
APPENDIX I. REVIEW OF MULTIVARIABLE CALCULUS AND LINEAR ALGEBRA

I. MULTIVARIABLE CALCULUS

1. Parametric curves. A plane parametric curve1 is a curve in the plane which can be described by
two equations

x = x(t), y = y(t), (t ∈ [a, b])

for some interval [a, b]; in other words, for every point (x, y) on the curve, there is some value t ∈ [a, b]
such that x = x(t) and y = y(t). (Note that this t need not be unique.) More informally, if we view t
as a dynamical quantity, the point (x(t), y(t)) ‘traces out’ the entire curve as t varies from a to b. It is
often convenient to represent the point (x(t), y(t)) by a single function, often called γ(t) (the Greek letter
gamma), so that γ(t) = (x(t), y(t)). We shall use γ (without t) to refer to the entire curve, considered as
a single object. When necessary to distinguish between the function γ(t) and the plane curve this function
represents, we shall call the latter the image of γ.

A curve is called closed when (in the notation of the previous paragraph) γ(a) = γ(b). A closed curve
which does not intersect itself (i.e., for which the value of t mentioned above is unique) is called a Jordan
curve. A Jordan curve γ is said to be oriented counterclockwise if, as t increases from a to b, the point γ(t)
traces out the curve in a counterclockwise direction, and similarly to be oriented clockwise if this point traces
out the curve in a clockwise direction.2 We note for future use that if D is a connected region of the plane,
then its boundary curve is always a Jordan curve. This result has a converse in the so-called Jordan curve
theorem which we shall mention later on in the course.

General parametric curves can display pathological behaviour, even when x(t) and y(t) are both con-
tinuous.3 In this course we shall deal exclusively with so-called piecewise-smooth curves, defined as follows.
A parametric curve γ is said to be piecewise-smooth on an interval [a, b] if (i) it is continuous on [a, b] and
(ii) there are points t0 = a < t1 < · · · < tn = b such that on each subinterval (ti, ti+1), i = 0, · · · , n − 1,
the derivative γ′(t) = x′(t)i + y′(t)j4 exists, and is continuous and nonzero. (Condition (ii) amounts to
saying that x(t) and y(t) are continuously differentiable on (ti, ti+1), and that x′(t) and y′(t) never vanish
simultaneously. This last requirement is necessary to avoid ‘corners’; see the practice problems!)

A piecewise smooth curve has a well-defined length. Recall that the length of a parametric curve γ
defined on some interval [a, b] and such that γ′ is continuous there is given by∫ b

a

|γ′(t)| dt,

where | · | denotes the length of a vector. This definition can be extended to a piecewise-smooth curve in an
obvious way: if t0, t1, . . . , tn are the points given in the definition of piecewise-smoothness, then we define
the length of γ to be5∫ t1

t0

|γ′(t)| dt+

∫ t2

t1

|γ′(t)| dt+ · · ·+
∫ tn

tn−1

|γ′(t)| dt =

n−1∑
i=0

∫ ti+1

ti

|γ′(t)| dt.

1 Parametric curves can, of course, also be considered in three (and even arbitrary) dimensions. In this
course, though, we shall only need them in two.

2 Note that this definition would not make sense for a self-intersecting curve: for example, no matter how
you trace out a figure-eight, the upper part will be oriented one way while the lower part will be oriented
another.

3 For example, one can find a parametric curve which – at least if we are allowed to replace the bounded
interval [a, b] by the whole real line – essentially fill out an entire two-dimensional region!

4 While we shall not need to make this distinction in this course, it bears pointing out that, technically
speaking, points and vectors are not identical, and when one must distinguish between them, a curve γ gives
a point for each t while its derivative gives a vector.

5 To be precise, the integrals here should be understood as improper integrals obtained by integrating
from something slightly greater than ti to something slightly less than ti+1, and then taking the limit as
these endpoints approach those two values, respectively; but this is generally not something which needs to
be made explicit in practice, and we shall generally pass over it in silence in similar cases in the future.
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The main use we shall make of parametric curves is in line integrals (see §3 below), and also in describing
how two points in the plane are connected. This latter will become clearer as we progress through the course.
The fact that two real numbers are essentially only connected in one way, while two complex numbers can
be connected in multiple ways, some of which may be distinct (in an appropriate sense), is part of what
makes complex analysis interesting.

2. Partial derivatives. Suppose that we have a function f defined on a region of the plane, which
we suppose has Cartesian coordinates (x, y). We define its partial derivatives with respect to x and y to be

∂f

∂x
= lim
h→0

f(x+ h, y)− f(x, y)

h
,

∂f

∂y
= lim
h→0

(f(x, y + h)− f(x, y)

h
.

We recall that in multivariable calculus we saw that the existence of both partial derivatives still allowed for
quite a bit of pathological behaviour. It turns out that for functions of a complex variable there are additional
requirements on the partial derivatives in order for the function to have a single complex derivative, and
that these requirements, though simple, lead to far-reaching results which rule out all such pathological
behaviours.

Recall that if a function f has a local extremum at a point where its partial derivatives exist, then they
must both vanish.

Some examples of partial derivatives are given in the review problems.
[This paragraph is an aside for students who have had MAT237 or MAT257, or who have otherwise

learned how to view the derivative as a linear map. In this class we shall be interested in complex-valued
functions of a complex variable; since the set of complex numbers is a two-dimensional vector space over the
real numbers, this means that we are in essence considering functions from R2 to R2 (or, in essence, a vector
field on R2). Thus the derivative of such a function, in the multivariable-calculus sense, should be a linear
map from R2 to R2 approximating the original function at the point of differentiation. It turns out that the
requirement that a complex derivative exists requires that this map be a composition of an isotropic scaling
(i.e., multiplication by a single real number) and a rotation. This is the basis for the study of functions of a
complex variable as conformal maps, namely functions from R2 to R2 which preserve angles.]

3. Line integrals and vector fields. Suppose that γ is a piecewise-smooth curve on an interval
[a, b] (γ(t) = (x(t), y(t))), and that f is a continuous function defined on some set containing the image of γ.
Then we define three different types of line integral along γ, as follows. Let t0, t1, · · · , tn be the points given
in the definition of piecewise-smoothness; then we define∫

γ

f dx =

n−1∑
i=0

∫ ti+1

ti

f(x(t), y(t))x′(t) dt

∫
γ

f dy =

n−1∑
i=0

∫ ti+1

ti

f(x(t), y(t)) y′(t) dt

∫
γ

f ds =

n−1∑
i=0

∫ ti+1

ti

f(x(t), y(t)) |γ′(t)| dt,

and call these the line integrals of f along γ with respect to x, y, and arclength, respectively.
Recall that a vector field on a region of R2 is a function which to every point in its domain associates

a vector in R2; in other words, it can be written as a function F(x, y) = P (x, y)i + Q(x, y)j, where P (x, y)
and Q(x, y) are functions defined on the region called (naturally) the components of the vector field. If the
vector field F is defined on a region containing γ, then we may combine the line integrals with respect to x
and y of the components of F to define a new line integral, as follows:∫

γ

P (x, y) dx+

∫
γ

Q(x, y) dy =

∫
γ

F(x, y) · dx.
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We call this the line integral of the vector field along the curve γ. Recall the following fundamental theorem
of calculus for line integrals: If F = ∇f for some function f , i.e., if F is a gradient, then∫

γ

F · dx = f(γ(b))− f(γ(a)),

and this integral is therefore independent of the choice of path γ. This notion of path-independence (this
is a standard term, though in our current setting it would be more natural to call it curve-independence!),
namely that the line integral along a certain curve only depends on the end-points of the curve and not on
the curve itself, is of central importance in the study of analytic functions of a complex variable. Recall
that it is equivalent to the requirement that the line integral along any closed curve be zero. This is in turn
related to Green’s theorem, which states that for any vector field F = P (x, y)i + Q(x, y)j and any closed
curve γ bounding a connected region D and oriented counterclockwise,∫

γ

F · dx =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA,

where the latter is an area integral over the region D. This is a special case of Stokes’s theorem, which
we shall not need in its full generality but which we state here because it provides useful notation: If S
is any (sufficiently smooth) connected surface in R3 with boundary curve C, and S and C are oriented
consistently,6 then ∫

C

F · dx =

∫∫
S

curl F · n dA.

Here the second integral is a surface integral and n represents the unit normal to the surface S, but we shall
not need these things in this class. The curl of a vector field can be defined heuristically as curl F = ∇×F;
if F is a vector field on R2 then the curl can be taken to be the single number

∂Q

∂x
− ∂P

∂y

appearing in Green’s theorem. For us this is the only case for which we shall need to use the curl (and we
shall not need to use it much even here).

Note now that Green’s theorem tells us that line integrals of a vector field are path-independent exactly
when the curl of that vector field is zero. Such a vector field is called conservative, though we shall only
need this term only occasionally. We have seen that a vector field which is the gradient of a function is
conservative; on a so-called simply connected region – by which we mean a region ‘without holes’, or, more
precisely, whose boundary is a single Jordan curve – the converse is also true. We shall see that these results
have analogues in the theory of functions of a complex variable, though the results generally are not quite
exact copies.

II. LINEAR ALGEBRA

4. Matrices. In this course we shall not need much from the results of linear algebra, but mostly a
familiarity with its concepts. Recall that a matrix of size m by n is a two-dimensional array of numbers

[aij ] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
and is called square if m = n. The product of matrices [aij ] and [bjk] of sizes m by n and n by ` is defined
to be the matrix [cik] of size m by ` given by

cik =

n∑
j=1

aijbjk.

6 For us, this just means that were γ oriented clockwise we would need to introduce an extra minus sign
on the right-hand side of Green’s theorem.
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Recall that the identity matrix of size n by n

I =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


has the property that AI = A and IB = B for any matrices A and B of size m by n and n by `, respectively.
If a matrix A = [aij ] is square of size n by n, then its inverse (when it exists) is a matrix A−1 of size n by
n satisfying

AA−1 = A−1A = I.

In general, finding an inverse matrix is hard. For two-by-two matrices, however, there is a simple formula
which is often useful, given by Cramer’s rule: If

A =

[
a b
c d

]
,

then

A−1 =
1

ad− bc

[
d −b
−c a

]
,

as long as ad − bc 6= 0. The quantity ad − bc is called the determinant of the matrix A; the notion of
determinant can be defined for a square matrix of any size, but as the general definition is complicated and
we shall not need it in this course we pass over it for the moment.

Recall that a matrix of size m by n can be viewed as giving a linear transformation from Rn to Rm.
In particular, a 2 by 2 matrix can be viewed as a linear transformation on the plane. Two particularly
important and simple examples are isotropic scaling and rotation. The first is just multiplication by a single
scalar and corresponds to the matrix (λ 6= 0)[

λ 0
0 λ

]
, which has inverse

[
λ−1 0

0 λ−1

]
.

The second is a bit more complicated. Consider rotation of the plane by an angle θ counterclockwise around
the origin. Since vector addition and scalar multiplication in the plane can be defined in terms of geometric
pictures which are transformed rigidly by such a rotation, we see that this rotation must be linear; thus
it suffices to determine its effect on the basis vectors i and j of the plane. If we rotate the vector i by
an angle θ counterclockwise around the origin, a little geometry makes it clear that we obtain the vector
cos θi + sin θj, while if we rotate j the same way we obtain the vector − sin θi+ cos θj; thus the matrix giving
this transformation is [

cos θ − sin θ
sin θ cos θ

]
.

We note two interesting properties of this matrix: first, its determinant is

cos θ · cos θ − (− sin θ) · sin θ = cos2 θ + sin2 θ = 1;

secondly, its inverse is (by the general formula above)[
cos θ sin θ
− sin θ cos θ

]
,

which is just the original matrix with θ replaced by −θ! This makes good sense since the inverse to a
counterclockwise rotation by θ is a clockwise rotation by θ, which is essentially just a counterclockwise
rotation by −θ.
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