Tutorial 0201 (Thursday, 4-5), Quiz 1, rubric.

1. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the
region x,y # 0:
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Solution: Let P = —%— denote the real and Q = % the imaginary part of f, respectively. Then we
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i.e., that the Cauchy-Riemann equations are satisfied. Since the partial derivatives are also continuous on
x,y # 0, the function must be analytic.

Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6
marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was
needed or not.

2. Use the Cauchy-Riemann equations to determine whether the following function is analytic on the
region x,y # 0:

f+iy) = - +z‘m2iy2.
Solution: Let P = *ﬁ denote the real and @ = 1273_?!2 the imaginary part of f, respectively. Then
we see that
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from which we see that
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i.e., that the Cauchy-Riemann equations are satisfied. Since the partial derivatives are also continuous on
x,y # 0, the function must be analytic.
Marking: 1 mark for each partial derivative, 1 mark for each of the Cauchy-Riemann equations, for 6

marks total. Mentioning continuity is not required since the problem was ambiguous as to whether that was
needed or not.



