
MAT334, Summer 2020 Final assessment solutions and rubric

1. [9 marks] Suppose that f is a function which is analytic on the entire complex plane, and that there is
a constant C > 0 such that |f(z)| ≤ CR whenever |z| = R. If f(0) = 0 and f ′(0) = 1, what is f?

We note that f may be written as

f(z) = z +

∞
∑

n=2

anz
n, [2 marks]

where

an =
1

2πi

∫

CR

f(z′)

z′n+1
dz′, [1 mark]

CR being a circle of radius R about the origin. But now

|an| =
∣

∣

∣

∣

1

2πi

∫

CR

f(z′)

z′n+1
dz′
∣

∣

∣

∣

≤ 1

2π

∫

CR

|f(z′)|
Rn+1

ds ≤ 1

2π

∫ 2π

0

CR

Rn+1
Rdt[2 marks] =

C

Rn−1
[1 mark]

which goes to zero as R → ∞ if n ≥ 2[1 mark]. Since an does not depend on R, we must have an = 0 for
n ≥ 2[1 mark]; thus f(z) = z[1 mark].

2. [7 marks] How many zeroes does the function znez + 1
2 sin z, also on the unit disk?

We note that on the unit circle, 1
8 | sin z| ≤ 1

8e
|y| ≤ e/8[2 marks], while |znez| = |ez| = ex ≥ e−1 >

1
8e[2 marks], so that by Rouché’s Theorem[1 mark], znez + 1

8 sin z has the same number of zeroes in the unit
disk as znez[1 mark], namely n[1 mark].

3. [6 marks] Using the Taylor series for ez around z = 0, find the Laurent series for e1/z around z = 0.
Use this to determine

∫

C e1/z dz, where C is any circle centred at the origin.
We have

ez =

∞
∑

n=0

1

n!
zn[1 mark],

so for z 6= 0

e1/z =

∞
∑

n=0

1

n!
z−n[1 mark].

Thus
∫

C

e1/z dz =
∞
∑

n=0

1

n!

∫

C

z−n dz = 2πi[2 marks],

since only the n = 1 term contributes[2 marks], as we have seen many times during the course.

Evaluate the following integrals.
4. [10 marks]

∫ +∞

−∞

e−ix

(x2 + 4x+ 8)2
dx.

Since we have a factor of e−ix in the numerator, we must close in the lower half-plane. We will use the
contour shown in the figure[1 mark]. Now z2 + 4z + 8 = 0 gives z = −2 + 1

2 (16− 32)1/2 = −2± 2i[1 mark],
so in the lower half-plane we have only one pole, at −2 − 2i[1 mark]. Now since for R sufficiently large we
have

1

|z2 + 4z + 8|2 ≤ 1

(R2 − 4R− 8)2

and this goes to zero as R → ∞[1 mark], we have

∫

CR

e−iz

(z2 + 4z + 8)2
dz → 0
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as R → ∞ by the Jordan Lemma[1 mark] applied on the lower half-plane. Thus

lim
R→∞

∫

LR

e−ix

(x2 + 4x+ 8)2
dx = −2πiRes−2−2i

e−iz

(z2 + 4z + 8)2
[1 mark]

= −2πi
d

dz

e−iz

(z + 2− 2i)2

∣

∣

∣

∣

z=−2−2i

[1 mark]

= −2πi

[ −ie−iz

(z + 2− 2i)2
− 2

e−iz

(z + 2− 2i)3

]∣

∣

∣

∣

z=−2−2i

[1 mark]

=
2πi

−16

[

ie2i−2 + 2
e2i−2

−4i

]

[1 mark]

= −πi

8
e2i−2

[

3

2
i

]

=
3π

16
e2i−2[1 mark].

5.
[15 marks]

∫ +∞

0

cosx4 − (1 +
√
2) sinx4

1 + x8
dx.

We follow the method used in the homework and work with

∫ +∞

0

eix
4

1 + x8
dx[1 mark].

We wish to close along a wedge; we will choose the angle θ so that z4 is in the upper half plane for arg z ∈ [0, θ]

while
(

eiθz
)8

= z8[1 mark]. This last gives e8iθ = 1, or θ = nπ/4, while the former requires θ ≤ π/4; thus
we take θ = π/4[1 mark]. Thus we close using the contour shown in the figure.[1 mark]

Now
∫

CR

eiz
4

1 + z8
dz =

∫ π/4

0

eie
4itR4

1 +R8e8it
iReit dt[1 mark].

For t ∈ [0, π/4], e4it will have a nonnegative imaginary part; in particular, Im e4it = sin 4t ≥ 2
π4t for

t ∈ [0, π/8] by the Jordan inequality[1 mark]. Thus
∣

∣

∣

∣

∣

∫ π/4

0

eie
4itR4

1 +R8e8it
dt

∣

∣

∣

∣

∣

≤
∫ π/4

0

e−R4 sin 4t

R8 − 1
dt = 2

∫ π/8

0

e−R4 sin 4t

R8 − 1
dt[2 marks]

≤ 2

∫ π/8

0

e−
8
πR4t

R8 − 1
dt ≤ π

4R4(R8 − 1)

(

1− e−R4
)

→ 0[1 mark]

as R → ∞. Further,
∫

L′

R

eiz
4

1 + z8
dz = −

∫ R

0

e−it4eiπ/4

1 + t8
dt[1 mark],

so (note that z8 + 1 = 0 gives z = eiπ/8+nπ/4, so inside the wedge we have only one pole, at eiπ/8)

2πiReseiπ/8

eiz
4

1 + z8
= lim

R→∞

(

∫

LR

eiz
4

1 + z8
dz +

∫

L′

R

eiz
4

1 + z8
dz

)

= lim
R→∞

∫ R

0

eit
4 − eiπ/4e−it4

1 + t8
dt[1 mark].

Now

eit
4 − eiπ/4e−it4 = cos t4 + i sin t4 −

(

1√
2
cos t4 +

1√
2
sin t4 + i

[

− 1√
2
sin t4 +

1√
2
cos t4

])

=

(

1− 1√
2

)

cos t4 − 1√
2
sin t4 + i

[(

1 +
1√
2

)

sin t4 − 1√
2
cos t4

]

=

(

1− 1√
2

)

[

cos t4 − (
√
2 + 1) sin t4

]

+ i
1√
2

[(√
2 + 1

)

sin t4 − cos t4
]

[1 mark]

2
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so the integral we want is 1/(1− 1/
√
2) = 1

2 (1 +
1√
2
) times the real part of the above limit. Now the residue

may be computed as follows:

Reseiπ/8

eiz
4

1 + z8
=

eie
iπ/2

8e7iπ/8
=

1

8e

[

cos
7π

8
− i sin

7π

8

]

[2 marks],

and we have finally

∫ ∞

0

cosx4 − (1 +
√
2) sinx4

1 + x8
dx =

π

8e
sin

7π

8

(

1 +
1√
2

)

[1 mark].

6.
[20 marks]

∫ +∞

0

x−α

x4 + 3x2 + 2
dx,

where α ∈ (0, 1) and the exponential denotes the standard version of this function on positive real num-
bers. [Hint: while this can be done with a keyhole contour, there is another contour which requires fewer
computations.]

We will close on an indented contour wedge. We pick the angle in the same fashion as in 5; thus we
want e2iθ = 1, so θ = nπ, and we take θ = π[2 marks] to minimise the number of poles within the contour.
Thus we have the contour in the figure[1 mark]. We shall take the branch of the exponential function with
a cut along the negative imaginary axis and an angle between −π/2 and 3π/2.

Now z4 + 3z4 + 2 = 0 gives z2 = − 3
2 ± 1

2 = −2, −1, so z = ±i
√
2, ±i[2 marks], and we have only

z = i
√
2, i within the contour[1 mark]. At these points we have the residues

Resi
z−α

z4 + 3z2 + 2
= Resi

z−α

(z2 + 2)(z2 + 1)
=

i−α

1 · 2i =
e−iαπ

2

2i
= − i

2
e−iαπ

2 [2 marks],

Resi
√
2

z−α

z4 + 3z2 + 2
=

(i
√
2)−α

2i
√
2(−1)

=
2−α/2e−iα π

2

−2i
√
2

= i2−(α+3)/2e−iαπ/2[2 marks].

Further, we claim that

∫

CR

z−α

z4 + 3z2 + 2
dz,

∫

C′

ǫ

z−α

z4 + 3z2 + 2
dz → 0 as R → ∞, ǫ → 0+.

We have

∣

∣

∣

∣

∫

CR

z−α

z4 + 3z2 + 2
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

0

R−αe−iαt

R4e4it + 3R2e2it + 2
ds

∣

∣

∣

∣

≤
∫ π

0

R−α

R4 − 3R2 − 2
Rdt

≤ R1−απ

R4 − 3R2 − 2
→ 0 asR → ∞[2 marks],

∣

∣

∣

∣

∣

∫

C′

ǫ

z−α

z4 + 3z2 + 2
dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

0

ǫ−α

ǫ4e4it + 3ǫ2e2it + 2
ǫ dt

∣

∣

∣

∣

≤ ǫ1−απ

2− 3ǫ2 − ǫ4
→ 0 as ǫ → 0+[2 marks].

Thus we will have

lim
ǫ→0+

lim
R→∞

∫

L′

R

z−α

z4 + 3z2 + 2
dz +

∫

LR

z−α

z4 + 3z2 + 2
dz = 2πi

[

− i

2
e−iαπ

2 + i2−(α+3)/2e−iαπ/2

]

[2 marks].

Now (since −L′
R can be parameterised by −t, t ∈ [ǫ, R])

∫

LR

z−α

z4 + 3z2 + 2
dz =

∫ R

ǫ

(−t)−α

t4 + 3t2 + 2
dt =

∫ R

ǫ

e−iαπt−α

t4 + 3t2 + 2
dt = e−iαπ

∫

LR

z−α

z4 + 3z2 + 2
dz[1 mark];
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thus we have

∫ ∞

0

x−α

x4 + 3x2 + 2
dx =

2πi

1 + e−iαπ

[

− i

2
e−iαπ

2 + i2−(α+3)/2e−iαπ/2

]

[1 mark]

=
π

2 cos 1
2απ

[

1− 2−(α+1)/2
]

[2 marks].

7. [11 marks] Use the fact that 1/(z+1)2 is analytic on the right half-plane to solve the following problem
on the wedge D = {(x, y) |x > 0, −x ≤ y ≤ x}:

∆u = 0 on D, u|∂D = − 4x2

(1 + 4x4)2
.

We see that, writing z = x+ iy,

1

(1 + z)2
=

1

[(1 + x) + iy]2
=

1

(1 + x)2 − y2 + 2i(1 + x)y

=
(x+ 1)2 − y2 − 2i(1 + x)y

[(1 + x)2 − y2]2 + 4(1 + x)2y2
=

(x+ 1)2 − y2 − 2i(1 + x)y

[(1 + x)2 + y2]2
.[2 marks]

Now let us try to convert the original problem to one on the right half-plane by using the map z 7→
z1/2[2 marks]. The boundary conditions will transform as follows:

v|x=0,y≥0 = u|y=x(
√

x/2,
√

x/2) = − 2y

(1 + y2)2
, [2 marks]

v|x=0,y≤0 = u|y=−x(
√

x/2,−
√

x/2) =
2y

(1 + y2)2
, [2 marks]

so

v = − 2(1 + x)y

[(1 + x)2 + y2]2
[2 marks],

and

u = v ◦ z2 = v(x2 − y2, 2xy) = − 4(1 + x2 − y2)xy

[(1 + x2 − y2)2 + 4x2y2]2

is the desired solution.[1 mark]
[It was not until after the marking was commenced that the mistake in the above problem was discovered
(note that the transformed initial data should have been the same thing on both y ≥ 0 and y ≤ 0, which
would require a different sign for the two half-line boundaries in the original initial data). The marking was
carried out in such a way as to avoid penalising anyone for this error in the problem, essentially as follows:
2 marks for working out the function 1/(1+ z)2, 2 marks for knowing that the imaginary part of an analytic
function is harmonic, 2 marks for the correct conformal transformation, 2 marks for each of the boundary
conditions, and 1 mark for knowing that the final solution should be v ◦ f−1 for f the conformal map and v
the solution of the transformed problem.]
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