
MAT334, COMPLEX VARIABLES, SUMMER 2020. MIDTERM REVIEW

So far we have covered the following topics:
– Geometry and algebra of complex numbers
– Definition of analyticity; Cauchy-Riemann equations
– Power series
– Elementary transcendetal functions (exponential, trigonometric, hyperbolic trigonometric) and their

derivatives
– Roots, logarithms, and their derivatives. Branch cuts
– Inverse trigonometric functions
– Geometric interpretation of the derivative; conformal maps
– Definition of contour integrals. Specific examples
– Cauchy integral theorem. Antiderivatives and path-independence
– Cauchy integral formula
– Taylor and Laurent series

These correspond to the following sections in Goursat: 1 – 8, 11 – 14, 19, 22, 25 – 26, 28, 30 – 33, 35, 37.

Here are a few extra notes.

Multivalued functions and branch cuts.
From what we have seen so far, there are two ways in which multivalued functions can arise: (i) as inverses
of functions which are not one-to-one (roots, logarithms, inverse trigonometric functions); (ii) as functions
defined by contour integrals of non-analytic integrands (the function G in the long problem below, for
example; note that the logarithm can also be defined in this way, as the integral of 1/z). How we determine
whether a given function is multivalued, and how we decide what kinds of branch cuts to use, depends on
which case we are dealing with.

The second case is much easier to explain, so let us start there. We know that (roughly speaking)
integrals of analytic functions around closed curves are always 0, which means that a function defined as
the integral of an analytic function on a simply-connected region will always be single-valued. Suppose now
that we have a function f : D → C, where D is some region in the complex plane on which f is analytic but
which is not simply connected. Then we can still define a function F : D → C by

F (z) =

∫ z

z0

f(z′) dz′,

where z0 ∈ D, but since the integral could now depend on the choice of curve from z0 to z, the resulting
function F will in general be multi-valued. To make F single-valued we need some way of specifying which
kinds of curves we are allowed to use from z0 to each z, in such a way that the integral will not depend
on the curve chosen. The simplest way of doing this would be to choose a subset D′ ⊆ D of D which is
simply-connected, and then define F only for curves lying in that subset. Such a function could then be
termed a branch of the full function F . Something slightly similar can be done for finding branches of the
logarithm, if we define it by the integral

∫ z

1
1/z′ dz′, though only one branch per cut results in that case and

to get all the branches of Log we must do something more involved. Another, slightly more involved but more
generally applicable, method is to choose a subset D′ ⊆ D which, while not necessarily simply-connected, is
nevertheless such that the integral of f around any closed curve lying entirely in D′ is still zero; this will also
give a single-valued integral, which we may also term a branch of the full function F . This is the method
suggested in part (k) of the long problem below.

Let us now consider the first case. This can be treated in a very general way, but we shall stick with
a simpler treatment which is sufficient for the functions we have seen so far. (It would be a good idea to
keep a specific function, for example a root function, in mind while reading the following discussion.) In this
case there are regions U and V in the complex plane such that our function, call it g, maps U into V in a
multi-valued way, and is a ‘right inverse’ to some other function f : V → U in the sense that the composition
f ◦ g : V → V is the identity map, i.e., f(g(z)) = z for all z ∈ V . (For example, we could have U = V = C,
g(z) = z1/2, f(z) = z2, so f(g(z)) = [z1/2]2 = z for all z ∈ C.) Suppose now that we can break V up into
pieces V1, · · ·, Vn, which might not cover all of V , such that f is one-to-one when restricted to each Vi. Then
the inverse of f |Vi

will be a single-valued function on some subset of U , which we call a branch of g. For the
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functions we are dealing with, we do not need to talk about the sets Vi explicitly, and are able to specify
the branch by specifying a range of angle for the points in the domain of g. To show how these two notions
relate to each other, though, consider the square root function with a branch cut along the negative real
axis and an interval for the angle of (−π, π); this will map into the set {z ∈ C|Re z > 0}. Had we chosen
the same branch cut but the range of angle (π, 3π), we would get as an image set the set {z ∈ C|Re z < 0}.
Thus these two sets are possible ways of breaking V up into pieces on which z 7→ z2 is one-to-one.

Here are some practice problems for review. More problems will be added.

Short problems
Basic operations
1. Perform the following operations, and sketch all complex numbers involved in the plane:

(1 + 2i)− (−3 + 5i), 0.5 · (−1 + i), 2 · (−1 + i), 3 · (−1 + i),

(1 + i) · (1−
√

3i),
−
√

3 + i

−1− i
,

(−1 + i)100 [Hint: use polar notation and exponentials!]

2. Determine all possible roots of the indicated orders, and sketch them and the original complex number
in the plane:

11/2, 11/4, 11/5

(−
√

3 + i)1/5, (−
√

3− i)1/7

3. Determine all possible values of the following exponentials:

ii, i(i
i), (−1)1/100, 2

√
2

Branch cuts
1. Describe subsets of the plane on which the following functions can be defined as single-valued analytic
functions. For each function and each such set, describe all the different branches of the function by giving
formulas and also describing or sketching their ranges.

z 7→ z1/2, z 7→ z2/3, z 7→ zi

Log z

Long problems
1. We study the arctangent function on the complex plane.

(a) From the formulas

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

derive a formula for tan z = sin z/ cos z in terms of eiz and e−iz. Use this formula to determine a formula
for arctan z where z is a complex number. For which values of z is the formula you obtain undefined?

(b) Use your formula from (a) to determine d
dz arctan z, where it exists. For which values of z is arctan z

an analytic function?
(c) From what we know about analyticity of power series, what is the maximum possible radius of

convergence for the power series of arctan z around z = 0? How about around z = 1? If you find that the
power series does not converge on the whole real line, does this contradict what you found in (b) about the
set of z where arctan z is analytic?

(d) Are there any points in the plane about which it is not possible to expand arctan z as a Laurent
series? Are there any points about which arctan z can be expanded as a Laurent series but not as a Taylor
series?

(e) From your formula in (a), is arctan z a single-valued or multivalued function? If it is multivalued,
how does its multivaluedness compare to that of arcsin z? How about its derivative you found in (b)?
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(f) Let f(z) = d
dz arctan z be the derivative you found in (b). Where is this function analytic? Does

your answer make sense given what you found in (b) about where arctan z is analytic?
From class we know that if D is any simply-connected set on which f is analytic, then the function

F (z) =

∫ z

0

f(z′) dz′

will be independent of the path from 0 to z and will satisfy F ′(z) = f(z). Since f(z) = d
dz arctan z, this

means that F can differ from arctan z by at most a constant. On a simply-connected region, then, F will
give us (up to a constant) a single-valued version of arctan z. Let us see what happens when we try to extend
F to regions which are not simply-connected.

(g) Compute
∫ 1

0
f(z′) dz′ using three different paths: (i) a path straight along the real axis; (ii) a path

which loops once counterclockwise around z = i; (iii) a curve which loops once counterclockwise around
z = −i. [Hint: for (ii) and (iii), draw a picture of the curve and then use it to apply the Cauchy integral
formula (try factoring the denominator first!), then combine your result with (i) to get the answer.]

(h) What happens if you integrate along a path which loops around z = i or z = −i multiple times?
Can you see how to obtain all possible values of arctan z by picking appropriate curves?

(i) Compute
∫ 1

0
f(z′) dz′ by using a path which loops once counterclockwise around both z = i and

z = −i.
Now consider instead the function

G(z) = −π
2

+

∫ z

−∞
f(z′) dz′.

As with F , G will be a single-valued antiderivative of f on any simply-connected region on which f is
analytic, and hence on that region will be (a constant away from) a single-valued version of arctan z. As
with F , though, if I let z vary in a region which surrounds a singularity of f , then the above integral may
depend on the choice of path.

(j) Repeat (g) with G in place of F . [Hint: if we integrate straight along the real axis, what is G(0)?
Can you use this to make this part a trivial application of (g)?]

(k) Suppose now that I insist that whatever path is used to calculate G must not pass through the set
{iy|y ∈ [−1, 1]}; in other words, I cut the plane along the closed line segment from −i to i. Use a result
similar to what you found in (i) to argue that the function G should be independent of the path for any z
in the cut plane. (By ‘argue that’ I mean that you do not need to give a full proof, just point out the main
idea; though if you can give a full proof, even better!) Calculate

lim
z→0+

G(z)− lim
z→0−

G(z),

where + and − indicate that the real part of z is positive and negative, respectively. If we let arctanx denote
the standard arctangent on the real line, what is G(x) − arctanx as a function of x? [Hint: it will not be
constant!]
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