## Tutorial 0301 (Wednesday, 10-11), Quiz 1, rubric.

1. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the complex plane:

$$
\cos \left(x^{2}-y^{2}\right) \cosh (2 x y)-i \sin \left(x^{2}-y^{2}\right) \sinh (2 x y)
$$

Solution: Let $P=\cos \left(x^{2}-y^{2}\right) \cosh (2 x y)$ and $Q=-\sin \left(x^{2}-y^{2}\right) \sinh (2 x y)$ be the real and imaginary parts of the function, respectively. Then we have

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-2 x \sin \left(x^{2}-y^{2}\right) \cosh (2 x y)+2 y \cos \left(x^{2}-y^{2}\right) \sinh (2 x y), \\
& \frac{\partial P}{\partial y}=2 y \sin \left(x^{2}-y^{2}\right) \cosh (2 x y)+2 x \cos \left(x^{2}-y^{2}\right) \sinh (2 x y), \\
& \frac{\partial Q}{\partial x}=-2 x \cos \left(x^{2}-y^{2}\right) \sinh (2 x y)-2 y \sin \left(x^{2}-y^{2}\right) \cosh (2 x y), \\
& \frac{\partial Q}{\partial y}=2 y \cos \left(x^{2}-y^{2}\right) \sinh (2 x y)-2 x \sin \left(x^{2}-y^{2}\right) \cosh (2 x y),
\end{aligned}
$$

from which we see that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}
$$

and

$$
\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

so that the Cauchy-Riemann equations are satisfied and the function is therefore analytic as the partial derivatives of $P$ and $Q$ are continuous.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.
2. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the complex plane:

$$
\cos (2 x y) \cosh \left(x^{2}-y^{2}\right)+i \sin (2 x y) \sinh \left(x^{2}-y^{2}\right)
$$

Solution: Let $P=\cos (2 x y) \cosh \left(x^{2}-y^{2}\right)$ and $Q=\sin (2 x y) \sinh \left(x^{2}-y^{2}\right)$ be the real and imaginary parts of the function, respectively. Then we have

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-2 y \sin (2 x y) \cosh \left(x^{2}-y^{2}\right)+2 x \cos (2 x y) \sinh \left(x^{2}-y^{2}\right), \\
& \frac{\partial P}{\partial y}=-2 x \sin (2 x y) \cosh \left(x^{2}-y^{2}\right)-2 y \cos (2 x y) \sinh \left(x^{2}-y^{2}\right), \\
& \frac{\partial Q}{\partial x}=2 y \cos (2 x y) \sinh \left(x^{2}-y^{2}\right)+2 x \sin (2 x y) \cosh \left(x^{2}-y^{2}\right), \\
& \frac{\partial Q}{\partial y}=2 x \cos (2 x y) \sinh \left(x^{2}-y^{2}\right)-2 y \sin (2 x y) \cosh \left(x^{2}-y^{2}\right),
\end{aligned}
$$

from which we see that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}
$$

and

$$
\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

so that the Cauchy-Riemann equations are satisfied and the function is therefore analytic as the partial derivatives of $P$ and $Q$ are continuous.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.

