Tutorial 5201 (Thursday, 5-6), Quiz 1, rubric.

1. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the complex plane:

$$
\cosh \left(x^{2}-y^{2}\right) \cos (2 x y)+i \sinh \left(x^{2}-y^{2}\right) \sin (2 x y)
$$

Solution: Let $P=\cosh \left(x^{2}-y^{2}\right) \cos (2 x y)$ and $Q=\sinh \left(x^{2}-y^{2}\right) \sin (2 x y)$ be the real and imaginary parts of the function, respectively. Then we have

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=2 x \sinh \left(x^{2}-y^{2}\right) \cos (2 x y)-2 y \cosh \left(x^{2}-y^{2}\right) \sin (2 x y) \\
& \frac{\partial P}{\partial y}=-2 y \sinh \left(x^{2}-y^{2}\right) \cos (2 x y)-2 x \cosh \left(x^{2}-y^{2}\right) \sin (2 x y) \\
& \frac{\partial Q}{\partial x}=2 x \cosh \left(x^{2}-y^{2}\right) \sin (2 x y)+2 y \sinh \left(x^{2}-y^{2}\right) \cos (2 x y), \\
& \frac{\partial Q}{\partial y}=-2 y \cosh \left(x^{2}-y^{2}\right) \sin (2 x y)+2 x \sinh \left(x^{2}-y^{2}\right) \cos (2 x y),
\end{aligned}
$$

from which we see that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}
$$

and

$$
\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

so that the Cauchy-Riemann equations are satisfied and the function is therefore analytic as the partial derivatives of P and Q are continuous.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.
2. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the complex plane:

$$
-\sinh \left(x^{2}-y^{2}\right) \sin (2 x y)+i \cosh \left(x^{2}-y^{2}\right) \cos (2 x y)
$$

Solution: Let $P=-\sinh \left(x^{2}-y^{2}\right) \sin (2 x y)$ and $Q=\cosh \left(x^{2}-y^{2}\right) \cos (2 x y)$ be the real and imaginary parts of the function, respectively. Then we have

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-2 x \cosh \left(x^{2}-y^{2}\right) \sin (2 x y)-2 y \sinh \left(x^{2}-y^{2}\right) \cos (2 x y) \\
& \frac{\partial P}{\partial y}=2 y \cosh \left(x^{2}-y^{2}\right) \sin (2 x y)-2 x \sinh \left(x^{2}-y^{2}\right) \cos (2 x y) \\
& \frac{\partial Q}{\partial x}=2 x \sinh \left(x^{2}-y^{2}\right) \cos (2 x y)-2 y \cosh \left(x^{2}-y^{2}\right) \sin (2 x y), \\
& \frac{\partial Q}{\partial y}=-2 y \sinh \left(x^{2}-y^{2}\right) \cos (2 x y)-2 x \cosh \left(x^{2}-y^{2}\right) \sin (2 x y),
\end{aligned}
$$

from which we see that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}
$$

and

$$
\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

so that the Cauchy-Riemann equations are satisfied and the function is therefore analytic as the partial derivatives of P and Q are continuous.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.

