1. (a) [16 marks] Find all complex numbers z which satisfy the equation $z^{4}-z^{2}+1=0$, and plot them on the complex plane. [Hint: remember the quadratic formula: $a z^{2}+b z+c=0$ has solutions

$$
z=\frac{1}{2 a}\left(-b+\left(b^{2}-4 a c\right)^{1 / 2}\right)
$$

where the square root denotes the full (multi-valued) complex square root.]
We may apply the quadratic formula to this equation by making the substitution $u=z^{2}$; then $u^{2}-u+1=$ 0 , so

$$
u=\frac{1}{2}\left(1+(1-4)^{1 / 2}\right)=\frac{1}{2}(1 \pm i \sqrt{3})=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}=e^{ \pm i \pi / 3}
$$

Now $u=z^{2}$, so we obtain the four solutions

$$
z=e^{ \pm i \pi / 6}, e^{ \pm i(\pi / 6+\pi)}=e^{i \pi / 6}, e^{5 i \pi / 6}, e^{7 i \pi / 6}, e^{11 i \pi / 6}
$$

These can be drawn as follows:

[2 marks for each correct expression for a root, 2 marks for each correct plotted root.]
(b) [16 marks] Write $z=x+i y$, expand out z^{4}, and use the Cauchy-Riemann equations to show that it is analytic at all points in the complex plane. [This part corresponds to Quiz 1.]

We have

$$
\begin{align*}
(x+i y)^{4} & =\sum_{k=0}^{4}\binom{4}{k} x^{4-k}(i y)^{k}=x^{4}+4 x^{3}(i y)+6 x^{2}(i y)^{2}+4 x(i y)^{3}+(i y)^{4} \\
& =x^{4}+4 i x^{3} y-6 x^{2} y^{2}-4 i x y^{3}+y^{4}=x^{4}-6 x^{2} y^{2}+y^{4}+i\left(4 x^{3} y-4 x y^{3}\right) \tag{4marks}
\end{align*}
$$

Letting P denote the real and Q the imaginary part of z^{4}, we have [2 marks/derivative, 8 marks total]

$$
\frac{\partial P}{\partial x}=4 x^{3}-12 x y^{2}, \quad \frac{\partial P}{\partial y}=-12 x^{2} y+4 y^{3}, \quad \frac{\partial Q}{\partial x}=12 x^{2} y-4 y^{3}, \quad \frac{\partial Q}{\partial y}=4 x^{3} 12 x y^{2}
$$

so [1 mark/equation, 2 marks total]

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}, \quad \frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

and since the derivatives are continuous everywhere [2 marks], we see that z^{4} is analytic on the whole complex plane.
[Marking: as indicated.]
(c) [4 marks] Use the results of (a) and (b) to find the region in the complex plane where the function

$$
\frac{1}{1-z^{2}+z^{4}}
$$

is analytic (in the sense of having a complex derivative). [You may assume without proof that z^{2} is analytic.]

By the quotient rule and (b)[1 mark], as well as the fact that z^{2} is analytic, $1 /\left(1-z^{2}+z^{4}\right)$ will be analytic as long as the denominator is nonzero [1 mark]. By (a), this will happen when $z \neq e^{i \pi / 6}, e^{5 i \pi / 6}$, $e^{7 i \pi / 6}, e^{11 i \pi / 6}$ [1 mark]. Thus $1 /\left(1-z^{2}+z^{4}\right)$ is analytic on $\mathbf{C} \backslash\left\{e^{i \pi / 6}, e^{5 i \pi / 6}, e^{7 i \pi / 6}, e^{11 i \pi / 6}\right\} .[1$ mark]
[Marking: as indicated.]
The following is for Question 2 and Question 3:
Now let us define a (potentially multi-valued) function f of the complex variable z by the rule

$$
f(z)=\int_{0}^{z} \frac{1}{1-z^{\prime 2}+z^{\prime 4}} d z^{\prime}
$$

where the value of f may depend on the curve chosen from 0 to z (if so, then f will be multi-valued). If x is a real number, let

$$
g(x)=\int_{0}^{x} \frac{1}{1+u^{2}+u^{4}} d u
$$

where the integral is the usual real-variable integral; in other words, $g(x)$ is $f(x)$ where the curve defining f is required to lie along the real axis.
2. (a) [12 marks] Consider the function $f(i y)$, where the curve is taken along the imaginary axis. By parameterising this curve, show how to express $f(i y)$ in terms of $g(y)$. [Here y is an arbitrary real number.]

Let $y \in \mathbf{R}$, and define the curve $\gamma:[0,1] \rightarrow \mathbf{C}$ by $\gamma(t)=i t y$ [2 marks]; then γ will be a curve along the imaginary axis from 0 to $i y$, and along this curve we have, since $\gamma^{\prime}(t)=i y[1$ mark],

$$
\begin{aligned}
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z & =\int_{0}^{1} \frac{1}{1-(i t y)^{2}+(i t y)^{4}} i y d t[2 \text { marks }]=\int_{0}^{1} \frac{1}{1+(t y)^{2}+(t y)^{4}} i y d t[2 \text { marks }] \\
& =i \int_{0}^{y} \frac{1}{1+u^{2}+u^{4}} d u[3 \text { marks }]=i g(y)[2 \text { marks }]
\end{aligned}
$$

[Marking: as indicated.]
(b) [12 marks] Use your result from (a) to draw the image of the real and imaginary axes under the function $z \mapsto f(z)$, where in both cases we require the curves used to lie along the respective axes. (You may assume that the function g maps the real line onto some open interval around 0.)

Evidently, along the real axis, $f(x)=\int_{0}^{x} \frac{1}{1-x^{2}+x^{4}} d x$ [2 marks], while from (a), $f(i y)=i g(y)[2$ marks $]$. Thus f will take the real axis into some open interval around 0 on the real axis [2 marks], and the imaginary axis into some open interval around 0 on the imaginary axis [2 marks]. If we indicate this pictorially, we have

[2 marks each for correctly indicating the mapping of the real and imaginary axis]
[Marking: as indicated. Some explanation in words of the image sets should be given, but it can be less formal than what is here.]
(c) [8 marks] What is $f^{\prime}(0)$? Can we conclude that f is conformal at $z=0$? Explain how this relates to your picture in (b).

Since $1 /\left(1-z^{2}+z^{4}\right)$ is analytic near $z=0$ [2 marks], we will have $f^{\prime}(z)=1 /\left(1-z^{2}+z^{4}\right)$ for z near 0 , and in particular $f^{\prime}(0)=1 /\left(1-0^{2}+0^{4}\right)=1 / 1=1\left[2\right.$ marks]. Since f^{\prime} exists and is nonzero, we see that
f is conformal at $z=0$ [2 marks]. This is exemplified by the fact that the image 'curves' (in this case, line segments) in (b) make the same angle with each other as the original ones do [2 marks].
[Marking: as indicated.]
3. This is a continuation of Question 2.
(a) [8 marks] Find all points z at which f does not possess a complex derivative. (You should give a reason for your answer, but you do not need to give a full proof.) Plot these points on the complex plane. Label them $z_{1}, z_{2}, z_{3}, z_{4}$, in any order you wish. [Hint: it will be useful to have z_{1} and z_{2} lie on the same side of the real axis.]

By the fundamental theorem of calculus [2 marks] [Goursat, $\S 31], f$ will have a derivative at every point at which $1 /\left(1-z^{2}+z^{4}\right)$ does [2 marks]; hence it must have a derivative at every point except the points $e^{i \pi / 6}, e^{5 i \pi / 6}, e^{7 i \pi / 6}, e^{11 i \pi / 6}$, as we discussed in $1(\mathrm{c})$ above [2 marks]. We plot these as follows: [2 marks]

[Marking: as indicated. A citation to Goursat or anywhere else is of course not required.]
In the following three parts, you are free to choose the orientation of the curve.
(b) [16 marks] Use your solution to 1 (a) and your notation in (a) to factor $1-z^{2}+z^{4}$, and then apply the Cauchy integral formula to determine the value of the integral

$$
\int_{\gamma} \frac{1}{1-z^{2}+z^{\prime 4}} d z^{\prime}
$$

where γ is any curve enclosing z_{1} but none of the other points you found in (a). Simplify your answer as much as possible.

We see that we may write $1-z^{2}+z^{4}=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)[4$ marks]. Since γ does not enclose z_{2}, z_{3}, or z_{4}, the function $1 /\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)$ will be analytic on and within γ, and hence we may apply the Cauchy integral formula to write[2 marks]

$$
\begin{array}{rl}
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z & =\int_{\gamma} \frac{1}{\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)} \\
z-z_{1} & d z \\
& =\frac{2 \pi i}{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)\left(z_{1}-z_{4}\right)} \quad[2 \text { marks }] \\
& =\frac{2 \pi i}{\sqrt{3}(\sqrt{3}+i)(i)}=\frac{2 \pi i}{3+i \sqrt{3}} \\
& =\frac{\pi \sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right) . \quad[5 \text { marks }]
\end{array}
$$

[Marking: as indicated. The answer must be simplified to a numeric form for full marks.]
(c) [32 marks] Repeat (b), but now let γ enclose only z_{1} and z_{2}. [Hint: can you see how to use the Cauchy integral theorem to replace γ with two small circles around z_{1} and z_{2} ?]

Consider the following picture: [2 marks for each of the curves C_{1}, C_{2}]

By the Cauchy integral theorem, we have

$$
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z=\int_{C_{1}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{2}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{\ell_{1}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{\ell_{2}} \frac{1}{1-z^{2}+z^{4}} d z
$$

now the last two integrals cancel, since $1 /\left(1-z^{2}+z^{4}\right)$ is continuous along the line ℓ_{1} and ℓ_{2}, and so we have

$$
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z=\int_{C_{1}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{2}} \frac{1}{1-z^{2}+z^{4}} d z . \quad[4 \text { marks }]
$$

But now $\int_{C_{1}} \frac{1}{1-z^{2}+z^{4}} d z=\pi \frac{1-i}{2^{3 / 2}}[10$ marks $]$ by (b); and $\int_{C_{2}} \frac{1}{1-z^{2}+z^{4}} d z$ can be computed in the same way:

$$
\begin{aligned}
\int_{C_{2}} \frac{1}{1-z^{2}+z^{4}} d z & =\int_{C_{2}} \frac{\frac{1}{\left(z-z_{1}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)}}{z-z_{2}} d z \quad[3 \text { marks }] \\
& =\frac{2 \pi i}{\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right)\left(z_{2}-z_{4}\right)}[2 \text { marks }]=\frac{2 \pi i}{-\sqrt{3}(i)(-\sqrt{3}+i)} \\
& =-\frac{2 \pi i}{3-i \sqrt{3}}=\frac{\pi \sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right), \quad[5 \text { marks }]
\end{aligned}
$$

so

$$
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z=\frac{\pi \sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}+\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=\pi . \quad[4 \text { marks }]
$$

[Marking: as indicated. The lines ℓ_{1} and ℓ_{2} do not need to be used for full marks.]
(d) [32 marks] Repeat (b), but now let γ enclose all four points.

Consider the following picture: [1 mark for each curve C_{1}]

By the same logic as in (c), we see that

$$
\begin{equation*}
\int_{\gamma} \frac{1}{1-z^{2}+z^{4}} d z=\int_{C_{1}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{2}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{3}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{4}} \frac{1}{1-z^{2}+z^{4}} d z \tag{4marks}
\end{equation*}
$$

We have already calculated the first two integrals; the remaining two may be calculated similarly:

$$
\begin{aligned}
\int_{C_{3}} \frac{1}{1-z^{2}+z^{4}} d z & =\int_{C_{3}} \frac{\frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{4}\right)}}{z-z_{3}} d z \quad[3 \mathrm{marks}] \\
& =\frac{2 \pi i}{\left(z_{3}-z_{1}\right)\left(z_{3}-z_{2}\right)\left(z_{3}-z_{4}\right)}[2 \text { marks }]=\frac{2 \pi i}{-(\sqrt{3}+i)(-i)(-\sqrt{3})} \\
& =\frac{2 \pi i}{\sqrt{3}-3 i}=\frac{\pi \sqrt{3}}{3}\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right) \quad[5 \text { marks }] \\
\int_{C_{4}} \frac{1}{1-z^{2}+z^{4}} d z & =\frac{2 \pi i}{\left(z_{4}-z_{1}\right)\left(z_{4}-z_{2}\right)\left(z_{4}-z_{3}\right)}[5 \text { marks }]=\frac{2 \pi i}{(-i)(\sqrt{3}-i) \sqrt{3}} \\
& =\frac{2 \pi i}{-\sqrt{3}-3 i}=\frac{\pi \sqrt{3}}{3}\left(-\frac{\sqrt{3}}{2}-i \frac{1}{2}\right), \quad[5 \text { marks }]
\end{aligned}
$$

and we see that $\int_{\gamma} \frac{1}{1+z^{4}} d z=0 .[4$ marks]
[Marking: as indicated. Again, the lines between the curves do not need to be given for full marks.]
(e) [24 marks] Now let C be any simple (non-selfintersecting) piecewise-smooth curve whose endpoints are any two of the points $z_{1}, z_{2}, z_{3}, z_{4}$, which also passes through the remaining two points [Hint: it will be useful to have it start at z_{1} and go to z_{2} next], and which crosses the real axis exactly once, at some point $x_{0}>0$. Draw this curve on the plane you drew in (a). Let $D=\mathbf{C} \backslash C$ denote the complex plane with the curve C removed. Use your result from (d), together with the Cauchy integral theorem if necessary, to show that if we require the contour in the definition of f to be strictly within D, then f becomes a single-valued function.

We choose the following curve: [2 marks for each of the following: (i) initial point is one of the z_{i}; (ii) curve passes through all four z_{i}; (iii) end point is one of the z_{i}; (iv) curve only crosses the real axis once.]

Now let z be any point in the plane not lying on C, and let γ_{1}, γ_{2} be two curves in $\mathbf{C} \backslash C$ from 0 to z [2 marks]. Then if any of the points $z_{1}, z_{2}, z_{3}, z_{4}$ lies in between γ_{1} and γ_{2}, the whole curve C must also lie between them [6 marks]; by (d), then, the integral

$$
\int_{\gamma_{1}-\gamma_{2}} \frac{1}{1-z^{2}+z^{4}} d z=\int_{\gamma_{1}} \frac{1}{1-z^{2}+z^{4}} d z-\int_{\gamma_{2}} \frac{1}{1-z^{2}+z^{4}} d z
$$

must vanish[3 marks]. If none of the points lie between γ_{1} and γ_{2}, then this integral will vanish by the Cauchy integral theorem[3 marks]. Thus in either case,

$$
\int_{\gamma_{1}} \frac{1}{1-z^{2}+z^{4}} d z=\int_{\gamma_{2}} \frac{1}{1-z^{2}+z^{4}} d z
$$

and f will be single-valued. [2 marks]
[Marking: as indicated.]
(f) [16 marks] Using the single-valued version of f described in (e), calculate

$$
\lim _{z \rightarrow x_{0}^{+}} f(z)-\lim _{z \rightarrow x_{0}^{-}} f(z)
$$

where $z \rightarrow x_{0}^{ \pm}$means that z approaches from the right $(+)$ or left $(-)$ of the curve C. [Hint: can you see how to apply your result from (c)?] Does this difference of limits depend on your choice of C ? (You do not need to give a justification.)
[2(a) and $3(\mathrm{f})$ correspond to Quiz 2.]
Since f is single-valued, we may use any two curves $\gamma_{1}, \gamma_{2}[3$ marks]. We use the following curves: [2 marks for each curve; curves should form a closed loop containing only two of the z_{i} - it doesn't matter which two - and not intersecting the curve C except at its intersection with the real axis]

Now $1 /\left(1-z^{2}+z^{4}\right)$ is continuous at x_{0}, so in the limit

$$
\begin{aligned}
\lim _{z \rightarrow x_{0}^{+}} f(z)-\lim _{z \rightarrow x_{0}^{-}} f(z) & =\int_{\gamma_{2}} \frac{1}{1-z^{2}+z^{4}} d z-\int_{\gamma_{1}} \frac{1}{1-z^{2}+z^{4}} d z \quad[2 \text { marks }] \\
& =-\int_{\gamma_{1}-\gamma_{2}} \frac{1}{1-z^{2}+z^{4}} d z[3 \text { marks }]=-\pi[2 \text { marks }]
\end{aligned}
$$

by (c). It is quite clear that this does not depend on the choice of C, since regardless of the choice of C the curve $\gamma_{1}-\gamma_{2}$ must enclose exactly the two points z_{1} and z_{2}, which entirely determines the integral of $1 /\left(1-z^{2}+z^{4}\right)$ over $\gamma_{1}-\gamma_{2}$.[2 marks]
[Marking: as indicated.]

