system of maps

(6.4) (p
(n),Fil
t)

IndCoh
∗ ○ (p(n),Fil

s)
!
→ oblvAssoc(U(L)

Fil
).

Hence, taking into account (the filtered version of) Corollary 5.2.5, to prove
the proposition, it suffices to show the following:

Lemma 6.5.6.

(a) For every n, the filtration on (p
(n),Fil
t)

IndCoh
∗ ○ (p

(n),Fil
s)

! stabilizes at n, i.e., the
maps

((p
(n),Fil
t)

IndCoh
∗ ○ (p(n),Fil

s)
!
)

≤m
→ ((p

(n),Fil
t)

IndCoh
∗ ○ (p(n),Fil

s)
!
)

≤m+1

are isomorphisms for m ≥ n.

(b) For every n, the map (6.4) induces an isomorphism of the n-th associated graded
quotients.

6.5.7. Proof of Theorem 6.5.3, Step 3. In order to prove Lemma 6.5.6, since the

functor ass-gr is conservative on (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

, it is
enough to prove the corresponding assertion at the associated graded level.

By Sect. 2.5.2, this reduces are to the situation when Y = VectX (F) for some
F ∈ IndCoh(X).

However, in the latter case, the assertion of Lemma 6.5.6 is manifest from
Corollary 6.1.4 and Sect. 5.5.3.

7. The case of a regular embedding

Recall that if f ∶X → Y is a regular closed embedding of classical schemes, then
we have Grothendieck’s formula that says that the functors f∗ and f ! are related
by tensoring by the determinant of the normal bundle.

In this section we will establish an analog of this assertion in the derived setting.

7.1. The notion of regular embedding. In this subsection we will introduce
the notion of regular embedding in the context of formal moduli problems.

7. THE CASE OF A REGULAR EMBEDDING 417

7.1.1. Let X be an object of PreStklaft-def , and let (f ∶ X → Y) ∈ FormModX /.

We shall say that f is a regular embedding of relative codimension n if

T ∗(X /Y)[−1] ∈ Pro(QCoh(X)
−
)

belongs to QCoh(X)
− and is a vector bundle of rank n (i.e., its pullback to any

affine scheme S is Zariski-locally isomorphic to O⊕n
S). Throughout this subsection

we will assume that f has this property.

7.1.2. Denote
det(T ∗(X /Y)) ∶= Symn

(T ∗(X /Y));

this is a cohomologically shifted (by [n]) line bundle.

Consider the objects Symm
(T ∗(X /Y)) ∈ QCoh(X). Note that they all are also

vector bundles. Moreover, Symm
(T ∗(X /Y)) vanishes for m > n.

7.1.3. Note also that

T (X /Y) ≃ ΥX((T ∗(X /Y))
∨
),

where (T ∗(X /Y))
∨
∈ QCoh(X) is the tensor dual of T ∗(X /Y) in QCoh(X). In

particular, T (X /Y) is dualizable as an object of the symmetric monoidal category
IndCoh(X).

Furthermore, Symm
(T (X /Y)) ∈ IndCoh(X) is dualizable for any m, and van-

ishes for m > n.

7.1.4. We now claim:

Proposition 7.1.5. Let f ∶ X → Y be a regular embedding. Then the functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

admits a left adjoint (to be denoted f IndCoh,∗).

Proof. In order to show that the functor f IndCoh
∗ admits a left adjoint, it

suffices to show that it commutes with limits. Since the functor f ! is conserva-
tive and commutes with limits (being a right adjoint), it suffices to show that the
composition

f !
○ f IndCoh

∗ ∶ IndCoh(X)→ IndCoh(X)

commutes with limits.

Let L denote the Lie algebroid T (X /Y). We have to show that U(L), viewed
as an endo-functor of IndCoh(X), commutes with limits.

Note now that Sect. 7.1.3 implies that the canonical filtration on U(L) has the
property that ass-grm(U(L)) vanishes for m > n. I.e., the filtration is finite. Hence,
it is enough to see that each graded term, viewed as endo-functor of IndCoh(X),
commutes with limits.

However,
ass-grm(U(L)) ≃ ΥX (Symm

(T (X /Y)))⊗ −,

and the assertion follows.
�

7.2. Grothendieck’s formula. In this subsection we state the main result of this
section: Grothendieck’s formula that relates f IndCoh,∗ and f !.

418 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

7.2.1. The goal of this section is to prove the following result:

Theorem 7.2.2. Let X be an object of PreStklaft-def , and let (f ∶ X → Y) ∈

FormModX / be a regular embedding. Then:

(a) The natural transformation

f IndCoh,∗
(−)→ f IndCoh,∗

(ωY)
!
⊗ f !

(−)

is an isomorphism.

(b) There exists a canonical isomorphism

f IndCoh,∗
(ωX) ≃ ΥX (det(T ∗(X /Y))) .

7.2.3. Combining points (a) and (b) of the theorem, we obtain:

Corollary 7.2.4. There exists a canonical isomorphism of functors IndCoh(Y)→
IndCoh(X)

f IndCoh,∗
(−) ≃ det(T ∗(X /Y))⊗ f !

(−),

where ⊗ is understood in the sense of the action of QCoh(−) on IndCoh(−).

7.3. Applications. In this subsection we give some applications of Theorem 7.2.2.

7.3.1. Schematic regular embeddings. Let f ∶ X → Y be a schematic map between
objects of PreStklaft. Assume that f is a closed embedding, and that the map,
denoted

f∧ ∶ X → Y∧X ∶= XdR ×
YdR

Y

is a regular embedding of relative codimension n in the sense of Sect. 7.1.1.

From Theorem 7.2.2 we shall now deduce:

Corollary 7.3.2. The functor

f IndCoh,∗
∶ IndCoh(Y)→ IndCoh(X),

left adjoint to f IndCoh
∗ , is defined, and we have a canonical isomorphism

f IndCoh,∗
(−) ≃ det(T ∗(X /Y))⊗ f !

(−).

Proof. By base change, we can assume that X = X and Y = Y are schemes.
The condition on f implies that it is quasi-smooth, and hence eventually coconnec-
tive (see [AG, Corollary 1.2.5]). Hence, existence of the functor f IndCoh,∗ follows
from [Ga1, Proposition 7.1.6].

Let U
j
↪ Y be the open embedding of the complement of image of f . Let i

denote the map Y ∧
X → Y .

It is easy to see that f IndCoh,∗
○ j∗ = 0. Hence, by [GaRo1, Proposition

7.4.5], the functor f IndCoh,∗ factors through the co-localization i! ∶ IndCoh(Y) →

IndCoh(Y ∧
X), i.e.,

f IndCoh,∗
≃ (f∧)IndCoh,∗

○ i!.

Similarly, f !
≃ (f∧)!

○ i!. Now, the required result follows from the isomorphism
of Corollary 7.2.4 for the morphism f∧.

�

7. THE CASE OF A REGULAR EMBEDDING 419

7.3.3. Smooth maps. Let now g ∶ X → Z be a schematic map between objects of
PreStklaft. Assume that g is smooth of relative dimension n.

Note that in this case T ∗(X /Z) ∈ QCoh(X) is a vector bundle of rank n.
Denote

det(T ∗(X /Z)) ∶= Symn
(T ∗(X /Z)[1]).

This is a cohomologically shifted (by [n]) line bundle.

We claim:

Proposition 7.3.4. The functor

gIndCoh,∗
∶ IndCoh(Z)→ IndCoh(X),

left adjoint to gIndCoh
∗ , is defined, and we have a canonical isomorphism

gIndCoh,∗
(−) ≃ det(T ∗(X /Z))

∨
⊗ g!

(−).

7.3.5. Step 1. By [Ga1, Propositions 7.1.6 and 7.3.8], for any map f ∶ X → X
′,

whose base change by an affine scheme is schematic and Gorenstein, the functor
f IndCoh,∗ exists, and we have:

KX /X ′ ⊗ f IndCoh,∗
(−) ≃ f !

(−)

for a canonically defined line bundle on KX /X ′ on X .

It follows formally that for a Cartesian diagram with vertical arrows Gorenstein

X1
h

ÐÐÐÐ→ X

f1

×
×
×
Ö

×
×
×
Ö

f

X
′
1

h′

ÐÐÐÐ→ X
′

we have a canonical isomorphism in QCoh(X1)

(7.1) h∗(KX /X ′) ≃ KX1/X ′
1
,

Furthermore, it follows that for a composition of Gorenstein maps

X
f
→ X

′ h
→ X

′′,

we have a canonical isomorphism in QCoh(X)

(7.2) f∗(KX ′/X ′′)⊗KX /X ′ ≃ KX /X ′′ .

Let g ∶ X → Z be a Gorenstein map. Consider the diagram

Y ∶= X ×
Z
X

pt
ÐÐÐÐ→ X

ps
×
×
×
Ö

×
×
×
Ö

g

X
g

ÐÐÐÐ→ Z.

By (7.1) and (7.2), we have:

(7.3) KY/Z ≃ (ps)
∗
(KX /Z)⊗ (pt)

∗
(KX /Z).

420 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

7.3.6. Step 2. Assume now that g ∶ X → Z is smooth. We need to show that

KX /Z ≃ det(T ∗(X /Z)).

Let f denote the map

X → Y ∶= X ×
Z
X .

Since g is smooth, the map f is a regular closed embedding, i.e., satisfies the
assumptions of Sect. 7.3.1. In particular, it is Gorenstein, and by Corollary 7.3.2

KX /Y ≃ det(T ∗(X /Y))
⊗−1.

Combining (7.3) and (7.2), we obtain:

KX /Z ≃ KX /Z ⊗KX /Z ⊗KX /Y .

Hence,

KX /Z ≃ K
⊗−1
X /Y ≃ det(T ∗(X /Y)).

I.e., it remains to show that

det(T ∗(X /Z)) ≃ det(T ∗(X /Y)).

However, this follows from the canonical identification

T ∗(X /Y) ≃ T ∗(X /Z)[1].

7.4. Introducing the filtration. The rest of this section is devoted to the proof
of Theorem 7.2.2. The idea is to upgrade the required isomorphism to one between
filtered objects, using the deformation to the normal cone of Sect. 2.

7.4.1. Consider again the object

Yscaled,A1
left-lax

∈ (FormModX×A1/ /Y×A1)
A1

left-lax ,

and we will regard it as an object of (FormModX×A1/ /Y×A1)
Gm

via the forgetful
functor

(FormModX×A1/ /Y×A1)
A1

left-lax
→ (FormModX×A1/ /Y×A1)

Gm
.

7.4.2. The construction of Sect. 6.2.1 upgrades the endo-functor f IndCoh,∗
○f IndCoh

∗
of IndCoh(X) to an object

(7.4) (f IndCoh,∗
○ f IndCoh

∗ (F))
Fil

∈ (Functcont(IndCoh(X), IndCoh(X)))
Fil
.

By construction, the object (7.4) is the left-dual of oblvassoc(U(L)
Fil

), when

both are viewed as objects in the monoidal category (Functcont(IndCoh(X), IndCoh(X)))
Fil

.

Since,

oblvassoc(U(L)
Fil

) ∈ (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0,≤n

,

we obtain that
(7.5)

(f IndCoh,∗
○ f IndCoh

∗ (F))
Fil

∈ (Functcont(IndCoh(X), IndCoh(X)))
Fil,≥−n,≤0

.

7. THE CASE OF A REGULAR EMBEDDING 421

7.4.3. Similarly, the object f IndCoh,∗
(ωY) naturally upgrades to an object

(f IndCoh,∗
(ωY))

Fil
∈ IndCoh(X)

Fil.

Finally, the natural transformation

f IndCoh,∗
(−)→ f IndCoh,∗

(ωY)⊗ f
!
(−)

also lifts to a natural transformation of functors

IndCoh(X)→ IndCoh(X)
Fil.

7.4.4. We claim:

Lemma 7.4.5.

(f IndCoh,∗
(ωY))

Fil
∈ IndCoh(X)

Fil,≥−n.

Proof. Recall the construction in Proposition 5.3.2. Note that the assignment

k ↦ f IndCoh,∗
((fk)

IndCoh
∗ (ωX (k))),

as well as the maps

f IndCoh,∗
○ (fk)

IndCoh
∗ (ωX (k))→ f IndCoh,∗

○ (fk+1)
IndCoh
∗ (ωX (k+1))

and

f IndCoh,∗
○ (fk)

IndCoh
∗ (ωX (k))→ f IndCoh,∗

(ωY)

all lift to the category IndCoh(X)
Fil.

Hence, it is enough to show that for every k, we have

(f IndCoh,∗
○ (fk)

IndCoh
∗ (ωX (k)))

Fil
∈ IndCoh(X)

Fil,≥−n.

We note that the identification

coFib(f IndCoh,∗
○ (fk−1)

IndCoh
∗ (ωX (k−1))→ f IndCoh,∗

○ (fk)
IndCoh
∗ (ωX (k)) ≃

≃ f IndCoh,∗
○ f IndCoh

∗ (Symk
(oblvLieAlgbroid(L)[1]))

lifts to an isomorphism

coFib((f IndCoh,∗
○ (fk−1)

IndCoh
∗ (ωX (k−1)))

Fil
→ (f IndCoh,∗

○ (fk)
IndCoh
∗ (ωX (k)))

Fil
) ≃

≃ (f IndCoh,∗
○ f IndCoh

∗)
Fil

(ωX)⊗ (Symk
(oblvLieAlgbroid(L)[1])) ,

where (f IndCoh,∗
○f IndCoh

∗)
Fil is as in Sect. 7.4.1, and where (Symk

(oblvLieAlgbroid(L)[1]))
is in degree k.

Now,

(f IndCoh,∗
○ f IndCoh

∗)
Fil

(ωX) ∈ IndCoh(X)
Fil,≥−n,

while (Symk
(oblvLieAlgbroid(L)[1])) is non-negatively filtered.

�

7.5. Reduction to the case of vector groups. In this subsection we will reduce
the assertion of Theorem 7.2.2 to the case when Y = VectX (F) for F ∈ IndCoh(X).

422 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

7.5.1. Since the essential image of IndCoh(X) under f IndCoh
∗ generates IndCoh(Y),

in order to prove the isomorphism of Theorem 7.2.2(a), it suffices to show that the
natural transformation

(7.6) f IndCoh,∗
○ f IndCoh

∗ (F)→ f IndCoh,∗
(ωY)⊗F

is an isomorphism for any F ∈ IndCoh(X).

7.5.2. Taking into account Lemma 7.4.5 and (7.5), we obtain that in order to show
that (7.6) is an isomorphism, it is enough to prove that the isomorphism holds at
the associated graded level.

Using Sect. 2.5.2, this reduces point (a) of Theorem 7.2.2 to the verification of
the isomorphism (7.6) in the case when

Y ∶= VectX (T (X /Y)[1]).

7.5.3. We will prove the following assertion:

Proposition 7.5.4. With respect to the canonical filtration on f IndCoh,∗
(ωX),

we have

ass-grk(f IndCoh,∗
(ωX)) ≃

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if k ≠ −n

ΥX (det(T ∗(X /Y))) if k = −n.

Note that by Lemma 7.4.5, the assertion of Proposition 7.5.4 implies also The-
orem 7.2.2(b).

In order to prove Proposition 7.5.4, it is also enough to do so in the case when

Y ∶= VectX (T (X /Y)[1]) ∈ (FormModX /)
Gm

,

where T (X /Y) is given grading 1.

7.6. The case of vector groups. In this subsection we will explicitly perform
the calculation stated in Theorem 7.2.2 in the case of vector groups.

7.6.1. Let

Y = VectX (F) ∈ (FormModX /)
Gm

,

where F = ΥX (E), where E ∈ QCoh(X) is a vector bundle of rank n, and where we
regard F as an object of

IndCoh(X) ≃ IndCoh(X)
gr,=1

⊂ IndCoh(X)
gr.

We note that in this case

ΥX (det(T ∗(X /Y)) ≃ Symn
(F

∨
[1]),

where F∨ is the monoidal dual of F in the symmetric monoidal category IndCoh(X).

7.6.2. We have:

IndCoh(Y)Gm ≃ freeCom(F[−1])-mod(IndCoh(X)
Gm

),

where f ! is the tautological forgetful functor

oblvfreeCom(F[−1]) ∶ freeCom(F[−1])-mod(IndCoh(X)
Gm

)→ IndCoh(X)
Gm ,

and f IndCoh
∗ is the functor

indfreeCom(F[−1]) ∶= freeCom(F[−1])⊗ −.

A. WEIL RESTRICTION OF SCALARS 423

7.6.3. Consider the following abstract situation: let O be a symmetric monoidal
DG category, and let F ∈ O be an object of dimension n, i.e., F is dualizable and
Symn+1

(F[1]) = 0. Set

l ∶= Symn
(F[−1]).

Consider the commutative algebra A ∶= freeCom(F[−1]) and the corresponding
adjunction

indA ∶ O⇄ A-mod ∶ oblvA.

The assumption on F implies that oblvCom(A) is dualizable as an object of
O. Hence, the functor indA commutes with limits, and thus admits a left adjoint.

In this case, it is easy to see that the natural transformation

(indA)
L
(−)→ (indA)

L
(1O)⊗ oblvA(−)

is an isomorphism and that

(indA)
L
(1O) ≃ l⊗−1.

�

A. Weil restriction of scalars

In this section we will establish several facts of how the operation of Weil
restriction behaves with respect to deformation theory.

In particular, we show that Weil restriction along an affine map of a prestack
with deformation theory is a prestack with deformation theory, and we describe
the pro-cotangent complex of the Weil restriction. Furthermore, we show that Weil
restriction of formal groups can be computed using Lie algebras.

A.1. The operation of Weil restriction of scalars. In this subsection we recall
the operation of Weil restriction of scalars of a prestack.

A.1.1. Let f ∶ Z1 → Z2 be a map of prestacks. Let X1 be a prestack over Z1. Let

X2 ∶= WeilZ1

Z2
(X1) ∈ PreStk/Z2

be the Weil restriction of X1 along f .

By definition, for S2 ∈ (Schaff
)/Z2

, we have

Maps/Z2
(S2,X2) ∶= Maps/Z1

(S1,X1), S1 ∶= Z1 ×
Z2

S2.

A.1.2. Assumption. From now on we will assume that the morphism f is affine
(i.e., its base change by an affine scheme yields an affine scheme).

A.2. Weil restriction of scalars and deformation theory. In this subsection
we will study the deformation theory of objects obtained as by the operation of
Weil restriction of scalars.

424 9. INFINITESIMAL DIFFERENTIAL GEOMETRY

A.2.1. Assume now that X1 admits deformation theory relative to Z1.

It follows from the definitions that in these circumstance, X2 will admit defor-
mation theory relative to Z2. Moreover, its cotangent complex can be described as
follows.

For an S2-point x2 of X2, let x1 be the corresponding S1-point of X1, where

S1 ∶= Z1 ×
Z2

S2.

Denote by fS the corresponding map S1 → S2.

Let Pro((fS)∗) be the corresponding functor

Pro(QCoh(S1)
−
)→ Pro(QCoh(S2)

−
).

Then we have:

(A.1) T ∗x2
(X2/Z2) ≃ Pro((fS)∗)(T

∗
x1

(X1/Z1)).

A.2.2. Note that if in the above circumstances, X1 is itself of the form

Z1 ×
Z2

X
′
2, X

′
2 ∈ PreStk/Z2

,

and the point x1 comes from an S2-point x′2 of X ′
2, then we have

(A.2) T ∗x2
(X2/Z2) ≃ T

∗
x2

(X
′
2/Z2) ⊗

OS2

(fS)∗(OS1).

A.2.3. Assume that Z1,Z2,X1 ∈ PreStklaft. It follows from the definitions that in
this case X2 also belongs to PreStklaft.

In this case we can talk about

T (X1) ∈ IndCoh(X1) and T (X2) ∈ IndCoh(X2).

We have the diagram

Z1 ×
Z2

X2
ev

ÐÐÐÐ→ .X1

f×id
×
×
×
Ö

X2.

Let ((f × id)!
)
R
∶ IndCoh(Z1 ×

Z2

X2)→ IndCoh(X2) be the functor right adjoint

to
(f × id)!

∶ IndCoh(X2)→ IndCoh(Z1 ×
Z2

X2).

Note that ((f × id)!
)
R is continuous because f was assumed is eventually cocon-

nective.

From (A.1) we obtain:

(A.3) T (X2/Z2) ≃ ((f × id)!
)
R
○ ev!

(T (X1/Z1)).

Similarly, in the circumstances of Sect. A.2.2, we have

(A.4) Tx2(X2/Z2) ≃ Tx′2(X
′
2/Z2) ⊗

OX2

f∗(OX1),

where ⊗ understood in the sense of the action of QCoh on IndCoh.

A.3. Weil restriction of formal groups.

A. WEIL RESTRICTION OF SCALARS 425

A.3.1. Let O be a symmetric monoidal DG category and P an operad (see Chap-
ter 6, Sect. 1.1 for our conventions regarding operads). For a morphism f ∶ Z1 → Z2

as above, pullback defines a functor

f∗ ∶ P -Alg(O⊗QCoh(Z2))→ P -Alg(O⊗QCoh(Z1)).

This functor admits a right adjoint, denoted also WeilZ1

Z2
that makes the diagram

(A.5)

P -Alg(O⊗QCoh(Z2))
oblvP
ÐÐÐÐ→ QCoh(Z1)

Weil
Z1
Z2

×
×
×
Ö

×
×
×
Ö

f∗

P -Alg(O⊗QCoh(Z2))
oblvP
ÐÐÐÐ→ QCoh(Z2)

commutative.

A.3.2. Assume now that Z1 and Z2 belong to PreStklaft. Then in the above
discussion we can replace QCoh and IndCoh, and the diagram (A.5) by

(A.6)

P -Alg(O⊗ IndCoh(Z1))
oblvP
ÐÐÐÐ→ IndCoh(Z1)

Weil
Z1
Z2

×
×
×
Ö

×
×
×
Ö

(f !)R

P -Alg(O⊗ IndCoh(Z2))
oblvP
ÐÐÐÐ→ IndCoh(Z2)

A.3.3. Let Z1 and Z2 again belong to PreStklaft. Note that by Chapter 7, Sect.
3.5, we have a commutative diagram:

Grp(FormMod/Z1
)

LieZ1
ÐÐÐÐ→ LieAlg(IndCoh(Z1))

H↦Z1 ×
Z2
HÕ×
×
×

Õ
×
×
×

f∗

Grp(FormMod/Z2
)

LieZ2
ÐÐÐÐ→ LieAlg(IndCoh(Z2)).

By passing to right adjoints along vertical arrows, we obtain the following
commutative diagram:

(A.7)

Grp(FormMod/Z1
)

LieZ1
ÐÐÐÐ→ LieAlg(IndCoh(Z1))

Weil
Z1
Z2

×
×
×
Ö

Weil
Z1
Z2

×
×
×
Ö

Grp(FormMod/Z2
)

LieZ2
ÐÐÐÐ→ LieAlg(IndCoh(Z2)).

Bibliography

[AG] D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves, and the geometric Lang-

lands conjecture, Selecta Math. N.S. 21 (2015), 1–199.
[BarS] C. Barwick and C. Schommer-Pries, On the unicity of homotopy theory of higher cate-

gories, arXiv: 1112.0040.

[BB] A. Beilinson and J. Bernstein, A proof of Jantzen’s conjectures, Advances in Soviet Mathe-
matics 16, Part I (1993), 1–50.

[BD] A. Beilinson and V. Drinfeld, Quantization of Hitchin?s integrable system and Hecke eigen-

sheaves, available at http://www.math.harvard.edu/∼gaitsgde/grad 2009/.
[Bez] R. Bezrukavnikov, On two geometric realizations of the affine Hecke algebra,

arXiv:1209.0403.
[BFN] D. Benzvi, J. Francis and D. Nadler, Integral transforms and Drinfeld centers in derived

algebraic geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909–966.

[Bezr] R. Bezrukavnikov, On two geometric realizations of the affine Hecke algebra,
arXiv:1209.0403.

[BoV] J. M. Boardman and J. M. Vogt Homotopy Invariant Structures on Topological Spaces,

Lecture Notes in Mathematics 347, Springer-Verlag, Berlin and New York (1973).
[De] P. Deligne, Catégories tannakiennes, in: “The Grothendieck Festschrift”, Vol. II, 111–195,

Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990.

[Dr] V. Drinfeld, DG Quotients of DG Categories, J. Algebra 272 (2004), no. 2, 643–691.
[DrGa1] V. Drinfeld and D. Gaitsgory, On some finiteness questions for algebraic stacks, GAFA

23 (2013), 149–294.

[DrGa2] V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the
stack of G-bundles on a curve, joint with V. Drinfeld, arXiv:1112.2402, Cambridge Math

Journal, 3 (2015), 19–125.
[Fra] J. Francis, The tangent complex and Hochschild cohomology of En-rings, Compos. Math.

149 (2013), no. 3, 430–480.

[FraG] J. Francis and D. Gaitsgory, Chiral Koszul duality, Selecta Math. (N.S.) 18 (2012), 27–87.
[FG] E. Frenkel and D. Gaitsgory, D-modules on the affine flag variety and representations of

affine Kac-Moody algebras, Represent. Theory 13 (2009), 470–608.

[Ga1] D. Gaitsgory, Ind-coherent sheaves, arXiv:1105.4857.
[Ga2] D. Gaitsgory, The Atiyah-Bott formula for the cohomology of the moduli space of bundles

on a curve, arXiv: 1505.02331.

[Ga3] D. Gaitsgory, Sheaves of categories and the notion of 1-affineness, Contemporary Mathe-
matics 643 (2015), 1–99.

[Ga4] Notes on Geometric Langlands, Generalities on DG categories, available at

http://www.math.harvard.edu/∼gaitsgde/GL/.
[GaRo1] D. Gaitsgory and N. Rozenblyum, DG indschemes, Contemporary Mathematics 610

(2014), 139–251.
[GaRo2] D. Gaitsgory and N. Rozenblyum, D-modules and crystals, PAMQ 10, no. 1 (2014),

57–155.

[Jo] A. Joyal, Quasi-categories and Kan complexes, (in Special volume celebrating the 70th birth-
day of Prof. Max Kelly) J. Pure Appl. Algebra 175 (2002), no. 1-3, 207–222.

[JT] A. Joyal, M. Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and
mathematical physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007), 277–
326.

[Kr] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math., 141(5)

(2005), 1128–1162.

427

428 BIBLIOGRAPHY

[LM] G. Laumon, L. Morret-Baily, Champs algébriques, Ergebnisse der Mathematik und ihrer

Grenzgebiete (3 Folge, A Series of Modern Surveys in Mathematics), 39, Springer-Verlag,

Berlin, 2000.
[May] P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer-

Verlag, Berlin and New York (1972).

[LZ1] Y. Liu and W. Zheng, Enhanced six operations and base change theorem for Artin stacks,
arXiv: 1211.5948.

[LZ2] Y. Liu and W. Zheng, Gluing restricted nerves of infinity categories, arXiv: 1211.5294..

[Lu1] J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University
Press, Princeton, NJ, 2009.

[Lu2] J. Lurie, Higher Algebra, available at http://www.math.harvard.edu/∼lurie.

[Lu3] J. Lurie, (∞,2)-categories and Goodwillie calculus-I, available at
http://www.math.harvard.edu/∼lurie.

[Lu4] J. Lurie, DAG-VII, Spectral schemes, available at http://www.math.harvard.edu/∼lurie.
[Lu5] J. Lurie, DAG-VIII, Quasi-Coherent Sheaves and Tannaka Duality Theorems, available at

http://www.math.harvard.edu/∼lurie.

[Lu6] J. Lurie, DAG-X, Formal moduli problems, available at
http://www.math.harvard.edu/∼lurie.

[Ne] A. Neeman, The Grothendieck duality theorem via Bousfield techniques and Brown repre-

sentability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236.
[Rezk1] C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc.

353 (2001), no. 3, 973–1007.

[Rezk2] C. Rezk, A Cartesian presentation of weak n-categories, Geom. Topol. 14 (2010), no. 1,
521–571.

[Seg] G. Segal, Categories and cohomology theories, Topology 13, (1974), 293–312.

[Sim] C. Simpson, Algebraic (geometric) n-stacks, arXiv: 9609014.
[To] B. Toen, Descente fidèlement plate pour les n-champs d’Artin.

[TV1] B. Toen and G. Vezzosi, Homotopical Algebraic Geometry-I.
[TV2] B. Toen and G. Vezzosi, Homotopical Algebraic Geometry-II.

[TT] R. Thomason and T. Trobaugh, Higher algebraic K -theory of schemes and of derived

categories, The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88 (1990).
[YZ] A. Yekutieli and J. Zhang, Dualizing Complexes and Perverse Sheaves on Noncommutative

Ringed Schemes, Selecta Math. 12 (2006), 137–177.

Index of Notations

A⊗ −, 225

AddFil, 227

αF , 354

anch, 333

Annul(F , γ), 355

ass-gr, 226

Assocaug, 223

AssocAlgaug(O), 223, 247

At(E), 340

Autinf(Y/X), 321

BFil, 227

BLie
X , 305

BP , 231

Bscaled, 391

Bscaled,A1
left-lax

, 391

BX , 208

BX (R), 214

Bar, 248

Bar(A,−), 265

Bar●(A,−), 265

Barenh(A,−), 265

Bar+, 249

Bar/1, 249

Bar1/, 249

Bar1/ /1, 248

Bar●, 248

Bar●1/ /1, 248

Barenh, 249

Bifurc●
scaled,A1

right-lax

, 393

Bifurc●scaled, 393

C(X)G , 387

C(X)Gleft-lax , 387

C(X)Gright-lax , 387

CFil, 225

CFil,≥0, 225

CFil,≤0, 225

Cgr, 226

Cgr,≥0, 226

Cgr,≤0, 226

can, 353

canfree, 354

Chev, 251

Chev+, 251

Chev/1, 251

Chev1/, 251

Chev1/ /1, 251

Chevenh, 252

Coassocaug, 235

coBar, 249

coBar+, 250

coBar/1, 250

coBar1/, 250

coBar1/ /1, 249

coBar●, 249

coBar●1/ /1, 249

coBarenh, 249

coChev, 251

coChevenh, 252

Cocomaug, 235

CocomBialg(O), 254

CocomCoalg(O)aug,ind-nilp, 290

CocomCoalgaug(O), 240

CocomHopf(O), 254

cofreeB , 264

cofreefake
Q , 241

cofreeind-nilp
Q

, 236

Coh(X), 123

coinv(h,−), 268

coinvenh(h,−), 269

Comaug, 223

ComAlgaug(O), 223

coPrimP , 233

coPrimenh,ind-nilp,Fil
P

, 238

coPrimenh,ind-nilp
P

, 238

coPrimFil
P , 238

Corr(indinfSchlaft)
ind-proper
all;all

, 145

Corr(indinfSchlaft)
nil-closed
all;all , 144

Corr(indnilSchlaft)
ind-proper
all;all

, 168

Corr(PreStklaft)
indinfsch& ind-proper
indinfsch;all

, 149

Corr(PreStklaft)
open
indinfsch;all

, 150

coTan, 351

coTanrel, 351

coTanenh
rel , 351

Crys(Z), 161
/YCrys(Z), 173
/YCrys!

(PreStklaft)/Y
, 173

429

430 INDEX OF NOTATIONS

/YCrys
Corr(/Y indnilSchlaft)

ind-proper
all;all

, 173

/YCrys
Corr((PreStklaft)/Y)

ind-proper
indnilsch;all

, 172

/YCrys((PreStklaft)/Y)indnilsch
, 173

Crys!
PreStklaft

, 160

Crys
Corr(indnilSchlaft)

ind-proper
all;all

, 168

Crys
Corr(PreStklaft)

indnilsch&ind-proper
indnilsch;all

, 167

Crys
Corr(PreStklaft)

nil-open
indnilsch;all

, 167

CrysindnilSchlaft
, 164

Crysl(X), 175

Crysr(X), 177

Crysr(Y)X , 181

Dl
X , 175

Dr
X , 177

DVerdier
Z

, 169

DVerdier
Z

, 168

(deg = n), 226

d, 40

d, 354
′(DGCatSymMon)O/, 289

diag, 335

diagenh, 363, 366

diagX , 209

σ(Diffop
X), 177

DiffX , 174

Distr, 289

Distr+, 289

Distraug, 289

DistrCocom, 289

DistrCocomaug
, 289

DistrCocomaug,ind-nilp
, 290

Dmodl(X), 175

Dmodr(X), 177

Dmodr(Y)X , 180

dR, 160
/YdR, 172

Corr(dR)
ind-proper
indnilsch;all

, 167

dx, 40

(dx)∗, 40

expX , 301

fYdR,∗, 173

f !
YdR

, 173

f†,l, 176

f†,r, 181

fDmod,∗, 183

fdR, 160

fdR,∗, 164

f !
dR, 161

F l
X , 175

F r
X , 178

f▲,l, 176

f▲,r, 180

f∧, 418

FormGrpoid(X), 211

FormMod/X , 202

FormModX ′/ /X , 202

FormModX /, 204

FormSeg(X), 211

freeA, 264

freeAssoc, 246

freeLieAlgbroid, 333

freeLieAlgbroidcl , 368

freeP , 223

Γ(X ,−)IndCoh, 140

ΓDmod(X,−), 183

ΓdR(Z,−), 169

(gr→ Fil), 226

Grp(FormMod/X), 208

Grp(FormMod/X)′, 312

Grp((PreStklaft)/X), 211

Grp(Spc/X), 210

Grpoid(X), 209

Grpoidlaft(X), 211

H-mod(IndCoh(X)), 316

h-mod(O), 268

′indr
dR,X , 178

inddR, 171

inddR,Z , 170

indL, 340

indl
dR,X , 175

indr
dR,X , 177

IndCoh(X)≥0, 122

IndCoh(X)≤0, 122

IndCoh(X)R, 212

IndCoh!
indinfSchlaft

, 137

IndCoh!
(indinfSchlaft)nil-closed

, 137

IndCoh!
indSchlaft

, 120

IndCoh!
(indSchlaft)ind-proper

, 123

IndCoh!
(indinfSchlaft)nil-isom

, 138

IndCoh!
(indSchlaft)nil-isom

, 138

IndCoh!
(Schaft)proper

, 123

IndCoh
Corr(indinfSchlaft)

ind-proper
all;all

, 145

IndCoh
Corr(indSchlaft)

ind-proper
all;all

, 146

IndCohCorr(indinfSchlaft)
nil-closed
all;all

, 144

IndCoh
Corr((PreStklaft)/Y)

indinfsch&ind-proper
indinfsch;all

,

172

IndCoh
Corr(PreStklaft)

indinfsch&ind-proper
indinfsch;all

,

149

IndCohCorr(PreStklaft)
open
indinfsch;all

, 151

IndCohCorr(Schaft)
nil-closed
all;all

, 144

IndCohindinfSchlaft
, 139

IndCohindSchlaft
, 125

IndCoh(indSchlaft)ind-closed
, 125

IndCoh(indSchlaft)ind-proper
, 125

INDEX OF NOTATIONS 431

IndCoh(indinfSchlaft)nil-closed
, 139

IndCohSchaft
, 124

indinfSchlaft, 102

(indinfSchlaft)nil-isom, 138

(indinfSchlaft)nil-closed, 137
/Y indnilSchlaft, 173

indnilSchlaft, 162

(indnilSchlaft)nil-closed, 165

indSch, 79
clindSch, 79
clindSchlft, 79

indSchlaft, 79

(indSchlaft), 138
≤nindSch, 79
≤nindSchlft, 79
redindSch, 79
redindSchlft, 79

Inert(R), 329

inert(R), 332

Inertenh, 363

Inertinf , 331

Inertinf,enh, 366

InertX , 330

InertX , 331

inertX , 332

infSchlaft, 102

ker-anch, 334

LFil, 398

L-mod(IndCoh(X)), 340

Lie, 223

LieX , 308

LieX , 303

LieAlg(O), 223

LieAlgbroid(X), 333

LieAlgbroid(X)cl, 368

LieAlgbroid(X /Z), 334

Loch,Y/X , 322

MInertX , 362

MInertinf
X

, 365

Monad(T), 364

Monad(T)spl, 364

Monoid(FormMod/X), 208

Monoid(Specinf), 294

nilSchlaft, 162

O′
triv, 228

′oblvr
dR,X , 178

oblvA, 264

oblvAssoc,/1, 247

oblvAssoc,1/ /1, 247

oblvAssoc,1/, 246

oblvAssocAlg,+, 247

oblvB , 264

oblvdR, 161

oblvdR,Z , 161

oblvFil, 226

oblvgr, 226

oblvh, 268

oblvL, 340

oblvl
dR,X , 175

oblvLieAlgbroid, 333

oblvLieAlgbroidcl /Tnaive , 368

oblvLieAlgbroid /T , 333, 334

oblvP , 223

oblvQ, 240

oblvind-nilp
Q

, 236

oblvr
dR,X , 177

ωDmod,X , 179

Ωfake, 330, 331, 335

ΩP , 231

ΩX , 208

P -Alg(O), 223

P ∗ V , 240

pdR,Z , 161

P ⋆ V , 223

P∨, 237

Perf, 338

PreStkclosed in X , 84

PreStkdef , 53

(PreStklaft)/Y , 172

PreStklaft-def , 53

PreStknil-closed in X , 104

PreStknil-isom to X , 111

PreStknilp-emb into X , 88

PrimQ, 240

Primenh
Q , 242

Primenh,ind-nilp
Q

, 239

Primind-nilp
Q

, 239
convPro(QCoh(X)−)fake, 39

Pro(QCoh(X)−)fake, 38

Pro(QCoh(X)−)laft, 33
convPro(QCoh(S)−), 32

Ptd(FormMod/X), 206

Ptd((PreStklaft)/X), 211

Q -Coalg(O), 240

Q -Coalgind-nilp(O), 236

Q∨, 237

QCoh(X)♡,proj,ℵ0 , 369

Rscaled, 395

R●
scaled, 395

RealSplitSqZ, 24, 310, 351

RealSqZ, 42, 343, 351

RealSqZ/X0
, 347

Rees, 226

resAssocaug
→Lie, 257

resCocom→Coassoc, 251

resCom→Assoc, 251

res⋆→∗, 241

SF , 24

432 INDEX OF NOTATIONS

Scale, 391

ScaleA
1
left-lax , 391

(Sch)affine, 45

Schclosed in X , 84

(<∞Schaff
ft)nil-isom from X , 205

Schnil-closed in X , 104

Schnil-isom to X , 111
redSchaff , 59

SchX/, inf-closed, 42

Seg(X), 209

Seglaft(X), 211

ShvCat(Z), 414

Specinf , 292

Specinf(A)nil-isom, 292

Specinf,ind-nilp, 294

SplitSqZ(S), 24

SqZ(PreStk), 70

SqZ(Sch), 46

(SqZ(Sch))affine, 45

SqZ(X ,I), 70

Sym, 252

Sym, 253

Sym
+
, 253

T (X), 39

T (X), 336

T (X /Y), 337

T ∗x (X), 41

T ∗x (X), 25

T ∗x (X /X0), 28

Tnaive(X), 368

Tx(X), 35

trivh, 268

trivP , 223

trivQ, 240

trivind-nilp
Q

, 236

U , 257

U(L), 342

U(L)L, 342

U(L)Fil, 412

UFil, 258

Ugr, 259

UHopf , 258

(UHopf)Fil, 258

ΥDmod,X , 179

ΥXdR
, 179

V deg=n, 226

VectΣ, 222

VectΣ
f.d., 235

VectX(F), 294

VF(X), 359

WeilZ1
Z2

(X1), 423

X (n), 406

X
(n)
scaled

, 406

X
(n)

scaled,A1
left-lax

, 406

X∧
Y

, 102

X / exp(freeLie(V)), 358

Y0,A1
left-lax

, 398

redY, 59
Yscaled, 396

Yscaled,A1
left-lax

, 397

ZdR, 102

Index

(−n)-connective corepresentable

deformation theory, 53

(−n)-connective cotangent complex, 37

(−n)-connective pro-cotangent space, 31

(−n)-connective deformation theory, 53

(−n)-connective pro-cotangent complex, 37

(−n)-connective pro-cotangent space, 31

admits cotangent spaces, 27

admits pro-cotangent spaces, 27

almost of finite type (pro-)quasi-coherent

sheaf, 33

anchor map, 333

Atiyah algebroid, 340

augmented associative algebra, 223

augmented commutative algebra, 223

Chevalley functor, 250

classical ind-scheme, 79

classical Lie algebroid, 368

closed embedding, 59

co-algebra over a co-operad, 240

co-differential map, 40

co-operad, 235

cocommuative bialgebra, 254

cocommutative Hopf algebra, 254

codifferential of x, 40

composition monoidal structure, 222

connective cotangent spaces, 31

connective pro-cotangent spaces, 31

cotangent complex, 36

cotangent space, 26

crystal, 160

de Rham prestack, 102

de Rham resolution, 408

deformation to the normal bundle, 396

differential of x, 40

effective epimorphism, 364

(strict) equivariance, 385

eventually connective cotangent space, 31

eventually connective pro-cotangent space,

31

exponential map, 301

filtered object, 225

formal completion, 102

formal moduli problem over X , 202

formal moduli problem under X , 204

formal vector prestack, 294

formally smooth, 56

given by a surjective system, 82

graded object, 226

groupoid, 209

Hodge filtration, 408

ind-affine ind-scheme, 85

ind-affine morphism, 85

ind-closed embedding, 85

ind-finite morphism, 86

ind-inf-scheme, 101

ind-nilpotent co-algebra, 236

ind-proper morphism, 86

ind-schematic morphism, 85

ind-scheme, 79

inertia group, 330

inertia monad, 362

inf-affine, 298

inf-scheme, 101

inf-spectrum, 292

infinitesimal inertial group, 331

infinitesimally cohesive, 50

infinitesimally linearizable, 24

Koszul duality, 236

left D-modules, 175

left-lax equivariance, 385

Lie algebroid, 333

Lie operad, 223

locally eventually connective cotangent

space, 31

locally eventually connective deformation

theory, 53

locally eventually connective pro-cotangent
complex, 37

locally eventually connective pro-cotangent

space, 31

map of square-zero extensions, 45

n-coconnective ind-scheme, 79

433

434 INDEX

n-th infinitesimal neighborhood of X in Y ,

406

nil base change, 131

nil-closed, 59

nil-closed-embedding, 162

nil-isomorphism, 59

(ind)-nil-schematic, 162

nil-schematic ind-scheme, 88

nil-separated, 148

nilpotent embedding, 49, 59

non-negatively filtered object, 225

non-positively filtered object, 225

(unital) operad, 223

P-algebras in O, 223

pro-cotangent complex, 36

pro-cotangent space, 25

pseudo-nilpotent embedding, 59

reduced indscheme, 79

regular embedding of relative codimension

n, 417

relative pro-cotangent space, 27

right D-modules, 177

right-lax equivariance, 385

shifted anchor map, 335

smooth of relative dimension n, 419

special monad, 365

split square-zero extension, 24

splitting of a Lie algebroid, 336

square-zero extension, 42

square-zero extension of X , 70

symmetric sequence, 222

tangent Lie algebroid, 336

tangent space, 35

uniformly eventually connective
corepresentable deformation theory, 53

uniformly eventually connective cotangent
complex, 37

uniformly eventually connective cotangent
spaces, 31

uniformly eventually connective
deformation theory, 53

uniformly eventually connective
pro-cotangent complex, 37

uniformly eventually connective
pro-cotangent spaces, 31

universal envelope of a Lie algebra, 256

Verdier duality, 169

Weil restriction, 423

X admits corepresentable deformation

theory, 53

X admits deformation theory, 53

zero Lie algebroid, 337

	Preface
	1. What is the object of study in this book?
	2. How do we do we construct the theory of IndCoh?
	3. What is actually done in this book?

	Acknowledgements
	Introduction
	1. What is done in Volume II?
	2. What do we use from Volume I?

	Part I. Inf-schemes
	Introduction
	1. Why inf-schemes?
	2. Deformation theory
	3. Inf-schemes
	4. Ind-coherent sheaves on inf-schemes
	5. Crystals and D-modules

	Chapter 1. Deformation theory
	Introduction
	1. Push-outs of schemes
	2. (pro)-cotangent and tangent spaces
	3. Properties of (pro)-cotangent spaces
	4. The (pro)-cotangent complex
	5. Digression: square-zero extensions
	6. Infinitesimal cohesiveness
	7. Deformation theory
	8. Consequences of admitting deformation theory
	9. A criterion for being locally almost of finite type
	10. Square-zero extensions of prestacks

	Chapter 2. Ind-schemes and inf-schemes
	Introduction
	1. Ind-schemes
	2. Proofs of results concerning ind-schemes
	3. (Ind)-inf-schemes
	4. (Ind)-inf-schemes and nil-closed embeddings

	Chapter 3. Ind-coherent sheaves on ind-inf-schemes
	Introduction
	1. Ind-coherent sheaves on ind-schemes
	2. Proper base change for ind-schemes
	3. IndCoh on (ind)-inf-schemes
	4. The direct image functor for ind-inf-schemes
	5. Extending the formalism of correspondences to inf-schemes
	6. Self-duality and multiplicative structure of IndCoh on ind-inf-schemes

	Chapter 4. An appliction: crystals
	Introduction
	1. Crystals on prestacks and inf-schemes
	2. Crystals as a functor out of the category of correspondences
	3. Inducing crystals
	4. Comparison with the classical theory of D-modules

	Part II. Formal geometry
	Introduction
	1. What is formal geometry?
	2. Lie algebras
	3. Formal groups vs. Lie algebras
	4. Lie algebroids
	5. Infinitesimal differential geometry
	6. A simplifying remark

	Chapter 5. Formal moduli
	Introduction
	1. Formal moduli problems
	2. Groupoids

	Chapter 6. Lie algebras and co-commutative co-algebras
	Introduction
	1. Algebras over operads
	2. Koszul duality
	3. Associative algebras
	4. Lie algebras and co-commutative co-algebras
	5. The universal enveloping algebra
	6. The universal envelope via loops
	7. Modules
	A. Proof of Theorem 2.9.4
	B. Proof of the PBW theorem
	C. Commutative co-algebras and bialgebras

	Chapter 7. Formal groups and Lie algebras
	Introduction
	1. Formal moduli problems and co-algebras
	2. Inf-affineness
	3. From formal groups to Lie algebras
	4. Proof of Theorem 3.1.4
	5. Modules over formal groups and Lie algebras
	6. Actions of formal groups on prestacks

	Chapter 8. Lie algebroids
	Introduction
	1. The inertia group
	2. Lie algebroids: definition and basic pieces of structure
	3. Examples of Lie algebroids
	4. Modules over Lie algebroids and the universal enveloping algebra
	5. Square-zero extensions and Lie algebroids
	6. IndCoh of a square-zero extension
	7. Global sections of a Lie algebroid
	8. Lie algebroids as modules over a monad
	9. Relation to classical Lie algebroids
	A. An application: ind-coherent sheaves on push-outs

	Chapter 9. Infinitesimal differential geometry
	Introduction
	1. Filtrations and the monoid A1
	2. Deformation to the normal bundle
	3. The canonical filtration on a Lie algebroid
	4. The case of groups
	5. Infinitesimal neighborhoods
	6. Filtration on the universal enveloping algebra of a Lie algebroid
	7. The case of a regular embedding
	A. Weil restriction of scalars

	Bibliography
	Index of Notations
	Index

