Tutorial 0201 (Thursday, 4-5), Quiz 1, rubric.

1. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the region $x, y \neq 0$:

$$
f(x+i y)=\frac{y}{x^{2}+y^{2}}+i \frac{x}{x^{2}+y^{2}}
$$

Solution: Let $P=\frac{y}{x^{2}+y^{2}}$ denote the real and $Q=\frac{x}{x^{2}+y^{2}}$ the imaginary part of f, respectively. Then we see that

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial P}{\partial y}=\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial Q}{\partial x}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial Q}{\partial y}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

from which it is clear that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}
$$

and

$$
\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

i.e., that the Cauchy-Riemann equations are satisfied. Since the partial derivatives are also continuous on $x, y \neq 0$, the function must be analytic.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.
2. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the region $x, y \neq 0$:

$$
f(x+i y)=-\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}} .
$$

Solution: Let $P=-\frac{x}{x^{2}+y^{2}}$ denote the real and $Q=\frac{y}{x^{2}+y^{2}}$ the imaginary part of f, respectively. Then we see that

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial P}{\partial y}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \\
& \frac{\partial Q}{\partial x}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial Q}{\partial y}=\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}},
\end{aligned}
$$

from which we see that

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}, \quad \frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}
$$

i.e., that the Cauchy-Riemann equations are satisfied. Since the partial derivatives are also continuous on $x, y \neq 0$, the function must be analytic.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6 marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was needed or not.

