PRACTICE PROBLEMS. MULTIVARIABLE CALCULUS AND LINEAR ALGEBRA.

1. Recall that a circle of radius r centred at a point $\left(x_{0}, y_{0}\right)$ oriented (or we often say traversed) counterclockwise can be parameterised by

$$
x(t)=r \cos t+x_{0}, \quad y(t)=r \sin t+y_{0} . \quad(t \in[0,2 \pi])
$$

Use this parametrisation and the definition of arclength to compute the length of the circle of radius 2 centred at the point $(-3,4)$. Does the integral depend on the centre point?
2. Recall that the graph of a function $y=f(x)$ on an interval $[a, b]$ can be parameterised by

$$
\begin{equation*}
x(t)=t, \quad y(t)=f(t) \tag{a,b}
\end{equation*}
$$

Use this to calculate the length of the parabolic arch $y=1-x^{2}$ on the interval $[-1,1]$. [Hint: trigonometric substitution!]
3. Consider the two vector fields

$$
\mathbf{F}(x, y)=\frac{1}{x^{2}+y^{2}}(x \mathbf{i}+y \mathbf{j}), \quad \mathbf{G}(x, y)=\frac{1}{x^{2}+y^{2}}(-y \mathbf{i}+x \mathbf{j}),
$$

defined on $\mathbf{R}^{2} \backslash(0,0)$.
(a) Calculate the divergence and curl of these vector fields on their domain. (Recall that the divergence of a two-dimensional vector field $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is given by

$$
\left.\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} .\right)
$$

(b) Using the parameterisation of a circle given in problem 1, calculate the following line integrals:

$$
\int_{\gamma_{1}} \mathbf{F} \cdot d \mathbf{x}, \quad \int_{\gamma_{2}} \mathbf{F} \cdot d \mathbf{x}, \quad \int_{\gamma_{1}} \mathbf{G} \cdot d \mathbf{x}, \quad \int_{\gamma_{2}} \mathbf{G} \cdot d \mathbf{x},
$$

where γ_{1} is the upper and γ_{2} the lower unit semicircle, both traversed counterclockwise.
(c) From (b), find the line integrals

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{x}, \quad \int_{\gamma} \mathbf{G} \cdot d \mathbf{x}
$$

where $\gamma=\gamma_{1} \cup \gamma_{2}$ is the full unit circle traversed counterclockwise. Given your results from (a), do your results contradict Green's theorem? Why or why not?
[As some of you may recognise, these vector fields arise from the complex function $z \mapsto \frac{1}{z}$, and the line integrals above give an example of Cauchy's integral formula, which we shall study in great detail later on in the course.]
4. Define the following functions:

$$
f(x, y)=\frac{\cosh x \cos y}{\cosh ^{2} x \cos ^{2} y+\sinh ^{2} x \sin ^{2} y}, \quad g(x, y)=-\frac{\sinh x \sin y}{\cosh ^{2} x \cos ^{2} y+\sinh ^{2} x \sin ^{2} y},
$$

and compute the following partial derivatives:

$$
\frac{\partial}{\partial x} f(x, y), \quad \frac{\partial}{\partial y} f(x, y), \quad \frac{\partial}{\partial x} g(x, y), \quad \frac{\partial}{\partial y} g(x, y) .
$$

Are any of these equal (or almost equal)?
5. Repeat problem 4 for the functions

$$
f(x, y)=\log \sqrt{\cosh ^{2} x \cos ^{2} y+\sinh ^{2} x \sin ^{2} y}, \quad g(x, y)=\tan ^{-1} \frac{\sinh x \sin y}{\cosh x \cos y},
$$

where (as will be usual throughout this course) \log denotes the natural logarithm.
6. Let γ denote the graph of $y=\sin x$, parameterised as in problem 2 , on the interval [$0,4 \pi$]. If

$$
\mathbf{F}(x, y)=x \mathbf{i}+\left(e^{\sqrt{1-\cos ^{2} x}}+y^{5}-10 y^{4}+8 y^{3}-6 y^{2}+2\right) \mathbf{j}
$$

calculate

$$
\int_{\gamma} \mathbf{F}(x, y) \cdot d \mathbf{x}
$$

7. Find the inverses of the following matrices:

$$
\left[\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right], \quad\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Can you write these matrices as products of rotations and scalings? [Except maybe the last one.]
8. Recall that if we have a map $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, F(x, y)=(f(x, y), g(x, y))$, then we have the notion of the Jacobian matrix of F :

$$
J(F)=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]
$$

Consider the functions

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}, \quad g(x, y)=-\frac{y}{x^{2}+y^{2}} .
$$

If $F(x, y)=(f(x, y), g(x, y))$, find the Jacobian matrix of F and its determinant. (If you want more practice with this, do the same thing for the functions f and g in problem 4.) Consider this matrix at the point $(1,1)$. Can you write it as the product of a rotation and a scaling?

