Tutorial 0201 (Thursday, 4-5), Quiz 2, rubric.

It can be shown that on the set $U=\mathbf{R}^{2} \backslash\{(x, 0) \mid x \geq 0\}$, i.e., the plane with the positive x axis and origin removed, the function

$$
P(x, y)=2 \sqrt{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-x}
$$

is harmonic. The formula

$$
Q\left(x_{0}, y_{0}\right)=\int_{(1,0)}^{\left(x_{0}, y_{0}\right)}-\frac{\partial P}{\partial y} d x+\frac{\partial P}{\partial x} d y
$$

gives a function which is harmonic on U and such that

$$
f(x+i y)=P(x, y)+i Q(x, y)
$$

is analytic on U. Use this formula to determine Q on the part of the unit circle which lies in U. (The identity

$$
\sin \frac{x}{2}=\sqrt{\frac{1-\cos x}{2}},
$$

valid when $\sin \frac{x}{2}$ is nonnegative, may be useful.) What is

$$
\lim _{(x, y) \rightarrow\left(1,0^{+}\right)} Q(x, y)-\lim _{(x, y) \rightarrow\left(1,0^{-}\right)} Q(x, y)
$$

(where the limits are taken along the unit circle)? What do we call the half-line $\{(x, 0) \mid x \geq 0\}$ in this case?
First, we note that

$$
\frac{\partial P}{\partial x}=\frac{\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}}-1}{\sqrt{\left(x^{2}+y^{2}\right)^{1 / 2}-x}}, \quad[1 \text { mark }] \quad \frac{\partial P}{\partial y}=\frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2} \sqrt{\left(x^{2}+y^{2}\right)^{1 / 2}-x}} ; \quad[1 \text { mark }]
$$

we could of course simplify the first of these but we don't really need to for this particular problem.
The unit circle can be parameterised as

$$
(x(t), y(t))=(\cos t, \sin t), \quad[1 \text { mark }]
$$

where the portion of the circle lying in U corresponds to the range $t \in(0,2 \pi)$, and the point $(1,0)$ corresponds to $t=0$. (That this value for t is not in the range just given merely means that the function Q is not defined at the point $(1,0)$; it does not affect any other part of the problem.) Given this, we may evaluate the line integral as follows. Let $\theta \in(0,2 \pi)$; then

$$
Q(\cos \theta, \sin \theta)=\int_{(1,0)}^{(\cos \theta, \sin \theta)}-\frac{\partial P}{\partial y} d x+\frac{\partial P}{\partial x} d y
$$

Now at the point $(\cos t, \sin t)$ on the unit circle we have

$$
\frac{\partial P}{\partial x}=\frac{\cos t-1}{\sqrt{1-\cos t}}, \quad \frac{\partial P}{\partial y}=\frac{\sin t}{\sqrt{1-\cos t}}, \quad[0.5 \text { marks each }]
$$

so this integral becomes

$$
\begin{aligned}
Q(\cos \theta, \sin \theta) & =\int_{0}^{\theta}-\frac{\sin t}{\sqrt{1-\cos t}}(-\sin t)+\frac{\cos t-1}{\sqrt{1-\cos t} \cos t d t} \quad \begin{array}{c}
{[1 \text { mark for }-\sin t \text { and } \cos t,} \\
1 \text { mark for bounds }]
\end{array} \\
& =\int_{0}^{\theta} \frac{\sin ^{2} t+\cos ^{2} t-\cos t}{\sqrt{1-\cos t} d t} \\
& =\int_{0}^{\theta} \sqrt{1-\cos t} d t=\int_{0}^{\theta} \sqrt{2} \sin \frac{t}{2} d t \quad[1 \text { mark }] \\
& =-\left.2 \sqrt{2} \cos \frac{t}{2}\right|_{0} ^{\theta}=2 \sqrt{2}\left(1-\cos \frac{\theta}{2}\right), \quad[1 \text { mark }]
\end{aligned}
$$

the desired answer. (Note that we are allowed to write $\sin \frac{t}{2}=\sqrt{\frac{1-\cos t}{2}}$, taking the positive square root, since $t \in(0,2 \pi)$ implies that $\sin \frac{t}{2}>0$. It is instructive to think about this last statement geometrically.)

Penultimately, then, we have, taking the limits along the unit circle, [1 mark for $\theta \rightarrow 0^{+}, 1$ mark for $\theta \rightarrow 2 \pi^{-}, 1$ mark for the final answer]

$$
\begin{aligned}
\lim _{(x, y) \rightarrow\left(1,0^{+}\right)} Q(x, y)- & \lim _{(x, y) \rightarrow\left(1,0^{-}\right)} Q(x, y)=\lim _{\theta \rightarrow 0^{+}} Q(\cos \theta, \sin \theta)-\lim _{\theta \rightarrow 2 \pi^{-}} Q(\cos \theta, \sin \theta) \\
& =\lim _{\theta \rightarrow 0^{+}} 2 \sqrt{2}\left(1-\cos \frac{\theta}{2}\right)-\lim _{\theta \rightarrow 2 \pi^{-}} 2 \sqrt{2}\left(1-\cos \frac{\theta}{2}\right)=0-2 \sqrt{2}(1-(-1))=-4 \sqrt{2}
\end{aligned}
$$

In this case, the function P is (up to a constant multiple) the imaginary part of the branch of the square-root function corresponding to the given set, and the half-line $\{(x, 0) \mid x \geq 0\}$ is the associated branch cut. [1 mark for saying something related to branch cut or branch point]

