1. (a) [16 marks] Find all complex numbers z which satisfy the equation $1+z^{4}=0$, and plot them on the complex plane.
(b) [16 marks] Write $z=x+i y$, expand out z^{4}, and use the Cauchy-Riemann equations to show that $1+z^{4}$ is analytic at all points in the complex plane. [This part corresponds to Quiz 1.]
(c) [4 marks] Use the results of (a) and (b) to find the region in the complex plane where the function

$$
\frac{1}{1+z^{4}}
$$

is analytic (in the sense of having a complex derivative).
The following is for Question 2 and Question 3:
Now let us define a (potentially multi-valued) function f of the complex variable z by the rule

$$
f(z)=\int_{0}^{z} \frac{1}{1+z^{\prime 4}} d z^{\prime}
$$

where the value of f may depend on the curve chosen from 0 to z (if so, then f will be multi-valued). If x is a real number, let

$$
g(x)=\int_{0}^{x} \frac{1}{1+u^{4}} d u
$$

where the integral is the usual real-variable integral; in other words, $g(x)$ is $f(x)$ where the contour defining f is required to lie along the real axis.
2. (a) [12 marks] Consider the function $f(i y)$, where the contour is taken along the imaginary axis. By parameterising this contour, show how to express $f(i y)$ in terms of $g(y)$.
(b) [12 marks] Use your result from (a) to draw the image of the real and imaginary axes under the function $z \mapsto f(z)$, where in both cases we require the contours used to lie along the respective axes. (You may assume that the function g maps the real line onto some open interval around 0 .)
(c) [8 marks] What is $f^{\prime}(0)$? Can we conclude that f is conformal at $z=0$? Explain how this relates to your picture in (b).
3. This is a continuation of Question 2.
(a) [8 marks] Find all points z at which f does not possess a complex derivative. (You should give a reason for your answer, but you do not need to give a full proof.) Plot these points on the complex plane. Label them $z_{1}, z_{2}, z_{3}, z_{4}$, in any order you wish. [Hint: it will be useful to have z_{1} and z_{2} lie on the same side of the real axis.]
(b) [16 marks] Use your solution to 1 (a) to factor $1+z^{4}$, and then apply the Cauchy integral formula to determine the value of the integral

$$
\int_{\gamma} \frac{1}{1+z^{\prime 4}} d z^{\prime}
$$

where γ is any curve enclosing z_{1} but none of the other points you found in (a). Simplify your answer as much as possible.
(c) [32 marks] Repeat (b), but now let γ enclose only z_{1} and z_{2}. [Hint: can you see how to use the Cauchy integral theorem to replace γ with two small circles around z_{1} and z_{2} ?]
(d) [32 marks] Repeat (b), but now let γ enclose all four points.
(e) [24 marks] Now let C be any simple (non-selfintersecting) piecewise-smooth curve whose endpoints are any two of the points $z_{1}, z_{2}, z_{3}, z_{4}$, which also passes through the remaining two points [Hint: it will be useful to have it start at z_{1} and go to z_{2} next], and which crosses the real axis exactly once, at some point $x_{0}>0$. Draw this curve on the plane you drew in (a). Let $D=\mathbf{C} \backslash C$ denote the complex plane with the curve C removed. Use your result from (d), together with the Cauchy integral theorem if necessary, to show that if we require the contour in the definition of f to be strictly within D, then f becomes a single-valued function.
(f) [16 marks] Using the single-valued version of f described in (e), calculate

$$
\lim _{z \rightarrow x_{0}^{+}} f(z)-\lim _{z \rightarrow x_{0}^{-}} f(z)
$$

where $z \rightarrow x_{0}^{ \pm}$means that z approaches from the right $(+)$ or left $(-)$ of the curve C. [Hint: can you see how to apply your result from (c)?] Does this difference of limits depend on your choice of C ? (You do not need to give a justification.)
[2(a) and 3(f) correspond to Quiz 2.]

