
1. (a) [16 marks] Find all complex numbers z which satisfy the equation z4 − z2 + 1 = 0, and plot them
on the complex plane. [Hint: remember the quadratic formula: az2 + bz + c = 0 has solutions

z =
1

2a

(

−b+ (b2 − 4ac)1/2
)

,

where the square root denotes the full (multi-valued) complex square root.]
We may apply the quadratic formula to this equation by making the substitution u = z2; then u2−u+1 =

0, so

u =
1

2

(

1 + (1− 4)1/2
)

=
1

2
(1± i

√
3) =

1

2
± i

√
3

2
= e±iπ/3.

Now u = z2, so we obtain the four solutions

z = e±iπ/6, e±i(π/6+π) = eiπ/6, e5iπ/6, e7iπ/6, e11iπ/6.

These can be drawn as follows:

[2 marks for each correct expression for a root, 2 marks for each correct plotted root.]
(b) [16 marks] Write z = x + iy, expand out z4, and use the Cauchy-Riemann equations to show that

it is analytic at all points in the complex plane. [This part corresponds to Quiz 1.]
We have

(x+ iy)4 =

4
∑

k=0

(

4
k

)

x4−k(iy)k = x4 + 4x3(iy) + 6x2(iy)2 + 4x(iy)3 + (iy)4

= x4 + 4ix3y − 6x2y2 − 4ixy3 + y4 = x4 − 6x2y2 + y4 + i(4x3y − 4xy3). [4 marks]

Letting P denote the real and Q the imaginary part of z4, we have [2 marks/derivative, 8 marks total]

∂P

∂x
= 4x3 − 12xy2,

∂P

∂y
= −12x2y + 4y3,

∂Q

∂x
= 12x2y − 4y3,

∂Q

∂y
= 4x312xy2,

so [1 mark/equation, 2 marks total]
∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
,

and since the derivatives are continuous everywhere [2 marks], we see that z4 is analytic on the whole complex
plane.

[Marking: as indicated.]
(c) [4 marks] Use the results of (a) and (b) to find the region in the complex plane where the function

1

1− z2 + z4

is analytic (in the sense of having a complex derivative). [You may assume without proof that z2 is analytic.]
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By the quotient rule and (b)[1 mark], as well as the fact that z2 is analytic, 1/(1 − z2 + z4) will be
analytic as long as the denominator is nonzero [1 mark]. By (a), this will happen when z 6= eiπ/6, e5iπ/6,
e7iπ/6, e11iπ/6 [1 mark]. Thus 1/(1− z2 + z4) is analytic on C\{eiπ/6, e5iπ/6, e7iπ/6, e11iπ/6}.[1 mark]

[Marking: as indicated.]

The following is for Question 2 and Question 3:
Now let us define a (potentially multi-valued) function f of the complex variable z by the rule

f(z) =

∫ z

0

1

1− z′2 + z′4
dz′,

where the value of f may depend on the curve chosen from 0 to z (if so, then f will be multi-valued). If x
is a real number, let

g(x) =

∫ x

0

1

1 + u2 + u4
du,

where the integral is the usual real-variable integral; in other words, g(x) is f(x) where the curve defining f
is required to lie along the real axis.

2. (a) [12 marks] Consider the function f(iy), where the curve is taken along the imaginary axis. By
parameterising this curve, show how to express f(iy) in terms of g(y). [Here y is an arbitrary real number.]

Let y ∈ R, and define the curve γ : [0, 1] → C by γ(t) = ity [2 marks]; then γ will be a curve along the
imaginary axis from 0 to iy, and along this curve we have, since γ′(t) = iy[1 mark],

∫

γ

1

1− z2 + z4
dz =

∫ 1

0

1

1− (ity)2 + (ity)4
iy dt[2 marks] =

∫ 1

0

1

1 + (ty)2 + (ty)4
iy dt[2 marks]

= i

∫ y

0

1

1 + u2 + u4
du[3 marks] = ig(y)[2 marks].

[Marking: as indicated.]
(b) [12 marks] Use your result from (a) to draw the image of the real and imaginary axes under the

function z 7→ f(z), where in both cases we require the curves used to lie along the respective axes. (You
may assume that the function g maps the real line onto some open interval around 0.)

Evidently, along the real axis, f(x) =
∫ x

0
1

1−x2+x4 dx [2 marks], while from (a), f(iy) = ig(y) [2 marks].
Thus f will take the real axis into some open interval around 0 on the real axis [2 marks], and the imaginary
axis into some open interval around 0 on the imaginary axis [2 marks]. If we indicate this pictorially, we
have

f−−−−−−−−−−−−→

[2 marks each for correctly indicating the mapping of the real and imaginary axis]
[Marking: as indicated. Some explanation in words of the image sets should be given, but it can be less

formal than what is here.]
(c) [8 marks] What is f ′(0)? Can we conclude that f is conformal at z = 0? Explain how this relates

to your picture in (b).
Since 1/(1 − z2 + z4) is analytic near z = 0 [2 marks], we will have f ′(z) = 1/(1 − z2 + z4) for z near

0, and in particular f ′(0) = 1/(1− 02 + 04) = 1/1 = 1 [2 marks]. Since f ′ exists and is nonzero, we see that
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f is conformal at z = 0 [2 marks]. This is exemplified by the fact that the image ‘curves’ (in this case, line
segments) in (b) make the same angle with each other as the original ones do [2 marks].

[Marking: as indicated.]

3. This is a continuation of Question 2.

(a) [8 marks] Find all points z at which f does not possess a complex derivative. (You should give a
reason for your answer, but you do not need to give a full proof.) Plot these points on the complex plane.
Label them z1, z2, z3, z4, in any order you wish. [Hint: it will be useful to have z1 and z2 lie on the same
side of the real axis.]

By the fundamental theorem of calculus [2 marks] [Goursat, §31], f will have a derivative at every point
at which 1/(1 − z2 + z4) does [2 marks]; hence it must have a derivative at every point except the points
eiπ/6, e5iπ/6, e7iπ/6, e11iπ/6, as we discussed in 1(c) above [2 marks]. We plot these as follows: [2 marks]

z1z2

z3 z4

[Marking: as indicated. A citation to Goursat or anywhere else is of course not required.]

In the following three parts, you are free to choose the orientation of the curve.

(b) [16 marks] Use your solution to 1(a) and your notation in (a) to factor 1− z2 + z4, and then apply
the Cauchy integral formula to determine the value of the integral

∫

γ

1

1− z2 + z′4
dz′,

where γ is any curve enclosing z1 but none of the other points you found in (a). Simplify your answer as
much as possible.

We see that we may write 1 − z2 + z4 = (z − z1)(z − z2)(z − z3)(z − z4) [4 marks]. Since γ does not
enclose z2, z3, or z4, the function 1/(z − z2)(z − z3)(z − z4) will be analytic on and within γ, and hence we
may apply the Cauchy integral formula to write[2 marks]

∫

γ

1

1− z2 + z4
dz =

∫

γ

1
(z−z2)(z−z3)(z−z4)

z − z1
dz [3 marks]

=
2πi

(z1 − z2)(z1 − z3)(z1 − z4)
[2 marks]

=
2πi√

3(
√
3 + i)(i)

=
2πi

3 + i
√
3

=
π
√
3

3

(√
3

2
− i

1

2

)

. [5 marks]

[Marking: as indicated. The answer must be simplified to a numeric form for full marks.]

(c) [32 marks] Repeat (b), but now let γ enclose only z1 and z2. [Hint: can you see how to use the
Cauchy integral theorem to replace γ with two small circles around z1 and z2?]

Consider the following picture: [2 marks for each of the curves C1, C2]
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z1
C1

z2
C2

z3 z4

ℓ1ℓ2

γ

By the Cauchy integral theorem, we have
∫

γ

1

1− z2 + z4
dz =

∫

C1

1

1− z2 + z4
dz +

∫

C2

1

1− z2 + z4
dz +

∫

ℓ1

1

1− z2 + z4
dz +

∫

ℓ2

1

1− z2 + z4
dz;

now the last two integrals cancel, since 1/(1− z2+ z4) is continuous along the line ℓ1 and ℓ2, and so we have
∫

γ

1

1− z2 + z4
dz =

∫

C1

1

1− z2 + z4
dz +

∫

C2

1

1− z2 + z4
dz. [4 marks]

But now
∫

C1

1
1−z2+z4 dz = π 1−i

23/2
[10 marks] by (b); and

∫

C2

1
1−z2+z4 dz can be computed in the same way:

∫

C2

1

1− z2 + z4
dz =

∫

C2

1
(z−z1)(z−z3)(z−z4)

z − z2
dz [3 marks]

=
2πi

(z2 − z1)(z2 − z3)(z2 − z4)
[2 marks] =

2πi

−
√
3(i)(−

√
3 + i)

= − 2πi

3− i
√
3
=

π
√
3

3

(√
3

2
+ i

1

2

)

, [5 marks]

so
∫

γ

1

1− z2 + z4
dz =

π
√
3

3

(√
3

2
− i

1

2
+

√
3

2
+ i

1

2

)

= π. [4 marks]

[Marking: as indicated. The lines ℓ1 and ℓ2 do not need to be used for full marks.]
(d) [32 marks] Repeat (b), but now let γ enclose all four points.
Consider the following picture: [1 mark for each curve C1]

z1

C1

z2

C2

z3

C3

z4

C4

γ

By the same logic as in (c), we see that
∫

γ

1

1− z2 + z4
dz =

∫

C1

1

1− z2 + z4
dz +

∫

C2

1

1− z2 + z4
dz +

∫

C3

1

1− z2 + z4
dz +

∫

C4

1

1− z2 + z4
dz.

[4 marks]
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We have already calculated the first two integrals; the remaining two may be calculated similarly:

∫

C3

1

1− z2 + z4
dz =

∫

C3

1
(z−z1)(z−z2)(z−z4)

z − z3
dz [3 marks]

=
2πi

(z3 − z1)(z3 − z2)(z3 − z4)
[2 marks] =

2πi

−(
√
3 + i)(−i)(−

√
3)

=
2πi√
3− 3i

=
π
√
3

3

(

−
√
3

2
+ i

1

2

)

[5 marks]

∫

C4

1

1− z2 + z4
dz =

2πi

(z4 − z1)(z4 − z2)(z4 − z3)
[5 marks] =

2πi

(−i)(
√
3− i)

√
3

=
2πi

−
√
3− 3i

=
π
√
3

3

(

−
√
3

2
− i

1

2

)

, [5 marks]

and we see that
∫

γ
1

1+z4 dz = 0.[4 marks]

[Marking: as indicated. Again, the lines between the curves do not need to be given for full marks.]
(e) [24 marks] Now let C be any simple (non-selfintersecting) piecewise-smooth curve whose endpoints

are any two of the points z1, z2, z3, z4, which also passes through the remaining two points [Hint: it will be
useful to have it start at z1 and go to z2 next], and which crosses the real axis exactly once, at some point
x0 > 0. Draw this curve on the plane you drew in (a). Let D = C\C denote the complex plane with the
curve C removed. Use your result from (d), together with the Cauchy integral theorem if necessary, to show
that if we require the contour in the definition of f to be strictly within D, then f becomes a single-valued
function.

We choose the following curve: [2 marks for each of the following: (i) initial point is one of the zi; (ii)
curve passes through all four zi; (iii) end point is one of the zi; (iv) curve only crosses the real axis once.]

z1z2

z3 z4

Now let z be any point in the plane not lying on C, and let γ1, γ2 be two curves in C\C from 0 to z
[2 marks]. Then if any of the points z1, z2, z3, z4 lies in between γ1 and γ2, the whole curve C must also lie
between them [6 marks]; by (d), then, the integral

∫

γ1−γ2

1

1− z2 + z4
dz =

∫

γ1

1

1− z2 + z4
dz −

∫

γ2

1

1− z2 + z4
dz

must vanish[3 marks]. If none of the points lie between γ1 and γ2, then this integral will vanish by the
Cauchy integral theorem[3 marks]. Thus in either case,

∫

γ1

1

1− z2 + z4
dz =

∫

γ2

1

1− z2 + z4
dz,

and f will be single-valued.[2 marks]
[Marking: as indicated.]
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(f) [16 marks] Using the single-valued version of f described in (e), calculate

lim
z→x+

0

f(z)− lim
z→x−

0

f(z),

where z → x±

0 means that z approaches from the right (+) or left (−) of the curve C. [Hint: can you see
how to apply your result from (c)?] Does this difference of limits depend on your choice of C? (You do not
need to give a justification.)

[2(a) and 3(f) correspond to Quiz 2.]
Since f is single-valued, we may use any two curves γ1, γ2[3 marks]. We use the following curves: [2

marks for each curve; curves should form a closed loop containing only two of the zi – it doesn’t matter
which two – and not intersecting the curve C except at its intersection with the real axis]

z1z2

z3 z4

γ2

γ1

Now 1/(1− z2 + z4) is continuous at x0, so in the limit

lim
z→x+

0

f(z)− lim
z→x−

0

f(z) =

∫

γ2

1

1− z2 + z4
dz −

∫

γ1

1

1− z2 + z4
dz [2 marks]

= −
∫

γ1−γ2

1

1− z2 + z4
dz[3 marks] = −π[2 marks]

by (c). It is quite clear that this does not depend on the choice of C, since regardless of the choice of C
the curve γ1 − γ2 must enclose exactly the two points z1 and z2, which entirely determines the integral of
1/(1− z2 + z4) over γ1 − γ2.[2 marks]

[Marking: as indicated.]
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