
MAT334, COMPLEX VARIABLES, SUMMER 2020. PRACTICE PROBLEMS FOR MAY 4 – 8

1. Perform the indicated arithmetic operations:

(2 + 3i) + (4− 5i) = 6− 2i, (3 − i) · (4 + 2i) = 12 + 2 + i(6− 4) = 14 + 2i

(10− 3i) · (1− 2i) = 10− 6 + i(−20− 3) = 4− 23i

(−1+3i) · (1+4i) = −1−12+ i(−4+3) = −13− i, (−3−3i) · (−4+4i) = 12+12+ i(−12+12) = 24

3− i

4 + 2i
=

(3− i) · (4− 2i)

16 + 4
=

12− 2 + i(−6− 4)

20
=

1

2
−

1

2
i

10− i

3− 4i
=

(10− i) · (3 + 4i)

9 + 16
=

30 + 4 + i(40− 3)

25
=

34

25
+

37

25
i

−1 + 2i

4− 3i
=

(−1 + 2i) · (4 + 3i)

16 + 9
=

−4− 6 + i(−3 + 8)

25
= −

2

5
+

1

5
i.

2. Plot the points corresponding to the following complex numbers on the complex plane. For each of
them, find the modulus (length) of the complex number and its argument (the angle the corresponding point
makes with the positive real axis), without using a calculator!

√

3− 3i, −1 + i, −1− i, −2− 2
√

3i, 2− 2
√

3i.

See the following figure. We see that −1+ i and −1− i are conjugates. There are no other conjugate pairs.

O
x

y

√

3− 3i = 2
√

3(cos 5π

3
+ i sin 5π

3
)

−1 + i =
√

2(cos 3π

4
+ i sin 3π

4
)

−1− i =
√

2(cos 5π

4
+ i sin 5π

4
)

−2− 2
√

3i = 4(cos 4π

3
+ i sin 4π

3
) 2− 2

√

3i = 4(cos 5π

3
+ i sin 5π

3
)

(−2− 2
√

3i and 2 − 2
√

3i have opposite signs on their real parts, but I am not aware of any particular use
for this kind of pairing.)

3. For each of the following complex numbers, find all roots of the indicated orders. (It is sufficient to
write them in polar form with the answer in terms of sin and cos.) Plot the numbers and the corresponding
roots on the complex plane.

−27i, 3; 16, 4; −
125

√

2

2
+

125
√

2

2
i, 3;

1
√

2
−

1
√

2
i, 7.
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[Hint: start out by finding the polar representation of each of these numbers (that is, write them as r(cos θ+
i sin θ)).] The figures are as follows. The algebraic expressions are

O x

y

O x

y

O x

y

O x

y

Fig. 3 a Fig. 3 b Fig. 3 c Fig. 3 d

−27i = 27

(

cos
3π

2
+ i sin

3π

2

)

, 16 = 16 (cos 0 + i sin 0) ,

−
125

√

2

2
+ i

125
√

2

2
= 125

(

cos
3π

4
+ i sin

3π

4

)

,
1
√

2
− i

1
√

2
= cos

7π

4
+ i sin

7π

4
;

(−27i)1/3 = 3(cos

(

π

2
+

2πn

3

)

+ i sin

(

π

2
+

2πn

3

)

, n = 0, 1, 2

161/4 = 2(cos
πn

2
+ i sin

πn

2
), n = 0, 1, 2, 3

(

−
125

√

2

2
+ i

125
√

2

2

)1/3

= 5

(

cos

(

π

4
+

2πn

3

)

+ i sin

(

π

4
+

2πn

3

))

, n = 0, 1, 2

(

1
√

2
− i

1
√

2

)
1

7

= cos

(

π

4
+

2πn

7

)

+ i sin

(

π

4
+

2πn

7

)

, n = 0, 1, 2, 3, 4, 5, 6

4. Using the Cauchy-Riemann equations, determine which of the following functions are analytic at the
indicated points. Make sure to show all of your work and justify your answers! [Recall that in addition
to the Cauchy-Riemann equations, the partial derivatives must be continuous at the point in question, so
you need to say something about that as well. But for the functions here it is pretty straightforward; we
certainly don’t expect you to prove anything using ǫ–δ arguments!]

f(x+ iy) = x3
− 3xy2 + i(3x2y − y3), x+ iy arbitrary

We have

∂

∂x
x3

− 3xy2 = 3x2
− 3y2,

∂

∂y
x3

− 3xy2 = −6xy

∂

∂x
3x2y − y3 = 6xy,

∂

∂y
3x2y − y3 = 3x2

− 3y2

from which we see that the Cauchy-Riemann equations are satisfied, and that the partial derivatives are
continuous, so that the function is analytic throughout the complex plane.

f(z) = z4, z arbitrary

Expanding, we have
z4 = (x+ iy)4 = x4

− 6x2y2 + y4 + i(4x3y − 4xy3),

which gives

∂

∂x
x4

− 6x2y2 + y4 = 4x3
− 12xy2,

∂

∂y
x4

− 6x2y2 + y4 = −12x2y + 4y3

∂

∂x
4x3y − 4xy3 = 12x2y − 4y3,

∂

∂y
4x3y − 4xy3 = 4x3

− 12xy2
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from which we see as before that the Cauchy-Riemann equations are satisfied, and that the first-order partials
are continuous, so that this function is also analytic. (Another, perhaps easier, way of seeing this is indicated
at the end of section 4 of the notes.)

f(x+ iy) = ex(cos y + i sin y), x+ iy arbitrary

In this case we have

∂

∂x
ex cos y = ex cos y,

∂

∂y
ex cos y = −ex sin y

∂

∂x
ex sin y = ex sin y,

∂

∂y
ex sin y = ex cos y

from which we again see that the Cauchy-Riemann equations are satisfied, and that the derivatives are
continuous, so that the function is analytic.

f(x+ iy) = 2xy − iy2, x+ iy arbitrary

In this case we have

∂

∂x
2xy = 2y,

∂

∂y
2xy = 2x

∂

∂x
−y2 = 0,

∂

∂y
−y2 = −2y

so that, while the partial derivatives are continuous, neither of the Cauchy-Riemann equations are satisfied
so the function is not analytic.

f(x+ iy) = cosx cosh y − i sinx sinh y, x+ iy arbitrary

In this case we have

∂

∂x
cosx cosh y = − sinx cosh y,

∂

∂y
cosx cosh y = cosx sinh y

∂

∂x
− sinx sinh y = − cosx sinh y,

∂

∂y
− sinx sinh y = − sinx cosh y

from which we see that the Cauchy-Riemann equations are satisfied and that the partial derivatives are
continuous, so that the function is analytic.

f(x+ iy) = sinx cosh y − i cosx sinh y, x+ iy arbitrary

In this case, we have

∂

∂x
sinx cosh y = cosx cosh y,

∂

∂y
sinx cosh y = sinx sinh y

∂

∂x
− cosx sinh y = sinx sinh y,

∂

∂y
− cosx sinh y = − cosx cosh y

so that even though the partial derivatives are continuous, the Cauchy-Riemann equations are not satisfied
so the function is not analytic. (Can you see how to change this function just a little bit in order to make it
analytic?)

f(x+ iy) = sinx− i cos y, x+ iy arbitrary

In this case we have

∂

∂x
sinx = cosx,

∂

∂y
sinx = 0

∂

∂x
− cos y = 0,

∂

∂y
− cos y = sin y

so that even though the partial derivatives are continuous and one of the Cauchy-Riemann equations is
satisfied, the other one isn’t, so the function is not analytic.

3



f(x+ iy) =
(

x2 + y2
)

1

4





√

√

√

√

1

2

(

1 +
x

√

x2 + y2

)

+ i

√

√

√

√

1

2

(

1−
x

√

x2 + y2

)



 , x+ iy such that x, y > 0

This one is a bit more tricky. It is best to bring the leading factor inside the square root; doing this we
obtain

∂

∂x

(

x2 + y2
)1/4

√

√

√

√

1

2

(

1 +
x

√

x2 + y2

)

=
∂

∂x

√

1

2

(

√

x2 + y2 + x
)

=
1

2
√

2

x√
x2+y2

+ 1
√

√

x2 + y2 + x

,

from which it is fairly easy to see that we have also

∂

∂y

(

x2 + y2
)1/4

√

√

√

√

1

2

(

1 +
x

√

x2 + y2

)

=
1

2
√

2

y
√

x2+y2

√

√

x2 + y2 + x

,

∂

∂x

(

x2 + y2
)1/4

√

√

√

√

1

2

(

1−
x

√

x2 + y2

)

=
1

2
√

2

x√
x2+y2

− 1
√

√

x2 + y2 − x

,

∂

∂y

(

x2 + y2
)1/4

√

√

√

√

1

2

(

1−
x

√

x2 + y2

)

=
1

2
√

2

y
√

x2+y2

√

√

x2 + y2 − x

.

In order to compare these, we note that we may write

1

2
√

2

y
√

x2+y2

√

√

x2 + y2 − x

·

√

x2 + y2 + x
√

x2 + y2 + x
=

1

2
√

2

y
√

x2 + y2

√

x2 + y2 + x
√

x2 + y2 − x2 ·

√

√

x2 + y2 + x

=
1

2
√

2

y
√

x2 + y2

√

x2 + y2 + x

y

√

√

x2 + y2 + x

=
1

2
√

2

1 + x√
x2+y2

√

√

x2 + y2 + x

,

where we may write
√

y2 = y since we have y > 0. This shows that the first of the Cauchy-Riemann
equations is satisfied. The second may be shown similarly:

1

2
√

2

y
√

x2+y2

√

√

x2 + y2 + x

·

√

x2 + y2 − x
√

x2 + y2 − x
=

1

2
√

2

y
√

x2 + y2

√

x2 − y2 − x
√

x2 + y2 − x2 ·

√

√

x2 + y2 − x

=
1

2
√

2

y
√

x2 + y2

√

x2 + y2 − x

y

√

√

x2 + y2 − x

=
1

2
√

2

1− x√
x2+y2

√

√

x2 + y2 − x

,

from which the second Cauchy-Riemann equation follows. Since the expressions above are moreover contin-
uous when x, y > 0, we see that the function is in fact analytic on the first quadrant. [We also observe that
our professor is unlikely to put so long a problem on the quiz, at least in full.]

f(x+ iy) = x3 + 3x2y − 3xy2 − y3, x+ iy arbitrary
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In this case we have
∂

∂x
x3 + 3x2y − 3xy2 − y3 = 3x2 + 6xy − 3y2,

∂

∂y
x3 + 3x2y − 3xy2 − y3 = 3x2

− 6xy − 3y2

∂

∂x
0 = 0,

∂

∂y
0 = 0

whence we see that though the partial derivatives are continuous, neither of the Cauchy-Riemann equations
are satisfied, so that the function is not analytic. (This demonstrates, incidentally, that even functions which
look very ‘nice’ (like polynomials!) when written out in terms of x and y very often to not give rise to analytic
functions because the Cauchy-Riemann equations may not be satisfied.)

Consider the second-to-last function. What is its square?




(

x2 + y2
)

1

4





√

√

√

√

1

2

(

1 +
x

√

x2 + y2

)

+ i

√

√

√

√

1

2

(

1−
x

√

x2 + y2

)









2

=
(

x2 + y2
)1/2





1

2

(

1 +
x

√

x2 + y2

)

−
1

2

(

1−
x

√

x2 + y2

)

+ i

√

√

√

√

(

1 +
x

√

x2 + y2

)(

1−
x

√

x2 + y2

)





= x+ iy

where we must again use x, y > 0. Thus this function is the square root function restricted to the first
quadrant.

5. Can a nonzero analytic function have an identically zero imaginary part (i.e., can it be entirely real)?
an identically zero real part?

Let us consider a function
f(x+ iy) = P (x, y) + iQ(x, y).

To say that this function has an identically zero imaginary part means that Q(x, y) = 0 for all x and y.
Were such a function analytic, the Cauchy-Riemann equations would give

∂P

∂x
= 0,

∂P

∂y
= 0,

which means that P must be a constant. Similarly, the only analytic functions which have identically zero
real part are constants ib where b is some real number.

6. [This problem verges a bit into what we will talk about next week.] Consider the function

P (x, y) = x5
− 10x3y2 + 5xy4.

Can you find a polynomial Q(x, y) such that the function

f(x+ iy) = P (x, y) + iQ(x, y)

is analytic at every point in the complex plane?
The point is that Q must satisfy the Cauchy-Riemann equations. These give

∂Q

∂y
=

∂P

∂x
= 5x4

− 30x2y2 + 5y4,

∂Q

∂x
= −

∂P

∂y
= −20x3y + 20xy3.

From the first of these, we see that any such Q must be of the form

Q(x, y) = 5x4y − 10x2y3 + y5 + q(x),

where q is some arbitrary function. Substituting this into the second equation, we find that

−20x3y + 20xy3 = 20x3y − 20xy3 + q′(x),

so that q′(x) = 0 and q(x) = C for some constant C. Thus the function

f(x, y) = x5
− 10x3y2 + 5xy4 + i(5x4y − 10x2y3 + y5 + C)

will be analytic at every point in the complex plane. (Note that this is just f(z) = z5 + iC!)
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