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Summary:
• We give a description of the complex number system.
• We then give a description of the complex plane and indicate why it is something which might be useful.

I. INTRODUCTION TO THE COMPLEX PLANE

1. Complex numbers. We probably saw complex numbers for the first time when we learned how
to solve quadratic equations. For example, the equation

x2 = −1

has no solution over the real numbers. It turns out to be useful in algebra, and even more in analysis,
to extend our number system by including an extra quantity, written i, which behaves exactly like a real
number except that it has the property

i2 = −1. (1)

A general number in our new number system can be written in the form a+ bi, where a and b are arbitrary
real numbers,1 and we require that these numbers satisfy all of the standard rules of algebra, augmented by
equation (1). Thus, for example, the product of two complex numbers is given by

(a+ bi)(c+ di) = ac+ bi · c+ a · di+ bi · di = ac+ bci+ adi+ bdi2 = ac− bd+ (bc+ ad)i.

(As shown here, whenever we write out a complex number we always combine real and imaginary terms
when possible.)

We generally use the letters z and w to denote complex numbers, and x and y to denote real numbers.
We let C denote the set of all complex numbers. If z = a+ bi is a complex number, we call a the real part
of z and b the imaginary part of z, and write a = Re z, b = Im z. Two complex numbers a + bi and c + di
are equal if and only if their real and imaginary parts are equal.2

To every complex number a+ bi there corresponds another complex number known as its conjugate and
given by a− bi.3 If z is any complex number, we write z for its conjugate. The conjugate will be seen later
to have many uses, but for the moment we note its use in finding inverses. First, note that if z = a+ bi, then

zz = (a+ bi)(a− bi) = a2 − (bi)2 = a2 + b2.

Thus if a+ bi 6= 0, then

1

a+ bi
=

1

a+ bi
· a− bi

a− bi
=

a− bi

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
,

which is defined since a+ bi 6= 0 implies that at least one of a and b is nonzero, so a2 + b2 > 0. This is the
desired formula for the inverse of a complex number.

See Goursat, §1.
2. The complex plane. If z is any complex number, it determines two real numbers Re z and

Im z, and is in turn uniquely determined by these two numbers. This suggests that, just as we may think of
arbitrary real numbers as points on the real number line, we may think of arbitrary complex numbers as points
in the complex plane. Specifically, given a plane with perpendicular axes which we call x and y, we associate
with any complex number z the point in this plane whose x-coordinate is Re z and whose y-coordinate is
Im z. While complex numbers are per se abstract objects without any direct concrete significance, this
association allows us to think and speak of them as points in the plane. We shall do this whenever it seems

1 Whenever we write an arbitrary complex number as a+ bi, it will always be assumed that a and b are
real.

2 This means that the set {1, i} is a basis for C considered as a real vector space.
3 We remind the reader that the presence of a + or − in front of a quantity does not guarantee the

resulting sign; in other words, +b can be negative and −b can be positive, and both will be respectively
when b is negative.
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convenient; thus we shall speak of “the point a + bi”, etc., when more carefully we should say “the point
corresponding to the complex number a+ bi”.

Given the foregoing, it is clear that the point corresponding to the conjugate of a complex number a+bi
is simply the reflection in the x-axis of the point corresponding to a+ bi.

The foregoing connection between complex numbers and points in a plane, while it may be interesting,
would not be particularly useful if the geometric properties inherent in the Euclidean plane were not some-
how related to algebraic or analytic properties of the complex numbers its points represent. We shall see
throughout this course that there are in fact many and deep connections between the geometry of the plane
on the one hand and the algebraic and analytic properties of complex numbers on the other. Here we shall
indicate one example.

EXAMPLES. One simple example is as follows. Suppose that z = a + bi and w = c + di are any two
complex numbers. Then clearly

zw = (a− bi)(c+ di) = ac+ bd+ i(ad− bc).

Now if we think of the vectors (corresponding to the points) corresponding to a+bi and c+di, i.e., v = ai+bj,
u = ci+dj, we see that their dot product is v•u = ac+ bd while their cross product is v×u = (ad− bc)k; in
other words, roughly, the real part of zw is the dot product of the vectors corresponding to z and w, while
the imaginary part is their cross product.4 We shall see some other relations of this sort when we talk about
derivatives of functions of a complex variable; it turns out that, when viewed as a vector field, the derivative
of the conjugate of such a function essentially encodes the divergence and curl of the vector field.5

As another, more interesting, example, let a+bi be any complex number, and consider the corresponding
point in the plane. This point has polar coordinates (r, θ), where r is the distance from the origin to the
point and θ is the angle from the positive x-axis to the ray from the origin passing through the point. In
symbols, this becomes

r =
√

a2 + b2, cos θ =
a√

a2 + b2
, sin θ =

b√
a2 + b2

a = r cos θ, b = r sin θ

Note that θ is only defined up to a multiple of 2π: the two polar coordinate expressions (r, θ) and (r, θ+2π)
determine exactly the same point in the plane. We shall see shortly that for many important functions to
be continuous (in an appropriate sense) on the complex plane, there is no way around this ambiguity: it is
simply something which must be dealt with.

Now suppose that c+ di is any other complex number which satisfies c2 + d2 = 1: this means that the
point corresponding to c + di lies on the unit circle. If we let (r0, θ0) denote the polar coordinates of this
point, then we have r0 = 1, while θ0 satisfies cos θ0 = c, sin θ0 = d.6 Now applying basic trigonometric
identities, we obtain

(a+ bi)(c+ di) = ac− bd+ i(ad+ bc)

= r cos θ cos θ0 − r sin θ sin θ0 + i(r cos θ sin θ0 + r sin θ cos θ0)

= r cos(θ + θ0) + ir sin(θ + θ0)

= r [cos(θ + θ0) + i sin(θ + θ0)] ,

from which it is evident that the point corresponding to the product (a + bi)(c + di) is simply that corre-
sponding to a+ bi rotated counterclockwise by the angle θ0!

4 It turns out that there is a four-dimensional extension of the real numbers called the quaternions, which
contain the complex numbers, and which in some sense generalises results of this sort to full three-dimensional
vectors. We shall not deal with these in this course, though, except for a few asides like this one.

5 While interesting, these examples are somewhat tangential to the main content of this course.
6 If you are familiar with De Moivre’s theorem, it is useful to note that this means that c+ di = cos θ0 +

i sin θ0.
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Summary:
• We discuss another geometric interpretation of complex multiplication.
• We then discuss taking powers and roots of complex numbers, and the geometric interpretation of these
operations.
We have just observed that multiplying a complex number by another complex number of unit modulus

is equivalent to rotating the original complex number by an angle equal to that of the second complex
number. It turns out that multiplication by a general complex number can be viewed as the composition of
a rotation and an isotropic scaling. Let us see how this works. Suppose that we have two complex numbers,

z = r(cos θ + i sin θ), w = r′(cos θ′ + i sin θ′).

Then their product comes out to be (the angular part is exactly analogous to what we saw at the end of the
notes of May 5)

zw = rr′(cos θ + i sin θ)(cos θ′ + i sin θ′)

= rr′(cos θ cos θ′ − sin θ sin θ′ + i[sin θ cos θ′ + cos θ sin θ′])

= rr′[cos(θ + θ′) + i sin(θ + θ′)];

(1)

in other words, the point corresponding to zw is exactly the point corresponding to z, rotated by θ′ and
scaled by r′. This is the sense in which multiplication by a complex number is just a rotation and a scaling.
(This is related to some of the problems on the review sheet!)

3. Exponentiation. We have seen that the affect of multiplication on the angular part of a complex
number is just a rotation. What happens under exponentiation? Let z = r(cos θ+ i sin θ); then we see that,
by the formula in (1) above,

z2 = z · z = r2(cos 2θ + i sin 2θ),

z3 = z · z2 = r(cos θ + i sin θ) · r2(cos 2θ + i sin 2θ) = r3(cos 3θ + i sin 3θ),

and so on, so that it is evident that for any positive integer m we have

zm = rm(cosmθ + i sinmθ).

To try to get some sense of what this means geometrically, let us first consider the case r = 1; then rm = 1
for all m and we have simply

zm = cosmθ + i sinmθ.

Now any complex number of unit modulus is represented in the complex plane by a point on the unit circle,
and completely determined by the angle between a ray drawn from the origin to that point and the positive
x-axis, measured in a counterclockwise direction: this is just the number θ above. This formula then tells
us that the point corresponding to zm is also on the unit circle, but with an angle from the positive x-axis
equal to m times that of the point corresponding to z. In other words, if we must traverse an angle θ to
arrive at z, we must traverse an angle of mθ to arrive at zm.

Suppose now that we consider the affect of exponentiation on not just a single point on the unit circle
but rather an arc, say from θ = 0 to θ = θ0 for some θ0 > 0. The point corresponding to θ0, namely
cos θ0+ i sin θ0, will be mapped by this exponentiation to cosmθ0+ i sinmθ0; and it is clear that every point
with θ ∈ [0, θ0] will be mapped to a point with θ ∈ [0,mθ0]. Thus exponentiation simply stretches out the
original arc.

With this in mind, let us consider the affect of exponentiation on an angular wedge, namely on the set
of all points (of whatever modulus) whose angle with the positive x-axis lies between 0 and θ0. Such a point
can be written in the form z = r(cos θ+ i sin θ), where θ ∈ [0, θ0], and zm = rm(cosmθ+ i sinmθ); from the
foregoing, then, it is clear that this point will lie inside a ‘wedge’ (it may have an angle greater than π and
hence not really be a proper ‘wedge’ anymore) extending from 0 to mθ0.

Now there is no particular reason to restrict the lower angular bound on the wedge to be 0; we may as
well consider a wedge [θ1, θ2]. The same logic shows that this will be mapped to a wedge [mθ1,mθ2].

In particular, if we consider the wedge from 0 to π and let m = 2, we see that the image under
exponentiation is the ‘wedge’ from 0 to 2π, i.e., the entire complex plane. The same is true if we consider
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the wedge from 0 to 2π
3 and let m = 3, and in general, if m is any positive integer, then the wedge from

0 to 2π
m will be mapped to the entire complex plane by the map z 7→ zm. Similarly, the wedge from 2π

m to
4π
m will also be mapped to the entire complex plane, and so will the wedges from 2nπ

m to 2(n+1)π
m for any

n = 0, 1, . . . ,m− 1.
While we do not quite have all of the necessary tools to make the following picture precise, it provides

much useful intuition and I think is simple enough to understand. We may think of exponentiation by a
positive integer as an endpoint in a process that starts with exponentiation by 1 (i.e., doing nothing!) and
then slowly increases the exponent through all real numbers until it reaches m. Under this kind of a map,
the wedge from 0 to 2π

m (say) will be slowly stretched out (with the bottom edge, i.e., that along the x-axis,
remaining fixed) until the outer edge finally reaches the x-axis. Under the same map, the wedge from 2π

m to
4π
m will behave slightly differently: the lower edge 2π

m also moves until it reaches the positive x-axis, while the
upper edge 4π

m moves even faster so that by that point it has travelled one full 2π past the positive x-axis.
Similar things can be said about the additional wedges.

What all of this means is that under exponentiation by a positive integer, the wedges 2πn
m to 2π(n+1)

m
are each rotated and stretched in such a way as to cover the entire complex plane exactly once.1 This means
that each complex number is the image under the exponentiation map of exactly one point from each of
these wedges. A little thought shows that this means that each complex number (except 0) has exactly m
mth roots.

More precisely, suppose that z = r(cos θ + i sin θ) is some complex number. Now for each positive real
number r there is exactly one positive real number R satisfying Rm = r, and we denote this unique positive
real mth root by r

1
m . Given this, for n = 0, 1, . . . ,m− 1, let wn = r

1
m

(
cos θ+2πn

m + i sin θ+2πn
m

)
; then clearly

wm
n =

(

r
1
m

)m

(cos(θ + 2πn) + i sin(θ + 2πn))

= r(cos θ + i sin θ) = z,

so that each of the wn is an mth root of z. More specifically, if we assume that θ ∈ [0, 2π], then it is clear
that wn is in the nth of the above wedges. We note that wm = w0, and in general wn+km = wn for any
positive integer k. It can be shown that the wn are the only complex mth roots of z, and that z therefore has
exactly m distinct mth roots, as claimed. [The proof is not that hard: suppose that w = r′(cos θ′ + i sin θ′)
is any mth root of z, i.e., that wm = z; this means that

r′m(cosmθ′ + i sinmθ′) = r(cos θ + i sin θ),

which means that r′m = r, i.e., r′ = r
1
m , and that there is an integer n such that mθ′ = θ+2nπ, which gives

θ′ = θ
m + 2nπ

m for some integer n. Now dividing n by m we can find integers q and r such that n = qm+ r

and r ∈ {0, 1, 2, . . . ,m− 1}; thus θ′ = θ
m + 2(qm+r)π

m = θ
m + 2qπ + 2rπ

m and this w is equal to wr .]

4. Complex derivatives. Cauchy-Riemann equations In first-year calculus we learned that the
derivative of a real-valued function of a single real variable, if it exists, is given by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

In multivariable calculus, we learned about taking partial derivatives, which are derivatives in a single
direction at a time; we couldn’t take the derivative ‘with respect to a vector’ since we had no way of dividing
by a vector.2 Those of you who have seen how derivatives of functions from Rn to Rm can be viewed as
linear operators between those spaces will still recall that the components of the matrix representations of
those operators are still calculated as partial derivatives, i.e., even in that case we reduce back to the case
of a single function of a single variable.

1 Well, almost exactly once. To be precise we should only include one of the two edges, restricting the
angle to lie in a half-open interval.

2 This is not entirely correct and there is in fact a nice way in which the gradient can be viewed as a
derivative df

dr . But that is probably more of a notational shorthand than anything fundamental, unlike what
we are about to do with complex numbers.
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In complex analysis, though, we can go further since we have a well-defined way of dividing by complex
numbers even though they are two-dimensional quantities (at least over R!). Let f : C → C be a complex-
valued function of a complex variable, and consider the limit

lim
h→0

f(z + h)− f(z)

h
,

where now h is allowed to be a complex number. Since h is complex, this means that we are taking a
two-dimensional limit. As we have learned in multivariable calculus, a two-dimensional limit can only exist
if directional limits from different directions exist and are equal (and it may fail to exist even then). Let us
consider what the above limit looks like in the two cases where we restrict h to go to zero along the real
and imaginary numbers (in terms of the complex plane, this means that h goes to zero along the horizontal
and vertical axes, respectively). First, let us write out f explicitly in terms of its real and imaginary parts
as (writing z = x+ iy)

f(x+ iy) = P (x, y) + iQ(x, y),

and assume that all partial derivatives ∂P
∂x ,

∂P
∂y ,

∂Q
∂x ,

∂Q
∂y exist. If h = ∆x is real, the quotient inside the limit

becomes

f(x+ iy +∆x) − f(x+ iy)

∆x
=

P (x+∆x, y) + iQ(x+∆x, y)− [P (x, y) + iQ(x, y)]

∆x

=
[P (x+∆x, y)− P (x, y)] + i[Q(x+∆x, y)−Q(x, y)]

∆x
.

Since the partial derivatives ∂P
∂x and ∂Q

∂x exist, in the limit as ∆x goes to zero this becomes

∂P

∂x
+ i

∂Q

∂x
.

This gives the original (two-dimensional) limit along the real axis. To find the limit along the imaginary
axis, let h = i∆y (note the i!); then we obtain

f(x+ iy + i∆y)− f(x+ iy)

i∆y
=

P (x, y +∆y) + iQ(x, y +∆y)− [P (x, y) + iQ(x, y)]

i∆y

= −i

{
[P (x, y +∆y)− P (x, y)] + i[Q(x, y +∆y)−Q(x, y)]

∆y

}

,

so that since the partial derivatives ∂P
∂y and ∂Q

∂y exist this becomes

−i

{
∂P

∂y
+ i

∂Q

∂y

}

=
∂Q

∂y
− i

∂P

∂y
.

For the full two-dimensional limit to exist, this must equal the limit along the real axis; thus we must have

∂Q

∂y
− i

∂P

∂y
=

∂P

∂x
+ i

∂Q

∂x
,

which gives the celebrated Cauchy-Riemann equations

∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
.

To sum up: for a function f of a complex variable to have a derivative at a point, its real and imaginary
components P and Q must have partial derivatives at that point and those partial derivatives must satisfy
the Cauchy-Riemann equations. It can be shown (see Goursat, §3) that if the partial derivatives of P and Q
are also continuous at the point in question, then these conditions are sufficient in that f is then guaranteed
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to have a derivative at that point. Functions whose real and imaginary parts satisfy the Cauchy-Riemann
equations but which do not have a derivative shall not concern us much in this course.

When f has a derivative at a certain point, by the foregoing that derivative is given by either of the
expressions

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
=

∂Q

∂y
− i

∂P

∂y
.

Other equivalent expressions can also be derived; see Goursat, §3, equation (2).
Let us consider a specific example of the foregoing.

EXAMPLES. Let us consider a very simple function:

f(z) = z2.

To find its real and imaginary parts, let z = x+ iy; then

f(z) = f(x+ iy) = (x + iy)2 = x2 + 2ixy − y2 = (x2 − y2) + i(2xy),

whence we see that its real and imaginary parts are, respectively,

P (x, y) = x2 − y2, Q(x, y) = 2xy.

We leave it as a worthwhile exercise to the reader to show that these do in fact satisfy the Cauchy-Riemann
equations. Since they certainly have continuous partial derivatives, we see that f must have a derivative at
any point z. The formulas above give this derivative as

f ′(z) = f ′(x+ iy) =
∂P

∂x
+ i

∂Q

∂x
= 2x+ 2iy = 2z.

(This should not be a surprise, since we know from real-variable calculus that the derivative of x2 is 2x.) In
this case, we can also derive this result directly, as follows:

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0

(z + h)2 − z2

h
= lim

h→0

z2 + 2zh+ h2 − z2

h
= lim

h→0

2zh+ h2

h
= lim

h→0
(2z + h) = 2z.

This result turns out to be typical: most of the standard functions we are familiar with from calculus
which have derivatives as functions of a real variable also have derivatives as functions of a complex variable,
and the derivatives are the same. (There is a very good reason for this, which will become clearer throughout
the course: it is tied up with the fact that most of the functions we deal with in calculus do not just have a
single derivative but are rather real analytic, i.e., are equal to their Taylor series expansions. Such functions
always extend to differentiable functions of a complex variable, and this is one of the major links from real
to complex variable theory.)

As a still elementary but slightly more complicated example, let us show that the power rule of elemen-
tary calculus holds for functions of a complex variable, if we restrict ourselves to positive integer exponents.
(It holds for more general exponents, too, at least away from z = 0, but that will require a separate treat-
ment.) Thus let m be a positive integer, and define f(z) = zm. Then we have

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

(z + h)m − zm

h

= lim
h→0

1

h

(
m∑

k=0

(m

k

)

zm−khk − zm

)

= lim
h→0

1

h

(

mzm−1h+
m(m− 1)

2
zm−2h2 + · · ·

)

= lim
h→0

(

mzm−1 +
m(m− 1)

2
zm−2h+ · · ·

)

= mzm−1,

since all terms in · · · have at least an h2 in them and hence must go to zero as h does. Thus we have
f ′(z) = mzm−1, exactly as in the real-variable case.
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Summary:
• We wrap up some loose ends from last time.
• We discuss how differentiation rules from elementary calculus can be extended to the current setting.
• We discuss multiple-valued functions and give a brief introduction to the notion of branch cut.

5. Harmonic functions. If a function f ′(z) has a derivative throughout a region, we say that it is
analytic in that region.1 From last time, we know that if we write f as

f(x+ iy) = P (x, y) + iQ(x, y),

then, assuming that P and Q possess continuous first-order partial derivatives, f will be analytic if P and
Q satisfy the Cauchy-Riemann equations

∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
.

It turns out that these equations impose a very strong condition on P and Q, namely that they be harmonic,
i.e., that they satisfy Laplace’s equation

∆f =
∂2f

∂x2
+

∂2f

∂y2
= 0.

Assuming that P and Q possess continuous second-order partial derivatives, this can be shown easily as
follows:

∂2P

∂x2
+

∂2P

∂y2
=

∂

∂x

∂Q

∂y
+

∂

∂y

[

−∂Q

∂x

]

=
∂2Q

∂x∂y
− ∂2Q

∂y∂x
= 0,

since under the above assumption the mixed partial derivatives of Q commute. The calculation for Q is
similar and we leave it to the reader as an exercise.

To summarise, then, we have the implication

f analytic =⇒ Re f, Im f harmonic.

Note that the reverse implication is false, since if P and Q are two harmonic functions there is in general
no reason at all to expect them to satisfy the Cauchy-Riemann equations. Note also that for us the term
harmonic is applied only to real-valued functions of real variables; we do not speak of a function f of a
complex variable being harmonic. (We could define analytic for functions of a real variable – it is simply
that the function have a convergent power series representation – but we have not done so as we shall have
no particular need for this concept by itself.)

Harmonic functions are very important in many areas of physics and science, as they can be used to
describe temperature distributions, static electric fields, and steady-state fluid flows, for example. We shall
see later that one major application of complex variable theory lies in the use of analytic functions qua
conformal maps to find solutions to Laplace’s equation in nontrivial geometries.

Given a harmonic function P , there is a harmonic function Q, unique up to an additive constant, such
that f(x+ iy) = P (x, y) + iQ(x, y) is analytic. This is discussed in Goursat, §3, and also in §9 below.

6. Differentiation rules. We have already seen one example (at the end of §4 from last time) where
a differentiation rule from elementary calculus carried across essentially unchanged to the current setting. It
turns out that almost all of the differentiation rules from elementary calculus do also carry over to functions
of a complex variable: for example, the product rule and quotient rule do, since the proofs of those two

1 The word analytic, when applied to a real-valued function of a real variable, means that the function
can be extended in a power series, i.e., that the Taylor series of the function converges to the function on
some interval. We shall show later that, for functions of a complex variable, existence of the derivative
throughout an appropriate region allows us to conclude that the function has derivatives of all orders, and
that the Taylor series about each point converges to the function on some disc. Thus our terminology is
consistent with the real-variable case.
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rules work equally well for complex independent variables as they do for real. This means that derivatives
of rational functions (quotients of polynomials) can be found exactly as for functions of a real variable.

The chain rule also carries over to the current setting, as can be seen as follows. Suppose that f and
g are analytic functions, and let z ∈ dom f be such that f(z) ∈ dom g. Then since f and g are analytic we
have

lim
h→0

f(z + h)− f(z)

h
= f ′(z), lim

h′→0

g(f(z) + h′)− g(f(z))

h′ = g′(f(z)).

Now the first relation can be rewritten in the following way:

lim
h→0

f(z + h)− f(z)− f ′(z)h

h
= 0.

Let us write ǫ(h) = f(z + h) − f(z)− f ′(z)h, so that this result becomes limh→0
ǫ(h)
h = 0. Similarly let us

write ǫ′(h′) = g(f(z) + h′)− g(f(z))− g′(f(z))h′.2 Then we note that

lim
h→0

g(f(z + h))− g(f(z))

h
= lim

h→0

g(f(z) + f ′(z)h+ ǫ(h))− g(f(z))

h

= lim
h→0

g′(f(z))[f ′(z)h+ ǫ(h)] + ǫ′(f ′(z)h+ ǫ(h))

h

= g′(f(z))f ′(z) + lim
h→0

[

g′(f(z))
ǫ(h)

h
+

ǫ′(f ′(z)h+ ǫ(h))

h

]

;

but the limit of the first fraction is zero by what we know about ǫ(h), while the limit of the second is also
zero by what we know about ǫ(h) and ǫ′(h). Thus we have

d

dz
g(f(z)) = g′(f(z))f ′(z),

exactly as we do in elementary calculus.
We shall see shortly that, given appropriate extensions of the elementary transcendental functions of

calculus (the trigonometric, exponential, and logarithmic functions), the derivatives of all of these functions
are also what one would expect from calculus.

7. Roots and branch cuts. There is one class of functions which we have already extended to all
complex numbers but whose derivatives we have not yet discussed, namely the roots. It turns out that a study
of these functions reveals a subtlety in functions of a complex variable which is not visible in functions of a
real variable. Let us fix some positive integer m and consider mth roots. Recall that if z = r(cos θ + i sin θ)
is any complex number, then the m complex numbers

wn = r1/m
(

cos
θ + 2πn

m
+ i sin

θ + 2πn

m

)

all satisfy wm
n = z. Now a function must have a unique value at a given point; thus if we wish to define an

mth root function we must have some way of choosing just one of these values for each point. At first sight
it would appear that we could just take w0 and be done, but a bit more thought reveals that the situation
is not quite that simple: for example, should z = r, for r a positive real number, be represented as

z = r(cos 0 + i sin 0), with mth root w0 = r1/m,

or as

z = r(cos 2π + i sin 2π), with mth root w0 = r1/m
(

cos
2π

m
+ i sin

2π

m

)

?

2 For those who have seen this notation, we note that this is equivalent to saying that ǫ(h) = o(h) and
ǫ′(h′) = o(h′).
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If we are interested only in defining a function we may just choose one of these and be done. The problem
with that method, though, is that the resulting function will not be continuous across the real axis. For
suppose that we make the requirement that θ ∈ [0, 2π), which corresponds to choosing the first of these two
expressions. Let us consider the two limits

lim
h→0+

(cosh+ i sinh)1/m and lim
h→0−

(cosh+ i sinh)1/m.

For our mth root function to be continuous these two limits must be equal. But since we have required the
angle θ to lie in the interval [0, 2π), we must rewrite the second number as

cos(2π + h) + i sin(2π + h)

(remember that here h is negative so 2π + h < 2π!), which means that the two limits become

lim
h→0+

(cosh+ i sinh)1/m = lim
h→0+

(

cos
h

m
+ i sin

h

m

)

= 1

and

lim
h→0−

(cos(2π + h) + i sin(2π + h))1/m = lim
h→0−

(

cos
2π + h

m
+ i sin

2π + h

m

)

= cos
2π

m
+ i sin

2π

m
,

and these two expressions are clearly not equal unless m = 1 (when everything is quite trivial). A similar
problem would happen if we made the second choice above.

It turns out that the above difficulty is not just a result of our lack of cleverness: there is in fact no way
to define an mth root function which is single-valued and continuous on the entire complex plane. The basic
idea is already contained in the foregoing. Suppose that f : C → C were a function of a complex variable
satisfying everywhere on C the formula

[f(z)]m = z,

and such that f(z) were continuous everywhere on C. Let us consider how f behaves on the unit circle.
By our study of roots above, we know that there must be integer n ∈ {0, 1, 2, · · · ,m− 1} such that f(1) =
cos 2πn

m + i sin 2πn
m . Since f is continuous, for θ close to zero we must also have

f(cos θ + i sin θ) = cos
θ + 2πn

m
+ sin

θ + 2πn

m
.

Now let us consider what happens when we gradually increase θ more and more. Clearly we must always
still have

f(cos θ + i sin θ) = cos
θ + 2πn

m
+ sin

θ + 2πn

m
,

since otherwise there would be a point where we would need to switch to a different value of n, and this would
lead to a discontinuity in f (this could be shown analogously to how we argued above about discontinuity
across the real axis). Thus we can keep on going up until we get close to 2π. But if θ is very close to 2π the
above result gives

f(cos θ + i sin θ) = cos
θ + 2πn

m
+ sin

θ + 2πn

m
;

but since we can consider θ < 0 as well as θ > 0, we also have

f(cos θ + i sin θ) = f(cos(θ − 2π) + i sin(θ − 2π)) = cos
θ + 2π(n− 1)

m
+ sin

θ + 2π(n− 1)

m
,

a contradiction.
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Let us sum up what we have shown: No matter which choice of mth root we choose, if we continue
it along a curve which encloses the origin, it will come back as a different root when we come back to the
original point. This phenomenon is actually quite common in the study of functions of a complex variable,
and the origin is what is called a branch point of the mth root function. Far from being a failure of the
theory, it actually leads to very interesting new mathematical structures called Riemann surfaces, which we
discuss momentarily.

It turns out that if we wish to define an mth root function, there are two distinct ways to proceed. First
of all, we could restrict the domain by removing (say) a ray from the origin to infinity from the domain of
the function; for example, if we remove the positive real axis together with the origin, it is clear that we may
make any single choice of n and get a continuous mth root function on the remaining set. The same is true if
we remove any other ray from the origin to infinity. In this setting, the ray we remove from the domain of f
is termed a branch cut. See Goursat, §6, especially the discussion around Figure 5; see also some additional
discussion in §8 herein, below.

Goursat’s discussion of cutting the plane relates to the notion of a Riemann surface, which is part of the
second possible route out of our difficulties, namely extending the domain to a so-called m-sheeted cover of
the complex plane.3 This is rather complicated and we shall only sketch it. The idea is to consider the point
1 on the real axis as distinct from the point obtained by rotating it around the origin once, twice, thrice,
. . ., m− 1 times, but as the same as what one gets by rotating m times.4 This gives m different ‘sheets’ –
in some sense, m different ‘copies’ of the complex plane – which are joined onto each other in some fashion
(think of a spiral staircase which somehow ends up where it started); and we can then define the mth root
function by choosing root n on the nth of the sheets.

3 I don’t suppose anyone has studied covering spaces, but in case anyone has, let me just note that this
corresponds to the m-sheeted cover of the unit circle by itself. The universal cover of the unit circle will
show up when we talk about the logarithm.

4 If any of you have some familiarity with the notions of particle physics, you may recall that certain
elementary particles, such as the electron, are said to have spin-1/2, in that they must be turned around
twice to look the same (a most peculiar property!); that is exactly the same as what is going on here except
that for mth roots we must ‘turn around’ m times to look the same. While it has been too long since I
studied the Dirac equation to be sure of myself here, I doubt this is entirely a coincidence, as those of you
who have studied the Dirac equation will probably recall that it arises as a square-root of the Klein-Gordon
equation.

10



MAT334, 2020. I, §7 [May 14] Roots and branch cuts, II Nathan Carruth

Summary:
• We clarify some matters related to branch cuts.
• We then fill in some points from the last set of lecture notes.
• Finally, we introduce power series and discuss how to extend the exponential and logarithm to complex
numbers.

8. Roots and branch cuts, II. In the lecture notes from Tuesday, §7, we demonstrated that it is
impossible to make a continuous choice of root on the entire complex plane, so that we either need to remove
a part of the plane (make a branch cut) or embed the complex plane into a much larger set (the so-called
Riemann surface of the function) in order to get a well-defined, continuous, single-valued function. In this
section we will step back a bit to consider what all of this means, and why we are discussing it.

First of all, a philosophical point which will be useful to keep in mind at many other points in the course
also. In mathematics there are some results or concepts which we study because they can be immediately
used to solve problems, and there are other results or concepts which we study because they help deepen
our understanding, even if they are not directly (or at least immediately) applicable to solving problems. In
elementary calculus, for example, the product rule is of the first kind, as is the first derivative test; while the
notion of a continuous function, or the extreme value theorem, are more of the second kind. In this class,
methods for calculating residues, which we shall study later, are of the first kind; while branch cuts, which
we are studying now, are of the second kind. We study them not so much because we need them immediately
for applications, or because we can immediately solve problems about them, but because they help deepen
our understanding of what an analytic function of a complex variable is, and how it might behave.1

With this in mind, let us go back and investigate exactly why we needed a branch cut in the first
place. The most immediate answer is that we needed a branch cut to make sure we could keep our function
continuous and single-valued. Why did it become multiple-valued in the first place?

Let z be any nonzero complex number, and suppose that z = r(cos θ+ i sin θ) is a polar form of z. Then
clearly so is r [cos (θ + 2πn) + sin (θ + 2πn)]. Now consider the following diagram; the block on the left is
to be read top to bottom, then left to right, and we use the abbreviation cis θ for cos θ + i sin θ (we will see
very soon that cis θ = eiθ, of course):

· · · , r cis (θ − 2πm), r cis θ, r cis (θ + 2πm), · · ·
· · · , r cis (θ − 2π(m− 1)), r cis (θ + 2π), r cis (θ + 2π(m+ 1)), · · ·
· · · , r cis (θ − 2π(m− 2)), r cis (θ + 4π), r cis (θ + 2π(m+ 2)), · · ·
...

...
...

...
...

· · · , r cis (θ − 2π), r cis (θ + 2π(m− 1)), r cis (θ + 2π(2m− 1)), · · ·
︸ ︷︷ ︸

z







z 7→z1/m

→







r
1
m cis θ

m

r
1
m cis θ+2π

m

r
1
m cis θ+4π

m
...

r
1
m cis θ+2π(m−1)

m

where each quantity on the left is equal to z, and where each line on the left maps under the mth root
function to a single value on the right. The issue is that while each of the quantities on the left is a polar
representation of the same complex number z, the m quantities on the right represent distinct complex
numbers – namely, the m possible mth roots of z. This diagram indicates one way of looking at the issue:
the mth root function is most naturally considered as acting on the polar representation of a complex number
z, but it takes representations of the same complex number to representations of distinct complex numbers.
The point of a branch cut is to allow us to single out a preferred choice of polar representation for z in
such a way that the resulting mth root is uniquely defined. (In terms of the above diagram, such a choice
corresponds to picking a specific row.)

For example, suppose that we take our branch cut along the positive real axis: then we may require
the angle in any polar representation of z to lie in the interval (0, 2π). Now suppose that we are given the
complex number z = −1. Since the point corresponding to this number makes an angle of π radians with
the positive real axis, we can write it as z = cisπ. Now we could equally well write z = cis (2k + 1)π for

1 I read recently somewhere – unfortunately I have forgotten where – that functions of a complex variable
are essentially defined by their singularities. Of the three kinds of singularities we shall see in this course,
namely poles, essential singularities, and branch points, branch points are the hardest to deal with; in other
words, as far as singularities are concerned anyway, things get simpler from here on out!
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any integer k; but our choice of interval (0, 2π) for the angle requires us to use z = cis π. The mth root we
get in this case is then z1/m = cis π/m.

It is not hard to find other examples; we give two just to demonstrate the point. Suppose that we choose
the same branch cut but now require the angle to lie in the interval (2π, 4π); there is no reason why we can’t
do this. Then the point z = −1 will be represented as z = cis 3π, and the corresponding choice of mth root
will be z1/m = cis 3π/m.

Finally, suppose that we choose a different ray as our branch cut, say the positive imaginary axis. Our
possible choices of intervals are different now: instead of avoiding the positive real axis, which has angle 0,
we now need to avoid the positive imaginary axis, which has angle π/2. Thus we may choose an interval of
the form (−3π/2, π/2) (for example). In this case, the polar representation of z will be z = cis (−π), and
the corresponding choice of mth root will be z1/m = cis (−π/m).

To sum up: a branch cut determines the possible different choices of representation for z, and a selection
of one of these makes the root function (or whatever other function we happen to be studying) single-valued.

Before moving on, I would like to emphasise again that the point of learning about branch cuts at this
point is not because we are going to use them right away to solve problems (though we will see that they do
come up in practical problems later on in the course), nor is it because we are going to immediately be able
to go off and determine where functions have branch points. (Another, more involved, example of branch
cuts is however given in the second part of §6 of Goursat.) Rather it is to be given an introduction to a
particular feature of certain functions of a complex variable which we shall study more later.

– See §§5 and 6 above –

9. Conjugate harmonic functions [continuing §5]. Recall that we have shown in §5 above that
the Cauchy-Riemann equations imply that the real and imaginary parts of an analytic function f must
satisfy Laplace’s equation2 ∆u = 0. However, the Cauchy-Riemann equations have more information than
just this, as they give also a relationship between the real and imaginary parts. Thus we may consider
the following question: Suppose that P (x, y) is a real-valued function of two real variables which satisfies
Laplace’s equation; is there a function Q(x, y) of two real variables such that

f(x+ iy) = P (x, y) + iQ(x, y)

is an analytic function? It is not too hard to see that the answer is actually yes, at least if we stick to
simply-connected regions. Let us write out the Cauchy-Riemann equations and see if we can solve them for
Q:

(1)
∂Q

∂x
= −∂P

∂y
,

∂Q

∂y
=

∂P

∂x
.

Probably the most direct way to treat these equations is to use a bit of vector calculus. Let us define a
vector field

F = −∂P

∂y
i+

∂P

∂x
j;

then since P is harmonic we have

curlF =
∂

∂x

∂P

∂x
− ∂

∂y

(

−∂P

∂y

)

=
∂2P

∂x2
+

∂2P

∂y2
= 0,

which means that, as long as we stick to simply-connected regions (recall that these are regions ‘without
holes’; generally these are introduced when one studies Green’s theorem), there must be a function f(x, y)
such that F(x, y) = ∇f(x, y) = ∂f

∂x i+
∂f
∂y j. In other words, there must be a function f such that

∂f

∂x
= −∂P

∂y
,

∂f

∂y
=

∂P

∂x
.

2 At least, assuming that they have continuous second-order partial derivatives. We shall see shortly that
if a function f is analytic throughout a region – as opposed to at a single point – then this condition is
always satisfied. As far as I know, functions which are analytic at isolated points are of interest only as
mathematical curiousities, and have no particular use in applications, so we shall not generally worry about
them.
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But these are exactly the equations we wanted Q to satisfy; in other words, what we know from vector
calculus shows us that there must be a solution Q to the equations (1). It is unique up to an additive
constant.

To be more specific, recall that we also know from vector calculus that the function f can be written as

f(x, y) =

∫ (x,y)

(x0,y0)

F · dx+ C,

where (x0, y0) is any point in the domain of P , the integral is a line integral along any path joining the
two points (it will not depend on this path because curlF = 0 implies that F is conservative) and C is
any constant. (In vector calculus, of course, we take C to be a real constant. Here C can be any complex
constant.) This allows us to write

Q(x, y) =

∫ (x,y)

(x0,y0)

−∂P

∂y
dx+

∂P

∂x
dy + C,

and finally

f(x+ iy) = P (x, y) + i

∫ (x,y)

(x0,y0)

−∂P

∂y
dx+

∂P

∂x
dy + C.

10. Power series. Let us recall a few facts about power series over the real numbers. A power series
is an infinite series of the form

(2)

∞∑

k=0

ak(x− x0)
k,

where {ak} is a sequence of coefficients, x0 is some real number, and we consider x as a variable real number.
The series will be absolutely convergent (meaning that the sum of the absolute values of its terms will be
finite)3 on some interval of the form (x0 − R, x0 + R), called the interval of convergence, where R > 0 is
called the radius of convergence and can be calculated from

1

R
= lim

k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
,

when this limit exists.
Suppose now that we allow the numbers in the series in (2) to become complex. Now it turns out that,

just as for real numbers, a series of complex numbers which is absolutely convergent is also convergent, so
we may begin by asking where this series is absolutely convergent, which means that we must consider the
series ∞∑

k=0

|ak| |z − z0|k .

But this is just a power series of real numbers with coefficients |ak|, and must therefore converge when
|z − z0| < R, where R is given as before. From this we can draw two conclusions:
1. Power series over the complex numbers converge in discs;
2. In the case that the coefficients ak are all real, the radius of the disc of convergence is equal to the

radius of the interval of convergence.

3 The notion of absolute convergence is very important in more theoretical parts of analysis. Since a series
of positive terms converges if and only if it has an upper bound, and since in most spaces in which these
concepts make sense – and in particular, for real and complex numbers – an absolutely convergent series is
convergent, we are to reduce a question of convergence of a series – which is hard – to the question of finding
an upper bound for a series, which is generally simpler. We shall probably not have much need to use these
concepts and results directly, however.
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Point 2 in particular makes the term radius of convergence much more sensible!
Just as with real power series, power series of complex numbers can be added, multiplied (though

that becomes messy very quickly, as anyone who has attempted such a procedure can surely attest!), and
differentiated term-by-term. This means, inter alia, that power series represent analytic functions where they
converge. Also as with real power series, a power series converges inside its disc of convergence and diverges
outside; on the boundary, as with real power series, it may converge or diverge, depending on the point
and the situation.4 Our main interest with power series right now is that they provide a convenient way to
extend the elementary transcendental functions (the exponential, trigonometric, and logarithmic functions)
to complex numbers, which we take up now.

11. Exponentials and logarithms of a complex variable. Recall that the exponential function
ex has the power series representation

ex =

∞∑

k=0

1

k!
xk,

and that this series converges for all real numbers x. By our discussion above, this shows that the power
series ∞∑

k=0

1

k!
zk,

where z is now a complex variable, must converge for all complex numbers z. It is clearly equal to ex when
z = x is a real number. Now it can be shown (and we shall probably be able to show this in the second
half of the course) that analytic functions are incredibly rigid: roughly, if they are equal on any set which is
not somehow ‘discrete’, they must be equal everywhere. (We shall make this more precise later as it is not
exactly true as it stands.)5 This suggests that the above power series of complex numbers, which as we have
seen defines a function which is analytic everywhere on the complex plane, is the unique function analytic
everywhere on the complex plane which is equal to the ordinary exponential function on the real axis. We
thus define, for any complex number z, the complex exponential

ez =
∞∑

k=0

1

k!
zk.

When convenient for typographical reasons we may write exp z instead of ez. The standard properties of
exponential functions can be shown to follow from this expansion; for example, if z1 and z2 are any complex
numbers, we have

ez1ez2 =

( ∞∑

k=0

1

k!
zk1

)( ∞∑

ℓ=0

1

ℓ!
zℓ2

)

=
∞∑

k,ℓ=0

1

k!ℓ!
zk1z

ℓ
2

=

∞∑

n=0

n∑

k=0

1

k!(n− k)!
zk1z

n−k
2

=

∞∑

n=0

1

n!

n∑

k=0

n!

k!(n− k)!
zk1z

n−k
2

=

∞∑

n=0

1

n!
(z1 + z2)

n
= ez1+z2 ,

4 We note that it is possible to find a function which is analytic everywhere inside a disc but at no point
of the boundary.

5 For those who know enough topology to understand the following, we note that two analytic functions
which agree on a set with at least one accumulation point must agree on the connected component of the
intersection of their domains containing that set.
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where in the third line we have introduced the variable n = k + ℓ.
We know that on the real axis ez agrees with the ordinary exponential function; what happens on the

imaginary axis? Let z = iy; then we have

ez = eiy =

∞∑

k=0

1

k!
(iy)k

=

∞∑

ℓ=0

1

(2ℓ)!
(iy)2ℓ +

∞∑

m=0

1

(2m+ 1)!
(iy)2m+1

=

∞∑

ℓ=0

1

(2ℓ)!
(−1)ℓy2ℓ +

∞∑

m=0

1

(2m+ 1)!
i(−1)my2m+1

= cos y + i sin y,

probably one of the most fascinating results in mathematics. This formula makes much of our work with
powers and roots far more transparent: for example, the result

[r(cos θ + i sin θ)]1/m = r1/m(cos θ/m+ i sin θ/m)

(where we have chosen just one particular mth root for simplicity) becomes now

[
reiθ

]1/m
= r1/meiθ/m,

which is exactly what we would expect were the standard rules of exponents applicable to the complex
exponential function.

Having now defined the exponential function for all complex numbers, we proceed to consider the
logarithm. From what we have just seen, an arbitrary nonzero complex number z can be written in the form

z = reiθ

for some real number r > 0 (r 6= 0 since z is nonzero) and some real number θ. But since r > 0 we have

r = elog r,

where here log represents the ordinary logarithm of positive real numbers; thus we can write

z = elog r+iθ.

Now the defining property of the logarithm on real numbers is, that it is the inverse of the exponential
function; if we wish to define the logarithm of a complex number the same way, the above formula suggests
that we should define it to be log r+ iθ. But here we run into the same problem we found when we discussed
roots: θ is only defined up to an integer multiple of 2π. Thus for complex numbers we must evidently define
the logarithm to be a multi-valued function. With this in mind, we define the logarithm of a nonzero complex
number z, which we write Log z, to be the collection of numbers

Log z = log r + iθ,

where r = |z| is the modulus of z and θ is any value of the argument of z. As with roots, this means that the
logarithm has a branch point at the origin, and we must make a branch cut in order to get a single-valued
continuous logarithm.

With these functions now defined, we may define exponents of any (nonzero) complex base and any
complex power. First we recall that if x1 > 0 and x2 are two real numbers, we may write, by rules of
exponents and logarithms (here log denotes the ordinary logarithm of positive real numbers)

ex2 log x1 = elog x
x2
1 = xx2

1 .
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Now if we use the complex logarithm Log defined above, we can compute the left-hand side of the above
equation for all complex numbers z1 and z2, as long as z1 6= 0. Thus, let z1 6= 0 and z2 be two complex
numbers; then we define

zz21 = ez2Log z1 .

Note though that, since Log is multivalued, this definition in general makes zz21 a multivalued function as
well. This leads to some rather amusing results. Let us give some examples.

EXAMPLES. 1. Before giving the amusing examples, let us first see how this definition fits in with
the exponents we have already studied, namely integer powers and roots. If m is a positive integer and
z = r(cos θ + i sin θ) is any nonzero complex number, the above definition gives

zm = emLog z = exp (m[log r + iθ]) = exp (m log r + imθ) = em log reimθ = rm(cosmθ + i sinmθ),

exactly in accord with our previous definition. Note that in this particular case the exponential function is
single-valued, since if θ′ is any other value of the argument of z, we would have θ′− θ = 2πk for some integer
k, and the above formula would give

rm(cosmθ′ + i sinmθ′) = rm(cosm(2πk + θ) + i sinm(2πk + θ)) = rm(cosmθ + i sinmθ)

as before.
Let us now consider roots. Thus, again, let m be a positive integer and z = r(cos θ + i sin θ) a nonzero

complex number; then we have

z
1
m = exp

(
1

m
[log r + iθ]

)

= exp

(
1

m
log r

)

exp

(

i
θ

m

)

= r1/m
(

cos
θ

m
+ i sin

θ

m

)

,

exactly in accord with our original definition of mth roots. Recall that here θ represents any possible
argument value for z, so that this expression represents all possible mth roots and is, as usual, multivalued
for m 6= 1.

More generally, if z′ = k
m where k and m are relatively prime integers (meaning that they have no

common divisors; this restriction is for convenience only), then we have for any complex number z = reiθ

zz
′

= zk/m = exp

(
k

m
[log r + iθ]

)

= exp

(
k

m
log r + i

kθ

m

)

= rk/m
(

cos
kθ

m
+ sin

kθ

m

)

.

2. Now for some amusing examples. Let us recall that the exponential for real numbers is only defined
for positive bases. We now have a means of defining it for arbitrary complex bases, but in particular for
negative real bases; what does it give us? In particular, what is say −1 raised to an irrational power, say√
2? To find this, we write −1 = cos(2n+ 1)π = e(2n+1)πi, where n is any integer; then we have

−1
√
2 = exp

(√
2 Log (−1)

)

= exp
(√

2(2n+ 1)πi
)

= cos
(√

2(2n+ 1)π
)

+ i sin
(√

2(2n+ 1)π
)

.

What does this set of numbers look like? It turns out that this set is actually infinite; this is because
√
2 is

irrational: if the set were finite, we would have integers n 6= m and k such that
√
2(2n+ 1)π =

√
2(2m+ 1)π + 2kπ,

which would give
√
2 = k

n−m , contradicting irrationality of
√
2. It is also clear that all of these numbers lie

on the unit circle; thus we have an infinite set of numbers on the unit circle, which means that they cannot
be ‘evenly spaced’ in any meaningful sense. (For those who are familiar with the concept of density, we note
that this set is in fact dense in the unit circle.)

Even more bizarre things happen when we look at complex bases. For example, let us consider ii.
Writing i = exp i

(
π
2 + 2nπ

)
, we have

ii = exp
(

i
[

i
(π

2
+ 2nπ

)])

= exp
(

−π

2
− 2nπ

)

,

i.e., the number ii is an infinite sequence of real numbers!
(We hasten to note that these examples are more amusing than indicative, and while it is important to

keep in mind that exponentials like zz21 can be very ill-behaved compared with their real counterparts, this
behaviour will not generally concern us in the remainder of the course.)
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Summary:
• We discuss the branches of the logarithm function defined previously and show how to differentiate
them.

• We introduce the extension of the trigonometric functions to the complex plane, and relate them to the
ordinary trigonometric and hyperbolic trigonometric functions of a real variable.

• We show how the inverse trigonometric functions can be determined in terms of roots and logarithms,
and calculate their derivatives.

• Finally, we give a slightly more careful description of the kind of region we assume our functions are
defined; then we give an introduction to conformal mappings and show that analytic functions are
conformal.

12. Differentiation of Log. Recall that we have defined the complex logarithm as a multi-valued
function as follows. If z is any nonzero complex number and reiθ is any polar representation of z, then we
define

Log z = log r + i(θ + 2nπ), n ∈ Z,

where here log denotes the ordinary real logarithm of a positive real number. (Note that this definition
allows us to extend the logarithm to negative real numbers but not to zero. Since even over the complex
plane the exponential is never 0, there is no way to extend the logarithm to zero.) As for the root functions
we studied previously, a single-valued, continuous logarithm can only be defined on a cut plane. Let us see
how this works in practice. Suppose that we cut the plane along the ray θ = θ0, i.e., that we define the
logarithm only on complex numbers with polar representation z = reiθ where θ ∈ (θ0, θ0 + 2π), and that we
consider only this polar representation in defining the logarithm. (Note that, while related, these are two
distinct points.) Then we have

Log z = log r + iθ.

We note that this function is continuous on the cut plane; an outline of a proof is given in the appendix.
Some examples related to this are given in the problem set.

Let us now see whether these branches of Log are analytic functions. Specifically, let us take the above
branch, obtained by cutting the plane along θ = θ0. We shall denote this particular branch by Log z in the
following, for convenience. We must determine whether the limit

lim
h→0

Log (z + h)− Log (z)

h

exists. This limit may clearly be written as

lim
z′→z

Log z′ − Log z

z′ − z
.

Now if z = reiθ, where θ ∈ (θ0, θ0 + 2π), then as long as z′ is close enough to z1 we may write z′ = r′eiθ
′

where θ′ ∈ (θ0, θ0 + 2π) and also θ′ is close to θ. Let us now define

w = Log z = log r + iθ, w′ = Log z′ = log r′ + iθ′.

Then
Log z′ − Log z

z′ − z
=

w′ − w

ew′ − ew
.

Now as z′ → z, we have clearly (by continuity of the logarithm) Log z′ → Log z, i.e., w′ → w; and in this
limit the above fraction becomes

lim
w′→w

w′ − w

ew′ − ew
= lim

w′→w

1
ew′−ew

w′−w

=
1

limw′→w
ew′−ew

w′−w

=
1

ew
,

1 Specifically, we need the angle between them to be less than the smaller of θ − θ0 and θ0 + 2π − θ.
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since the exponential function is analytic and is equal to its own derivative. But recall that

ew = eLog z = z,

so that we have shown that
d

dz
Log z =

1

z
.

Note that this final result does not depend on the choice of branch cut; in other words, each branch of Log
has the same derivative. This accords with what we know about derivatives from ordinary calculus, since
the various branches of Log differ only by constants.

To sum up, we have shown that each branch of Log is an analytic function on its domain, and all of
the branches have the same derivative, namely 1/z.

Appendix I. Continuity of Log. Let us show that each branch of the logarithm, as outlined at the
start of the section above, is in fact continuous. We shall give a formal ǫ-δ argument, but provide intuitive
commentary to hopefully make the ideas clear to those who do not have much background in such things.
Thus let z = reiθ be an element of the cut plane, with θ ∈ (θ0, θ0 + 2π), and let ǫ > 0. We may assume that
ǫ < π

4 . Since log is continuous on the positive real line, there must be a δ′ > 0 such that

|log r − log r′| < 1

2
ǫ if |r − r′| < δ′;

in other words, if r′ is close to r then log r′ is close to log r. Further, it can be shown that the function
z 7→ |z| is continuous; thus there is a δ′′ > 0 such that

||z| − |z′|| < δ′ if |z − z′| < δ′′;

in other words, |z| is close to |z′| if z is close to z′ (clearly a reasonable statement geometrically!). Dealing
with the angular part of z and z′ is slightly messy; intuitively though the result is clear: if z′ is sufficiently
close to z, then we may write z′ = r′eiθ

′

where θ′ ∈ (θ0, θ0 +2π) and θ′ is close to θ. To prove what we need
carefully, though, let us set

δ′′′ =

{
1
2r sin(θ − θ0), θ ∈ (θ0, θ0 + π/2) ∪ (θ0 + 3π/2, θ0 + 2π),

1
2r, otherwise.

Since 2δ′′′ is simply the distance from z to the cut (draw a picture!), it is clear that |z − z′| < δ′′′ means
that z′ is on the same side of the cut as z, and hence can be written in the above form. Now let δ be the
smaller of δ′, δ′′, δ′′′, and sin(ǫ/2), and suppose that

|z − z′| < δ.

By the foregoing, then,

||z| − |z′|| < δ′, so |log |z| − log |z′|| < 1

2
ǫ;

furthermore, writing z′ = r′eiθ
′

, θ′ ∈ (θ0, θ0 + 2π), it is clear geometrically (again, draw a picture!) that the
angle between z and z′ is no greater than arcsin δ, which is bounded by ǫ/2, so that |θ − θ′| < ǫ/2. Thus
finally

|Log z − Log z′| = |log r + iθ − log r′ + iθ′| ≤ |log |z| − log |z′||+ |θ − θ′| < ǫ,

proving continuity of Log , as desired.

13. Trigonometric functions. To extend the trigonometric functions to the complex plane, we shall
proceed in the same way we did with the exponential function. Recall that on the real line we have the
power series expansions

sinx =

∞∑

k=0

1

(2k + 1)!
(−1)kx2k+1, cosx =

∞∑

k=0

1

(2k)!
(−1)kx2k.
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Since the radius of convergence of both of these series is infinite, they must converge on the entire complex
plane as well; thus we may define

sin z =

∞∑

k=0

1

(2k + 1)!
(−1)kz2k+1, cos z =

∞∑

k=0

1

(2k)!
(−1)kz2k,

where now z is any complex number. Moreover, as we mentioned in our discussion of the exponential function
in section 11 above, these power series are the unique way of extending sin and cos to the complex plane as
analytic functions.

The standard identities of trigonometry can be shown to hold over the complex numbers as well; in
particular, we have

cos2 a+ sin2 a = 1,

sin(a± b) = sina cos b± cos a sin b, cos(a± b) = cos a cos b ∓ sina sin b,

sin 2a = 2 sina cos a, cos 2a = cos2 a− sin2 a,

and so forth, where now a and b can be any complex numbers. Moreover, sin is odd (sin(−z) = − sin z)
while cos is even (cos(−z) = cos z), as with real numbers. Further, the differentiation formulæ for sin and
cos also hold. This can be shown by differentiating the above series:2

d

dz
sin z =

d

dz

∞∑

k=0

1

(2k + 1)!
(−1)kz2k+1 =

∞∑

k=0

1

(2k)!
(−1)kz2k = cos z,

d

dz
cos z =

d

dz

∞∑

k=0

1

(2k)!
(−1)kz2k =

∞∑

k=1

1

(2k − 1)!
(−1)kz2k−1 = −

∞∑

k=0

1

(2k + 1)!
(−1)kz2k+1 = − sin z,

where we have set the lower index to 1 in the second series on the second line since the constant term in the
series for cos z differentiates to zero, and we have adjusted the index in the last equality.

Now recall that, by substituting in to the power series expression for ez, we found that when y is real

eiy = cos y + i sin y.

Now there is nothing in this derivation which requires y to be a real number; thus with the above definitions
for sin and cos, we find that for all complex numbers z that

eiz = cos z + i sin z.

Using the fact that cos is odd and sin is even, we see that

e−iz = cos(−z) + i sin(−z) = cos z − i sin z;

adding and subtracting these two equations, we obtain the results

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

This allows us to derive expressions for the real and imaginary parts of cos z and sin z. First of all, note that
if y is real (actually for all complex y if we define cosh and sinh in the usual way, but we are only interested
in real y for the moment)

cos iy =
e−y + ey

2
= cosh y, sin iy =

e−y − ey

2i
= i sinh y,

2 As noted previously, convergent power series can be differentiated term-by-term on their discs of
convergence.
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where as usual

cosh y =
ey + e−y

2
, sinh y =

ey + e−y

2
.

Thus if z = x+ iy,

cos z = cos(x+ iy) = cosx cos iy − sinx sin iy = cosx cosh y − i sinx sinh y,

sin z = sin(x + iy) = sinx cos iy + cosx sin iy = sinx cosh y + i cosx sinh y.

Now since cosh and sinh are unbounded, this means in particular that cos and sin are unbounded along the
imaginary direction. In particular, the inequalities | cosx| ≤ 1, | sinx| ≤ 1, which are true for real x, do not
hold for complex numbers.

Similar results can be derived for the other trigonometric functions (tangent, cotangent, secant, and
cosecant) but we shall not go into that here.

14. Inverse trigonometric functions. Let us see what we can find about the inverse trigonometric
functions, given the foregoing. Let us first consider sin z; or, since we are interested in finding its inverse,
sinw, where w is another complex variable. We have the relation

sinw =
eiw − e−iw

2i
.

Now let us set z = sinw and see whether we can solve for w. We have

eiw − e−iw

2i
= z

eiw − e−iw = 2iz

e2iw − 1 = 2izeiw

e2iw − 2izeiw − 1 = 0

eiw =
1

2

(

2iz +
(
4(iz)2 + 4

)1/2
)

= iz +
(
1− z2

)1/2
,

where we have dispensed with the ± usually present in the quadratic formula since
(
1− z2

)1/2
is defined to

mean both square roots. Thus we may write

w =
1

i
Log

[

iz +
(
1− z2

)1/2
]

.

In other words, whenever w is any of the (infinitely many) complex numbers indicated by the right-hand
side of this equation, we must have sinw = z. We thus define

arcsin z =
1

i
Log

[

iz +
(
1− z2

)1/2
]

.

Note that there are, in general, two distinct sources of multi-valuedness in the above expression, one from
the square root (when z 6= ±1) and the other from the log. This is in good accord with our understanding
of the graph of sinx on the real line: as long as y0 6= ±1, the graph of y = sinx will intersect the line y = y0
twice per interval of length 2π.

Similar expressions can be derived for arccos and arctan but we pass over them for the moment.
The above expression may be differentiated, assuming that we are using appropriate branches:

d

dz

1

i
Log

[

iz +
(
1− z2

)1/2
]

=
1

i

1

iz + (1− z2)1/2

(

i− z

(1− z2)1/2

)

=
1

iz + (1− z2)1/2

(
1− z2

)1/2
+ iz

(1− z2)1/2
=

1

(1− z2)1/2
,
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in accord with what we know from real-variable calculus (except recall that here the square root means both
square roots, i.e., it has a sign ambiguity).

15. Regions; conformal mappings. We have mentioned that we are principally interested in
functions which are analytic in some region, rather than at a single point. We have however not defined
what kind of region we are interested in. We are interested in the first place in functions which are analytic
everywhere inside a so-called simple closed curve, i.e., a closed curve which does not intersect itself; such a
region is simply-connected in the sense in which that word is typically used in discussions of Green’s theorem,
namely, it does not have any holes.3 Later we shall also consider functions which are analytic on a set which
has a finite number of holes, i.e., whose boundary is a finite number of simple closed curves, which moreover
do not intersect each other. Whenever we speak of an analytic function, we are assuming that the function
is analytic throughout a region of this form.

We shall now introduce so-called conformal mappings. It will turn out that all analytic functions on
the complex plane are conformal mappings whenever they have nonzero derivative, but the definition of a
conformal mapping does not require any use of complex numbers. A map

f : R2 → R2

is said to be conformal at a point p when it preserves angles at that point; in other words, it γ1(t) and γ2(t)
are any two curves which intersect at p, which for convenience and without loss of generality we may take
to be t = 0 for both curves, then the angle between γ1(t) and γ2(t) at t = 0 is equal to the angle between
f(γ1(t)) and f(γ2(t)) at t = 0, in both magnitude and sign (i.e., we measure it in the same direction, either
clockwise or counterclockwise).4 (See figures 9a and 9b in Goursat for an illustration.) Note that, in general,
a map must be at least differentiable (in the sense of real functions on the plane!) for the angle of the image
curves to make sense. Some examples immediately come to mind.

EXAMPLES. 1. Since translations and rotations of the plane preserve distances, they also preserve angles,
and hence give conformal transformations.

2. So-called isotropic scalings of the plane, i.e., maps

(x, y) 7→ (ax, ay),

where a = 0, are also conformal maps. This will follow from our general result below.

The main application we shall make of conformal mappings is to find solutions of Laplace’s equation,
which we shall take up probably in the second half of the course. The main example of conformal maps for
us is given by the following result:

If f is analytic and f ′(z0) 6= 0, then f is conformal at z0.

This may be shown as follows. (Here we first give the derivation given in the lecture, and supplement
it to fill in a hole; we follow this with a slightly more concise demonstration.) For convenience we treat
complex numbers as though they were their corresponding points in the plane. Let γ1(t) and γ2(t) be two
smooth curves which satisfy γ1(0) = γ2(0) = z0. Then they have tangent vectors there

T1 = γ′
1(0), T2 = γ′

2(0),

and hence make an angle θ which satisfies

cos θ =
T1 •T2

|T1||T2|
,

3 For those who have seen something of general topology, the main point is that we are interested in
functions which are analytic on some connected, simply-connected open set.

4 For those of you who know something of modern differential geometry, the curves γ1(t) and γ2(t) here
are being used as proxies for tangent vectors.
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where • denotes the dot product. Now since f is analytic, it is in particular differentiable (in the real-variable
sense) as a map from R2 to R2, and thus the curves f ◦ γ1 and f ◦ γ2 are also smooth; moreover they have
tangent vectors

S1 = f ′(z0) · γ′
1(0), S2 = f ′(z0) · γ′

2(0),

where we treat γ1 and γ2 as though they were complex-valued, and · denotes multiplication of complex
numbers. (The foregoing is a simple extension of the chain rule.) Thus the angle between these image
curves, say θ′, satisfies

cos θ′ =
S1 • S2

|S1||S2|
.

Now recall (see the first example in §2, notes of May 5, above) that if z and w are any two complex numbers,
then the dot product of the vectors corresponding to z and w is equal to Re zw. Thus we may compute as
follows:

S1 • S2 = Re f ′(z0)T1f
′(z0)T2 = Re f ′(z0)f

′(z0)T1T2

= |f ′(z0)|2 ReT1T2 = |f ′(z0)|2 T1 ·T2.

Since |S1| can be computed in terms of a dot product, we see that

cos θ′ =
S1 • S2

|S1||S2|
=

|f ′(z0)|2 T1 ·T2

|f ′(z0)| |T1| |f ′(z0)| |T2|

=
T1 ·T2

|T1||T2|
= cos θ.

This shows that θ and θ′ have the same cosine. However this of course does not mean that they are equal.
(This point was not mentioned in the lecture.) To show that they are actually equal, we recall also that
if z and w are any two complex numbers, the cross product (more carefully, the k component of the cross
product) of z and w is equal to Im zw. Now recall from vector calculus that the cross product in this case is
also given by |z||w| sinφ, where φ is the angle between the vectors corresponding to z and w. The foregoing
calculation shows, replacing Re by Im everywhere, that we must have sin θ = sin θ′. Since two angles which
have the same sine and cosine must be equal up to some integer multiple of 2π, and this means for our
purposes that they are the same angle, this shows that f must be conformal at z0, as claimed.

A slightly more concise demonstration may be given as follows. (Those of you who are familiar with
derivatives considered as linear maps can skip straight to the appendix where an even more concise proof is
given.) Let t > 0 be small. Then the tangent vectors to γ1 and γ2 at t = 0, i.e., at z0, can be approximated
by

γ1(t)− z0
t

,
γ2(t)− z0

t
.

Similarly, the tangent vectors to f(γ1(t)) and f(γ2(t)) can be approximated by

f(γ1(t))− f(z0)

t
,

f(γ2(t))− f(z0)

t
.

Now for z near z0 we may write

f(z) = f(z0) + f ′(z0)(z − z0) + o(z − z0),

where o(z − z0) denotes a quantity which vanishes faster than z − z0 as the latter goes to zero; i.e.,

lim
z→z0

o(z − z0)

z − z0
= 0.

Thus we have
f(γk(t)) = f(z0) + f ′(z0)(γk(t)− z0) + o(γk(t)− z0),

so
f(γk(t)) − f(z0)

t
= f ′(z0)

γk(t)− z0
t

+
o(γk(t)− z0)

t
.
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Now in the limit t → 0 we have similarly γk(t) = γk(0) + γ′
k(0)t + o(t) = z0 + γ′

k(0)t+ o(t), so that in this
limit the last quantity on the right-hand side above vanishes and we find that the tangent vector to the
curves γk(t) are given by

f ′(z0)γ
′
k(0),

where as before the multiplication is to be considered as multiplication of complex numbers. Now suppose
that we have

γ′
k(0) = rke

iθk ,

and that
f ′(z0) = reiθ;

then the tangent vectors to the image curves are given by

f ′(z0)γ
′
k(0) = rrke

i(θk+θ);

in other words, the effect of an analytic map f on tangent vectors to smooth curves is to scale and rotate,
which clearly preserves angles. This shows that f is conformal at z0, as claimed.

Appendix I. Abstract derivation. Let us consider f as a map of the real plane. Then its derivative
f ′(z0) is a linear map from the plane to itself which satisfies

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|),

where here f ′(z0) is considered as a linear map and z − z0 as a vector, and the ‘product’ above is the
application of this linear map to this vector. Evidently, f ′(z0) may be considered to be multiplication by the
complex derivative also denoted f ′(z0). Now abstractly the derivative as a linear map takes tangent vectors
to tangent vectors; in other words, two tangent vectors T1 and T2 (say) at the point z0 are taken by the
map f to the vectors f ′(z0)T1 and f ′(z0)T2. By the discussion in the last few lines of the section above,
the angle between these vectors must be that between T1 and T2.

(I admit that this is a little bit hand-wavy. The reason for this is that the definition of ‘conformal’ given
above is somewhat informal. The argument just given can be made entirely rigorous if we define ‘preserves
angles at a point’ to mean that its derivative preserves angles as a map of tangent vectors, which is more or
less equivalent to the definition in terms of curves given above.)
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Summary:
• We continue to discuss conformal mappings and expand on a couple examples from Goursat.

16. Examples of conformal maps. (a) (See Goursat, §19, Example 2.) Consider the map on the
punctured plane R2\{(0, 0)} which is given in complex notation by

f(z) =
1

z
.

Since this function is analytic on the punctured plane, it must be conformal at every point other than the
origin. Let us consider how it behaves with respect to the unit circle. We have the following properties:

If |z| = 1 then |f(z)| =
∣
∣
∣
∣

1

z

∣
∣
∣
∣
=

1

|z| = 1.

If |z| > 1 then |f(z)| =
∣
∣
∣
∣

1

z

∣
∣
∣
∣
=

1

|z| < 1.

If |z| < 1 then |f(z)| =
∣
∣
∣
∣

1

z

∣
∣
∣
∣
=

1

|z| > 1.

This means that the map f takes the unit circle to itself, while it takes the region outside the unit circle to
the region inside the unit circle, and vice versa. See Fig. 1. It is worth noting that on the unit circle

O x

y

1

f−−−−−−−−−−−−→
O x

y

1

FIG. 1

f(z) =
1

z
= z.

Note though that z is not an analytic function in general! It does turn out to be (almost) conformal though
(it preserves magnitudes of angles but reverses their sense); and it can be shown (see §21 of Goursat, noting
that replacing Q by −Q is equivalent to taking the complex conjugate of f) that every sufficiently smooth
conformal map is either an analytic function or the conjugate of an analytic function (which is the same
thing as an analytic function of z, as is apparent if one thinks of a Taylor expansion: but that is a bit beyond
what we have technically covered so far).

(b) (See Goursat, §22, Example 2.) Let us now consider the function on the entire plane given in
complex notation by

f(x+ iy) = cos(x+ iy) = cosx cosh y − i sinx sinh y.

This function is analytic everywhere, and will be conformal everywhere that its derivative is nonzero. (We
pause for a moment to clarify a point which the author fumbled during lecture. The derivative of cos z is
− sin z, which means that cos z will be conformal at every point where sin z is nonzero. Now

sin(x + iy) = sinx cosh y + i cosx sinh y;

and for this to be zero, we see first of all that we must have sinx = 0 (since cosh y ≥ 1 for all real y), and
since this means that cosx 6= 0, we must have sinh y = 0, or y = 0. Thus the zeros of sin z over the complex
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plane are the same as those of sinx over the real line, i.e., nπ, n ∈ Z.) Thus f will be conformal at every
point inside the strip {x+ iy|0 < x < π, y > 0}. Let us consider how f maps straight lines within this strip.
Let us consider first a horizontal line, say y = y0 > 0. On such a line, f is equal to

f(x+ iy0) = cosx cosh y0 − i sinx sinh y0,

where x ∈ (0, π). Now this is just another way of writing the parametric curve

t 7→ (cosh y0 cos t,− sinh y0 sin t), t ∈ (0, π).

If we denote this curve by (x(t), y(t)) (where unfortunately here x(t) and y(t) are completely distinct from
the real and imaginary parts of z), then we have

(
x(t)

cosh y0

)2

+

(
y(t)

sinh y0

)2

= 1,

i.e., the curve must lie on an ellipse with major axis cosh y0 along the horizontal axis and minor axis sinh y0
along the vertical axis, and centred at the origin. Now since y0 > 0, sinh y0 > 0, so − sinh y0 < 0 and
y(t) < 0 for all t ∈ (0, π), while x(t) takes on all values from cosh y0 to − coshy0. Thus we obtain the lower
half of this ellipse.

Now let us consider a vertical line, say x = x0 ∈ (0, π). Working as before, we see that on this line

f(x0 + iy) = cosx0 cosh y − i sinx0 sinh y.

If x0 = π/2 then cosx0 = 0 and this is simply a parametrisation of the negative imaginary axis. Otherwise,
we again write

(x(t), y(t)) = (cosx0 cosh t,−i sinx0 sinh t), t ∈ (0, π)

and note that (this follows from the basic identity cosh2 x− sinh2 x = 1)
(

x(t)

cosx0

)2

−
(

y(t)

sinx0

)2

= 1,

which means that the curve lies on a hyperbola opening along the real axis with intercept ± cosx0 and with
asymptotes having slope ± tanx0. Now we note that y(t) < 0 for all t, while x(t) > 0 for t ∈ (0, π/2) and
x(t) < 0 for t ∈ (π/2, π); thus in the first case we have the lower right-hand portion of the hyperbola, while
in the second case we have the lower left-hand portion. See Fig. 2. Note especially how the blue and red
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FIG. 2

curves on the right intersect at right angles, exactly like those on the left.
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Summary:
• We outline a particular application of conformal maps.
• We then define and investigate integrals of complex functions over curves in the complex plane.

(Goursat, §§24, 25 – 26, 32.)

17. Application of conformal maps to harmonic functions. In fields as varied as electrostatics,
heat flow, and fluid mechanics (and probably others) one is often interested in solving problems of the
following form: we are given a particular region U in the plane1 with boundary curve C, and some particular
function g on the boundary curve C, and we wish to find a function P on U which satisfies

∆P = 0 on U, P |C = g.

This problem in full generality is a topic for a course in partial differential equations, but there are specific
cases which can be treated by using complex variable techniques to replace the region U by another one for
which the problem is more tractable. Let us see how this works. (Here we shall simply outline the idea; we
shall go over it in more detail later on in the course. Thus what follows is meant to be more of a conceptual
introduction than a careful exposition.) Suppose that we have another region U ′ with boundary curve C′

and a conformal map f : U ′ → U which maps C′ onto C and is also analytic with an analytic inverse
f−1 : U → U ′ (I accidentally forgot about this restriction in the lecture; there are probably ways of treating
the problem without it, but we shall leave a detailed discussion of the matter for another time). Then we
may consider instead the problem

∆P ′ = 0 on U ′, P ′|C′ = g ◦ f.

For a suitable choice of U ′ and f , this problem may be easier to solve than the original one. Suppose that
we are able to find a solution to this modified problem. Then we claim that P ′ ◦ f−1 is a solution to the
original problem. To see this, let z0 = x0 + iy0 ∈ U ′ be some particular point and define

Q′ =

∫ (x,y)

(x0,y0)

−∂P ′

∂y
dx+

∂P ′

∂x
dy,

i.e., the conjugate harmonic function to P ′; then the function

F (x+ iy) = P ′(x, y) + iQ′(x, y)

will be analytic, at least on any simply connected subset of U ′ containing (x0, y0). Since f
−1 is also analytic,

this means that F ◦ f−1 is also analytic, and hence that its real part

P ′ ◦ f−1

is harmonic.2 Further, on C

(
P ′ ◦ f−1

)∣
∣
C
= P ′|C′ ◦ f−1 = g ◦ f ◦ f−1 = g,

so that the boundary condition is satisfied as well. Thus P ′ ◦f−1 is indeed a solution to the original problem,
as claimed.

(In the lecture I actually showed the opposite implication, namely that if P is a solution to the original
problem, then P ◦ f is a solution to the modified problem. The argument is identical to that here, replacing
f−1 by f and P ′ by P as appropriate.)

1 While not strictly necessary, we can assume that U is simply connected below to avoid some technical
complications which are not important at the moment.

2 Note that we can afford to be vague about the region here since the property of being analytic and –
especially – harmonic is really a pointwise property; or if we want to be a bit more careful, it is a property
we only need to consider on small disks, which are always simply connected.

26



MAT334, 2020. I, §17 [May 28] Complex integration Nathan Carruth

Appendix I. Formal definition of simple connectedness. Informally, a region which is simply
connected is one which has no ‘holes’. As mentioned in lecture, if the region is given to us pictorially this
is about all we could go on to determine whether it is simply connected. More carefully, though, a region is
simply connected if any closed curve can be continuously shrunk to a point within the region. But what do
we mean by ‘continuously shrunk to a point within the region’?

The precise definition of simply connected, which is valid in any topological space, is as follows. A set
U is said to be simply connected if for any continuous closed curve γ : [0, 1] → U (i.e., γ is continuous and
satisfies γ(0) = γ(1)) there is a continuous map F : [0, 1]× [0, 1] → U satisfying the following conditions:

F (·, s) : [0, 1] → U is a closed curve in U for each s ∈ [0, 1]

F (t, 0) = γ(t) for all t ∈ [0, 1]

F (t, 1) = u0 for all t ∈ [0, 1]

where F (·, s) means the map t 7→ F (t, s), and u0 ∈ U is some point. If we unwrap this definition a bit,
what it means is that F (t, s) is a family of continuous, closed curves, where the curves are paremeterised by
t and the family by s, such that the first curve in the family (when s = 0) is the original curve γ and the
final ‘curve’ in the family (when s = 1) is a single point. More informally, F shows us specifically how to
continuously deform γ to a single point within the region.

(It is probably worth pointing out here that the definition of simply connected as meaning ‘without
holes’ only works in two dimensions. If we consider a ball, for example, and remove a single point, the
resulting set clearly has a whole, but it is also clearly possible to shrink any continuous curve to a point
regardless of the hole. (Think about it for a bit if it isn’t clear!) These ‘higher-dimensional’ holes lead to so-
called ‘higher homotopy groups’, or, more tractably, to homology theory – which I think actually originated
in the study of functions of a complex variable!)

18. Complex integration. We now enter into one of the core parts of the course, the notion of
contour integrals in the complex plane. We shall introduce these in the same way as done in Goursat (§25)
and then show how they may be computed by reducing to the line integrals one studies in multivariable
calculus.

Recall that in one-variable calculus we define the definite integral of a function f between points a and
b more or less as follows:

∫ b

a

f(x) dx = lim
∆xk→0

n∑

k=1

f(x∗
k)∆xk,

where ∆xk = xk − xk−1 and x∗
k ∈ [xk−1, xk].

3 Now when we defined derivatives of functions on the complex
plane, we were able to proceed by using essentially the same definition we used in the case of real-variable
calculus. Let us see whether the same thing can be done in this case. Thus, let a and b be two complex
numbers, and consider how we might adapt the limit definition above to this case. First of all we need to
determine what is meant by the intermediate points between a and b; evidently we need a set of values z1,
z2, · · ·, zn−1. Now in the real case there is no real point in doing anything except going directly from the
initial point to the final point; but in the complex plane there are many different paths which lead from a to
b, and from what we have seen so far it is possible that these different paths may lead somehow to different
results. Thus we evidently need to pick a path. Suppose that γ(t) is a smooth (continuous with continuous
derivative) path from a to b, and let z0 = a, z1, z2, · · ·, zn−1, zn = b be points along the curve ordered

3 More precisely, for those of you who know something of ǫ–δ definitions, the limit above can be defined
as follows: we say it is equal to L if for every ǫ > 0 there is a δ > 0 such that for every partition P =
{x0, x1, · · · , xn}, x0 = a < x1 < · · · < xn = b satisfying max{|∆xk| |k = 1, 2, · · · , n} < δ and any set
{x∗

k|k = 1, · · · , n} satisfying x∗
k ∈ [xk−1, xk], we have

∣
∣
∣
∣
∣

n∑

k=1

f(x∗
k)∆xk − L

∣
∣
∣
∣
∣
< ǫ.

(Here, of course, ∆xk = xk − xk−1.)

27



MAT334, 2020. I, §18 [May 28] First glimpse of the Cauchy integral theorem Nathan Carruth

by increasing parameter value. (Cf. Figure 12 in §25 of Goursat.) Then we define ∆zk = zk − zk−1, and
consider the sum

n∑

k=1

f(z∗k)∆zk

(where z∗k is some point along the curve between zk−1 and zk in parameter value). Now suppose that

f(x+ iy) = P (x, y) + iQ(x, y)

and write
z∗k = x∗

k + iy∗k, ∆zk = ∆xk + i∆yk;

then working out the above product, we have

n∑

k=1

f(z∗k)∆zk =

n∑

k=1

[P (x∗
k, y

∗
k) + iQ(x∗

k, y
∗
k)][∆xk + i∆yk]

=

n∑

k=1

P (x∗
k, y

∗
k)∆xk −Q(x∗

k, y
∗
k)∆yk + i[P (x∗

k, y
∗
k)∆yk +Q(x∗

k, y
∗
k)∆xk]

=
n∑

k=1

P (x∗
k, y

∗
k)∆xk −Q(x∗

k, y
∗
k)∆yk + i

n∑

k=1

P (x∗
k, y

∗
k)∆yk +Q(x∗

k, y
∗
k)∆xk.

Now we wish to consider the limit of the above sum as ∆zk → 0 (in the same sense as elaborated in the
footnote above). Since ∆zk = ∆xk + i∆yk, this is the same as the limit as ∆xk and ∆yk go to zero
independently. Thus we may write

lim
∆zk→0

n∑

k=1

f(z∗k)∆zk = lim
(∆xk,∆yk)→(0,0)

n∑

k=1

P (x∗
k, y

∗
k)∆xk −Q(x∗

k, y
∗
k)∆yk

+ i

n∑

k=1

P (x∗
k, y

∗
k)∆yk +Q(x∗

k, y
∗
k)∆xk

,

and we recognise these limits as giving ordinary line integrals of the form we have studied previously. In
particular, the above limit becomes

∫

γ

P (x, y) dx−
∫

γ

Q(x, y) dy + i

[∫

γ

P (x, y) dy +

∫

γ

Q(x, y) dx

]

;

assuming, of course, that all of these integrals exist (as they will if P and Q are both continuous, for example).
We take this as our definition and write

∫

γ

f(z) dz =

∫

γ

P (x, y) dx −
∫

γ

Q(x, y) dy + i

[∫

γ

P (x, y) dy +

∫

γ

Q(x, y) dx

]

.

Now suppose that γ is parameterised as γ(t) = (x(t), y(t)), t ∈ [t0, t1]; then the above can be written

∫ t1

t0

P (x(t), y(t))x′(t)−Q(x(t), y(t))y′(t) + i[P (x(t), y(t))y′(t) +Q(x(t), y(t))x′(t)] dt.

Note that this is exactly what we would obtain if we were to replace dz in the integral
∫

γ f(z) dz with

x′(t)dt+ iy′(t)dt and integrate from t0 to t1, i.e., if we were to pretend that the complex integral were simply
another line integral with element x′(t)dt+ iy′(t)dt. While this is not in itself a proof of anything, of course,

28



MAT334, 2020. I, §18 [May 28] First glimpse of the Cauchy integral theorem Nathan Carruth

it is useful for remembering the above formula; and it also suggests another mode of calculation: suppose
that the curve γ is written in complex form as z(t) = x(t) + iy(t); then the integral

∫

γ f(z) dz is equal to

∫ t1

t0

f(x(t) + iy(t))(x′(t) + iy′(t)) dt =

∫ t1

t0

f(z(t))z′(t) dt,

where we are useful to use complex techniques to determine z′(t) and f(z(t)). In other words, this formula
does not require us to split f into its real and imaginary parts, which is not convenient in many cases (such
as when f is most usefully represented in terms of polar coordinates, for example).

The integral
∫

γ f(z) dz is called a contour integral.

19. First glimpse of the Cauchy integral theorem. Let us consider what happens when
we integrate an analytic function over a closed curve. More specifically, suppose that we have a function
f(x + iy) = P (x, y) + iQ(x, y) which is analytic over a simply connected region U which has boundary
curve C, and assume that C is oriented with respect to U as required by Green’s theorem. Let us assume
furthermore that the real and imaginary parts of f , namely P and Q, have continuous first-order partial
derivatives. Then by applying Green’s theorem and the Cauchy-Riemann equations, we have

∫

C

f(z) dz =

∫

C

P (x, y) dx−Q(x, y) dy + i

∫

C

Q(x, y) dx+ P (x, y) dy

=

∫

U

∂

∂x
[−Q(x, y)]− ∂

∂y
[P (x, y)] dA+

∫

U

∂

∂x
[P (x, y)]− ∂

∂y
[Q(x, y)] dA

=

∫

U

−∂P

∂y
− ∂Q

∂x
dA+

∫

U

∂P

∂x
− ∂Q

∂y
dA = 0,

since the Cauchy-Riemann equations give

∂P

∂y
= −∂Q

∂x
,

∂P

∂x
=

∂Q

∂y
.

Thus under the assumptions above, the contour integral of an analytic function over a closed curve is always
0. This is a central result in complex variable theory.

Unfortunately, the above demonstration, since it requires that the partial derivatives of the real and
imaginary parts of f be continuous, is not sufficient for our purposes, since we actually want to use this
result to prove continuity of those derivatives. Thus we shall soon see another proof of this result from first
principles which does not make use of this assumption.
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Summary:
• We fill in some holes in the previous exposition.
• We then proceed to give a proof of the Cauchy integral theorem which does not require continuity of
the partial derivatives of the real and imaginary parts of the function.

• We show that analytic functions have antiderivatives, at least on simply-connected regions, which are
also analytic, and discuss a connection with branch cuts.

• Finally, we discuss an extension of the Cauchy integral theorem to regions which are not simply con-
nected.

(Goursat, §§28 – 31)

20. A few points from previous material. Recall that we have shown that, if m is a positive
integer, then the power rule for differentiation on the real line applies also to derivatives in the complex
plane:

d

dz
zm = mzm−1.

The same result holds true for any complex exponent m, as long as we interpret the left- and right-hand
sides appropriately. To see this, recall that if m is any complex number, we define the exponential zm by

zm = emLog z ,

where Log z represents the full multivalued complex logarithm of the complex number z. As we discussed
when we first gave this definition, the right-hand side is multivalued since Log is. Suppose now that we take
a particular branch of Log, say by requiring the angle to lie between (θ0, θ0 +2π) for some θ0 ∈ R.1 For this
particular branch, as in general,

d

dz
Log z =

1

z
,

and by the chain rule we have

d

dz
zm =

d

dz
emLog z = emLog z d

dz
mLog z = memLogz 1

z
= memLog z−Log z = me(m−1)Log z = mzm−1,

where zm−1 is taken using the same branch of Log as zm.2 Thus we do indeed have

d

dz
zm = mzm−1,

as long as the powers on both sides are computed using the same branch of the logarithm.
Since the functions z 7→ zm, where m is any nonzero integer, are all single-valued, the result above

holds without any conditions for (nonzero) integer exponents. It holds for m = 0 if we define z0 to be 1
everywhere, including at 0. (Recall that 00 is not defined.)

We now wish to point out another version of the chain rule involving complex numbers. Recall that, if
f and g are two complex-valued functions of a complex variable, both of which are analytic, then f ◦ g is
also analytic where it is defined, and we have

d

dz
(f ◦ g) = f ′(g(z))g′(z).

Now suppose that f is an analytic function of a complex variable, and that γ : [a, b] → C is a smooth curve.
Then we have also

d

dt
(f ◦ γ) = f ′(γ(t))γ′(t).

1 It is worth noting here that, although we specify a branch cut for Log and for the root functions by
specifying an interval for the angle θ, a branch cut is a cut of the entire plane, not just the unit circle.

2 Note that it is always valid to write z = eLog z and 1
z = e−Log z, regardless of the branch of Log we

are using (or even if we are not taking a branch at all). The first follows from the definition of Log as the
inverse function of exp, and the second follows from the first by laws of exponents.
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This can be shown in the same way that we showed the original chain rule above; briefly, we may write

f(γ(t+ h)) = f(γ(t) + γ′(t)h+ o(h)) = f(γ(t)) + f ′(γ(t))(γ′(t)h+ o(h)) + o(γ′(t)h+ o(h)),

so if we are willing to accept that o(γ′(t)h+ o(h)) is also o(h), this becomes

f(γ(t+ h)) = f(γ(t)) + f ′(γ(t))γ′(t)h+ o(h),

from which the result follows by computing the difference quotient and taking a limit. (Here, again, by o(h)
we mean any function – of a real variable in this case – which satisfies limh→0 o(h)/h = 0.)

(It is worth noting the difference between these two chain rules. In the first one, both f and g were
functions of a complex variable, while in the second one f is a function of a complex variable but γ is a
function only of a real variable. We have been told many times – and will shortly begin to see for ourselves!
– that the requirement that a function of a complex variable have a derivative is far more restrictive than
the requirement that a function of a real variable have a derivative: note that the difference is between the
domains, and not the ranges. In other words, the difference is between a function defined on the complex
numbers, and a function defined on the real numbers, and not a function taking values in the complex
numbers and a function taking values in the real numbers.)

21. The Cauchy integral theorem, full proof. Recall that in section 19 above we showed that,
if f is an analytic function on a simply-connected region, and C is any simple (non self-intersecting) closed
curve contained in that region, then if f has continuous first-order partial derivatives on the region,

∫

C

f(z) dz = 0.

We will now show that this result holds without the assumption of continuous first-order partial derivatives,
which we will actually be able ultimately (next week) to derive as a consequence. Our treatment follows
very closely that given in Goursat, §28.

Thus, let f be an analytic function on some region, and let C be any simple closed curve in that region
such that f is analytic everywhere on the interior of C. Let U denote the region bounded by C, which
is necessarily simply-connected; then by assumption f is analytic on U and on C. Now suppose that we
subdivide U into squares and partial squares by drawing a square grid across it (see Figure 13 in Goursat
for an example of what we mean by this). We let γk denote the boundary curve – oriented counterclockwise
– of the kth full square, and γ′

j denote the boundary curve – again oriented counterclockwise – of the jth
partial square. Then we claim that

∑

k

∫

γk

f(z) dz +
∑

j

∫

γ′

j

f(z) dz =

∫

C

f(z) dz.

This is clear after a bit of thought, since the sides of the grid squares appear exactly twice, and in opposite
directions, in the sum of integrals on the left, and hence cancel, meaning that we are left only with the
integral around the boundary curve, i.e., the right-hand side.

We now claim that each of the integrals in the above sums is small. To see this, note that since the
functions z 7→ a and z 7→ a(z − z0) are analytic with continuous partial derivatives, the result from section
19 can be applied to show that around any closed curve they integrate to zero. (Another way of showing
this, without applying Green’s theorem – which we did in section 19 – is outlined in section 28 of Goursat.)
Now consider

∫

γk
f(z) dz, and let z0 be some point either inside or on γk. Then since f is analytic on U , we

can write, for any point z on γk,

f(z) = f(z0) + f ′(z0)(z − z0) + ǫ(z − z0)(z − z0),

where ǫ(z − z0) → 0 as z → z − z0. (In o notation, ǫ(z − z0) = o(z − z0)/(z − z0), but we stick with this
notation here for consistency with the lecture.) Now the functions z 7→ az and z 7→ a(z−z1), where a, z1 ∈ C
are any two constant complex numbers, are both analytic with continuous first-order partials (this is entirely
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trivial!); thus the result from Section 19 shows that both integrate to zero around any simple closed curve.
Hence we may write

∫

γk

f(z) dz =

∫

γk

f(z0) + f ′(z0)(z − z0) + ǫ(z − z0)(z − z0) dz =

∫

γk

ǫ(z − z0)(z − z0) dz,

and similarly, letting z′0 denote some point within or on γ′
j , and ǫ′(z − z′0) the corresponding function

analogous to ǫ(z − z0), ∫

γ′

j

f(z) dz =

∫

γ′

j

ǫ′(z − z′0)(z − z′0) dz.

Now recall that, if we have a curve γ of length ℓ and an analytic function f which is bounded by M on γ,
then we have the bound ∣

∣
∣
∣

∫

γ

f(z) dz

∣
∣
∣
∣
≤ ℓM.

Let us apply this to the two integrals above. Suppose that ǫ(z − z0) ≤ η on γk, and that γk is a square with
side lengths ℓk; then the total length of γk is 4ℓk, and moreover the function z − z0 on γk is bounded by
ℓk
√
2 (since this is the length of a diagonal of γk and that is the farthest apart any two points can be on a

square). Thus we may write

∣
∣
∣
∣

∫

γk

f(z) dz

∣
∣
∣
∣
≤ 4ℓk · ηℓk

√
2 = 4

√
2ℓ2kη = 4

√
2Akη,

where Ak = ℓ2k is the area enclosed by γk. Similarly, suppose that ǫ′(z − z′0) is bounded by some number η′

on γ′
j . Now γ′

j consists of parts of four sides of a square, together with some portion of C; thus, if we let ℓ′j
denote its side length and λj the length of that portion of C, then the length of γ′

j is bounded by 4ℓ′j + λj .
(This may be a very bad upper bound, since we may only have a small portion of the square sides, but the
point is that it is an upper bound, and as we shall see later, it is a sufficiently good upper bound.) Now
because we have decomposed the region U along a square grid, the region enclosed by γ′

j is a portion of a
square, i.e., it is a region entirely contained in one of these squares; thus as before the function z − z′0 on γ′

j

is bounded by ℓ′j
√
2 and we may write

∣
∣
∣
∣
∣

∫

γ′

j

f(z) dz

∣
∣
∣
∣
∣
≤ (4ℓ′j + λj) · η′ℓ′j

√
2 = (4A′

j + ℓ′jλj)
√
2η′.

Now we come to a technical point which is addressed in §29 of Goursat but which we shall just touch on
without giving a formal proof. We know that as z → z0, ǫ(z − z0) → 0, and similarly that ǫ′(z − z′0) → 0
as z → z′0. Similar relations will be true in all of the other squares and partial squares into which we have
subdivided U .3 This means that, by taking each individual square small, we can make the quantities η and
η′ small. We claim that by taking the entire grid arbitrarily fine, i.e., to have squares and partial squares
which are arbitrarily small, all of the functions ǫ(z− z0) and ǫ′(z− z0), for all indices k and j (respectively),
can simultaneously be made arbitrarily small. This does not automatically follow from the foregoing, but
as it does seem reasonable, and the proof is slightly technical, we shall assume its truth and see how it can
be used to derive the result. (As mentioned, an explanation of this result is given in §29 of Goursat for
those who are interested.) Thus we assume that, for any η0 > 0, by taking the grid sufficiently fine, we may
assume that for all k and j, we may take η, η′ < η0. Now consider such a sufficiently fine grid, and let L be
the side length of the squares in the grid; then we may write

∣
∣
∣
∣
∣

∑

k

∫

γk

f(z) dz

∣
∣
∣
∣
∣
≤
∑

k

∣
∣
∣
∣

∫

γk

f(z) dz

∣
∣
∣
∣
≤ 4

√
2η0

∑

k

Ak ≤ 4
√
2η0A,

3 Note that the points z0 and z′0 actually depend on the indices k and j, respectively, but we have chosen
not to indicate this in our notation just for simplicity.
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where A denotes the area of some circle completely containing U , and such that all squares in the grid which
intersect U are completely contained in that circle; similarly, letting λ denote the length of the curve C,

∣
∣
∣
∣
∣
∣

∑

j

∫

γ′

j

f(z) dz

∣
∣
∣
∣
∣
∣

≤
∑

j

∣
∣
∣
∣
∣

∫

γ′

j

f(z) dz

∣
∣
∣
∣
∣
≤

√
2



4
∑

j

A′
j + L

∑

j

λj



 η0

≤
√
2(4A+ Lλ)η0.

Thus, finally, we have
∣
∣
∣
∣

∫

C

f(z) dz

∣
∣
∣
∣
≤ (4

√
2A+ 4

√
2A+

√
2Lλ)η0 = (8

√
2A+ L

√
2λ)η0,

where η0 is an arbitrary positive number. Now if we take any grid finer than the one we just considered,
clearly L will decrease, while we can use the same A as before; in other words, if η′0 < η0 and we consider
any grid fine enough to have η, η′ < η′0, we may still write

∣
∣
∣
∣

∫

C

f(z) dz

∣
∣
∣
∣
≤ (8

√
2A+ L

√
2λ)η′0,

where A and L have the same values as they did before. By taking η′0 arbitrarily small, we see that the
left-hand side must be arbitrarily small; since it does not depend on the grid, or η′0, it must actually be zero.
This proves that ∫

C

f(z) dz = 0,

as claimed.
In the above we have assumed that the function f was defined and analytic on a larger region completely

containing the curve C and its interior. It turns out that one only need assume f to be analytic on the
interior of C and continuous up to the boundary; a brief discussion of this is given in the footnote in Goursat,
pp. 48 – 49 (of the typescript; p. 71 of the original).

22. Antiderivatives and branch cuts. Recall that in multivariable calculus we learned that a
vector field F which is conservative, in the sense that its integral around any closed curve is zero, has a
potential function, i.e., that there is a function f such that F = ∇f . Moreover, f can be constructed as

f(x, y) =

∫ (x,y)

(x0,y0)

F · dr,

where (x0, y0) is any fixed point, and the line integral does not depend on the choice of curve from (x0, y0)
to (x, y) since F is conservative. We now show a similar result in the case of analytic functions of a complex
variable, though as usual the import is quite a bit deeper.

Thus suppose that f is a function analytic on a simply-connected region, pick some point z0 in that
region, and define a function

F (z) =

∫ z

z0

f(z′) dz′.

Let us see in what sense this formula defines a function. Recall that a function consists of three things: a
domain, a range, and a rule giving an element of the range for any element of the domain. Here the domain
can clearly be taken to be the simply-connected region on which f is analytic, and as usual we don’t really
worry about the range (F will certainly be in C, at any rate). Thus we only need to consider in what sense
the function above defines a rule which gives a complex number given any complex number in its domain.
In order to evaluate the integral, we need to choose a particular path γ from z0 to z. Suppose that γ1 and
γ2 are two distinct paths from z0 to z. If γ1 and γ2 have no intersection points other than their endpoints z0
and z, then by running γ1 forwards and γ2 backwards we obtain a simple closed curve; if we call it γ, then
we have ∫

γ

f(z) dz =

∫

γ1

f(z) dz −
∫

γ2

f(z) dz;
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but by the Cauchy integral theorem, the left-hand side is zero, so that
∫

γ1
f(z) dz =

∫

γ2
f(z) dz and the

integral evidently does not depend on the choice of curve in this case. It can be shown that this holds true
even if the two curves have other intersection points; thus in the situation we are considering here, F (z)
depends only on the endpoints z and z0, and not on the curve chosen from z0 to z. It therefore does indeed
give a single-valued function on the region.

Let us see whether we can compute its derivative. Thus we consider the quotient [F (z + h)− F (z)]/h.
Now by choosing the curve used to calculate F (z + h) so that it passes through z, we may write

F (z + h)− F (z)

h
=

1

h

∫ z+h

z

f(z′) dz′.

Now we note that
∫ z+h

z
dz′ = h, just as in elementary calculus on the real line (this can be shown by

parameterising the line from z to z + h, for example); thus this last expression is equal to

1

h

∫ z+h

z

f(z′)− f(z) dz′.

But now if h is very small, f(z′)− f(z) will be very small for all points on the straight line from z to z + h,
which means that also |f(z′)− f(z)| will also be very small there; if η is any upper bound on this quantity,
then we may write ∣

∣
∣
∣
∣

1

h

∫ z+h

z

f(z′)− f(z) dz′

∣
∣
∣
∣
∣
≤ 1

|h| |h|η = η,

which means that by taking h sufficiently small, the above quantity must be less than η. But if we unravel
everything, this means that the limit

lim
h→0

F (z + h)− F (z)

h
− f(z)

must be zero, which means that F is analytic and F ′(z) = f(z), as we might have expected.
It is worth noting that, if z1 and z2 are any two complex numbers in the region above, then by taking

the curve from z0 to z2 to pass through z1, we may write

∫ z2

z1

f(z′) dz′ =

∫ z2

z0

f(z′) dz′ −
∫ z1

z0

f(z′) dz′ = F (z2)− F (z1),

which shows that the fundamental theorem of calculus is true in this case as well.
Let us now consider what could have gone wrong if the region on which f was known to be analytic

had not been simply connected. For the kinds of regions we are interested in here (essentially, open sets in
the plane), the notion of ‘simply connected’ is a global notion, in the sense that it is in general a property of
the entire region, not just some portion of the region. Alternatively, any region is locally simply connected,
since if we consider any point in the region, there is certainly a small disk around that point contained in
the region, and that disk will be simply connected. On such a disk, the above logic goes through, and thus
we see that, at least near any given point, we can still construct an antiderivative of f in exactly the same
fashion as above. What goes wrong is when we try to push this construction further away from the point.
Thus suppose for example that f is analytic everywhere except at some point ζ0, and let z0 6= ζ0; then near
z0 the function

F (z) =

∫ z

z0

f(z′) dz′

will be well-defined and independent of the curve connecting z0 and z, and will give an antiderivative of f .
But now consider trying to determine this function everywhere on some circle starting at z0 which encloses
the point ζ0. At z0 we have F (z0) = 0 by definition. But when we traverse this circle around ζ0, as we
come back close to z0, F (z) may not be small, since there is no guarantee that the integral around the entire
curve will vanish. This means that the limit of F (z) may not equal 0 as z → z0 along this direction, and
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hence that it may not be possible to find a single-valued continuous antiderivative of f everywhere on the
region. This is, in fact, a generalisation of what we have seen goes wrong when we consider the logarithm:
since d

dzLog z = 1
z , Log z is an antiderivative of 1

z , and as we try to take its value along some closed curve
containing the origin, we know that we run into problems of discontinuity or multivaluedness exactly like
those just discussed. One solution to this problem in the general case is to use the solution we used for the
logarithm, and take a branch cut starting at ζ0 and going to infinity; the resulting region will be simply
connected, and thus on it we may define a single-valued, continuous antiderivative using the above formula.

The notions above of starting out with an analytic function only defined on a small disk and attempting
to extend it further are related to notions of analytic continuation which we shall discuss later on in the
course.

23. An extension of Cauchy’s integral theorem to non-simply connected regions. It turns
out that there is a way of extending Cauchy’s integral theorem to non-simply connected regions, in quite
the same way one extends Green’s theorem to such regions, which will be important to our derivation of the
Cauchy integral formula and is also noteworthy in its own right. Suppose for definiteness that a function f
is analytic everywhere on a region except at two holes (these could be two isolated points, or larger holes),
and consider

∫

C
f(z) dz, where C is some simple closed curve in this region. As long as C does not enclose

either of the holes, this integral will still vanish by the Cauchy integral theorem. Now if C contains just one
of the holes, we may shrink it down to either the boundary curve of the hole (if the hole is itself a region)
or to an arbitrarily small circle around the hole (if the hole is a point), and the integral of f over this new
curve, call it C′, will be equal to that of f over C: to see this, think of taking a point on C and joining it
to some point on C′ by a straight line; if we break this straight line open slightly, and pull the two edges
apart, we will get a simple closed curve which does not enclose any singularities of f , and the integral over
this curve will therefore vanish; but in the limit as the two lines come together, the integral over this curve
is just ∫

C

f(z′) dz′ −
∫

C′

f(z′) dz′,

assuming that we orient both C and C′ counterclockwise. Thus these two integrals must be equal, as claimed.
In the case that C is a curve enclosing both holes, we may do something similar except that we will find

∫

C

f(z′) dz′ =

∫

C′

1

f(z′) dz′ +

∫

C′

2

f(z′) dz′,

where C′
1 and C′

2 are curves enclosing the two holes, as described above. Here we are still assuming that all
three curves are oriented counterclockwise. If we instead orient C′

1 and C′
2 clockwise, and call the resulting

curves C1 and C2, then the above result becomes

∫

C

f(z′) dz′ +

∫

C1

f(z′) dz′ +

∫

C2

f(z′) dz′ = 0,

i.e., the integral of f is still zero as long as we include curves around the singularities of f as well.
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Summary:
• We derive the Cauchy integral formula from the Cauchy integral theorem for non-simply connected
regions.

• We then proceed to show how it may be applied to derive Taylor and Laurent series expansions, and
give a simple example.

(Goursat, §§33, 35, 37.)
24. Cauchy integral formula. Suppose that a function f is analytic everywhere inside a simple

closed curve C, and continuous on C. Then from our comment at the end of §21 above it follows that the
Cauchy integral theorem applies and we have

∫

C

f(z) dz = 0.

Now let us fix some point z0 in the interior of the curve C. Then the function

f(z)

z − z0

is clearly analytic everywhere inside C except at the point z0. If we let C′ be a small circle centred at z0
and contained in the interior of C, say with radius r > 0, oriented counterclockwise, then by the discussion
and result in §23 above we have

∫

C

f(z)

z − z0
dz =

∫

C′

f(z)

z − z0
dz;

in other words, we are able to replace the (fairly arbitrary and possibly very complicated) curve C by the
(presumably much simpler) curve C′. Now we can make C′ as small as we like, and the above result will
still hold, since z = z0 is the only point inside C at which the integrand f(z)/(z − z0) is not analytic. Now
f is analytic at z0, so near z0 we can write as we have before

f(z) = f(z0) + f ′(z0)(z − z0) + ǫ(z − z0)(z − z0),

where ǫ(z − z0) → 0 as z → z0. Thus we may write
∫

C′

f(z)

z − z0
dz =

∫

C′

f(z)− f(z0)

z − z0
+

f(z0)

z − z0
dz

=

∫

C′

f ′(z0) + ǫ(z − z0) +
f(z0)

z − z0
dz. (1)

The integral of f ′(z0) over C′ is clearly zero since f ′(z0) is a constant; we shall show in a moment that the
integral of ǫ(z − z0) over C

′ must be zero also. Thus we consider the integral
∫

C′

f(z0)

z − z0
dz.

Now C′ is a circle of radius r centred at z0, and can be parameterised as

z(t) = z0 + reit, t ∈ [0, 2π],

whence the integral above becomes1

∫ 2π

0

f(z0)

reit
rieit dt =

∫ 2π

0

if(z0) = 2πif(z0).

1 Note that this is not really just a ‘substitution’ as used in elementary calculus; most obviously, substi-
tution in elementary calculus was only shown for integrals of functions of a real variable, and here we are
dealing with functions of a complex variable. More substantively, though, the process by which we reduce a
contour integral to a definite integral in terms of a parameterisation of the curve follows from the definition
of the contour integral as we showed above. The formal similarity is however obvious and worth noting as
an aid to memory, though it should be borne in mind that the two processes are not identical.
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Note that this does not depend on the radius r. Now, finally, consider the integral
∫

C′

ǫ(z − z0) dz.

To evaluate it, note that since ǫ(z − z0) → 0 as z → z0, by taking r sufficiently small we may assume that
|ǫ(z − z0)| < 1 on C′; thus the absolute value of the above integral satisfies

∣
∣
∣
∣

∫

C′

ǫ(z − z0) dz

∣
∣
∣
∣
≤ 2πr;

thus if we take the limit as r → 0 this integral must vanish. Now if we investigate equation (1), we find that
∫

C′
ǫ(z − z0) dz is the only term in the whole equation which could depend on r; thus it can’t depend on r

either, so since its limit as r → 0 must vanish, it must actually be zero for all r (all r sufficiently small that
C′ lies entirely inside C, anyway!). Putting all this together, we obtain finally

∫

C

f(z)

z − z0
dz = 2πif(z0),

or

f(z0) =
1

2πi

∫

C

f(z)

z − z0
dz. (2)

This is called the Cauchy integral formula. Thus the Cauchy integral theorem tells us that the integral of
an analytic function around a closed curve is 0, while the Cauchy integral formula gives us a formula for
calculating the value of an analytic function inside some curve in terms of an integral around that curve.

Let us expand on this last point for a bit. In equation (2), z0 is any point inside the curve C. Note
though that the right-hand side of the equation depends only on the values of f on the curve C! In other
words, what we have here is a formula which will give us the value of a function at any point inside a curve,
given only its values on that curve. In the one-variable case, this would be equivalent to saying that the
values of a function at the endpoints of an interval determine the function everywhere inside the integral,
a claim so patently false as to be silly. For those of you who have seen some partial differential equations,
this property should be reminiscent of the solution to boundary-value problems, particularly for Laplace’s
equation: there, in fact, if one has a Green’s function, one can actually produce an integral formula quite
reminiscent of (3) for the value of the solution inside a region given only its values on the boundary of the
region.2

Let us rewrite equation (3) as

f(z) =
1

2πi

∫

C

f(z′)

z′ − z
dz′, (3′)

to emphasise that what we have on the left-hand side is actually a full function rather than a single value.
Now it can be shown (see Goursat, §33) that we can differentiate the right-hand side by taking the derivative
under the integral sign. In other words, since the point z in (3’) must lie within C, it cannot lie on C, so
that the quantity z′ in the integrand is never equal to z and we may therefore write for every z′ on C

d

dz

1

z′ − z
=

1

(z′ − z)2
,

by the power rule and chain rule for differentiating functions of a complex variable. (Note that, while in
the integrand we view 1/(z′ − z) as a function of z′, with z fixed, here we view it as a function of z with z′

fixed.) Now assuming that we can differentiate under the integral sign, we may write

f ′(z) =
d

dz

1

2πi

∫

C

f(z′)

z′ − z
dz′ =

1

2πi

∫

C

f(z′)

(z′ − z)2
dz′.

2 Note that there are some connections between these last two sentences. A harmonic function of a single
variable would be an f which satisfied the equation f ′′ = 0; the only solutions to this equation are functions
f(x) = ax + b, where a and b are constants – and a little thought shows that these functions actually do
satisfy the property just stated: in other words, they are determined by their values on the endpoints of any
interval! The class of harmonic functions on the line, though, is too small to be very interesting.
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Assuming that we may again differentiate under the integral sign, we see that the right-hand side also has
a derivative and in fact, since

d

dz

1

(z′ − z)2
=

2

(z′ − z)3
,

this derivative is
d

dz

1

2πi

∫

C

f(z′)

(z′ − z)2
dz′ =

1

2πi

∫

C

2f(z′)

(z′ − z)3
dz′.

Continuing in the same way, then, we may evidently write

dn

dzn
1

2πi

∫

C

f(z′)

z′ − z
dz′ =

1

2πi

∫

C

n!f(z′)

(z′ − z)n+1
dz′.

Since the integral we are differentiating above is equal to f(z), this shows that f(z) has arbitrarily many
derivatives, as we have often claimed and never actually proved until now. Note that the only assumption
we needed to make was that f be analytic on a certain region; we did not need to assume that the derivative
of f was continuous, or that the real and imaginary parts of f had continuous partial derivatives. These
results now follow as a consequence, since the derivative of f must itself have a derivative, and hence must
be analytic, hence continuous, showing that the real and imaginary parts of f do indeed have continuous
partial derivatives.

To sum up, then, we have, for any nonnegative integer n, the Cauchy integral formula

f (n)(z) =
1

2πi

∫

C

n!f(z′)

(z′ − z)n+1
dz′.

Let us give a couple examples.

EXAMPLES. If f(z) = a is some constant, then we have

a = f(z) =
1

2πi

∫

C

a

z′ − z
dz′,

i.e., that if z is any point inside the simple closed curve C, then
∫

C
1

z′−z dz
′ = 2πi; this is a result worth

remembering by itself. Now since f is constant, we must have f ′(z) = 0, and hence f (n)(z) = 0 for all n ≥ 1;
the above formula then gives

0 = f (n)(z) =
1

2πi

∫

C

a

(z′ − z)n+1
dz′,

which gives ∫

C

1

(z′ − z)n+1
dz′ = 0

whenever z′ is inside the simple closed curve C and n ≥ 1. Note that this does not follow from the Cauchy
integral theorem since the integrand here is not analytic within the curve C. Thus we have an extension of
the Cauchy integral theorem in this case. Again, this result is worth remembering all by itself.

25. Taylor series. Now that we know that any analytic function must have arbitrarymany derivatives,
we know that we can formally write out its Taylor expansion

∞∑

n=0

1

n!
f (n)(a)(z − a)n, (4)

where a is any point in the region on which f is analytic. The existence of the derivatives of f , though, does
not prove that this series actually converges to f anywhere except at z = a (where it does trivially since
by convention the series above is simply f(a) when z = a). Here we shall derive the Taylor expansion by a
different method, namely as an application of the Cauchy integral formula. Our exposition closely follows
that of Goursat, §35.
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Since the series in (4), if it converges anywhere except at z = a, must converge on a disk centred at a,
let us take our curve C to be a circle of radius R centred at a. Now for any z inside C we have the Cauchy
integral formula for f :

f(z) =
1

2πi

∫

C

f(z′)

z′ − z
dz′.

We shall show how to expand 1
z′−z in a power series. We have

1

z′ − z
=

1

(z′ − a)− (z − a)
=

1

z′ − a

1

1− z−a
z′−a

; (5)

factoring out z′ − a like this is legitimate since here we are only concerned with the expression 1/(z′ − z)
when z′ is a point on the curve C, and the point a is inside the curve. In fact, in this case, since the curve
C is a circle of radius R centred at a, we actually have |z′ − a| = R. Suppose that |z − a| = r; since z also
lies inside C, we must have r < R. Now we would like to expand the second term in (5) above in a series.
We shall augment our treatment in the lecture by providing a careful proof. (Our treatment in the lecture
corresponded to taking N → ∞ immediately and dropping the remainder terms, namely those terms coming
from wN+1 below.) Recall the geometric series

N∑

n=0

wn =
1− wN+1

1− w
,

which is valid for any complex number w 6= 1;3 from this we have

1

1− w
=

N∑

n=0

wn +
wN+1

1− w
.

In our case, this gives from (5)

1

z′ − z
=

1

z′ − a

[
N∑

n=0

(
z − a

z′ − a

)n

+
1

1− z−a
z′−a

(
z − a

z′ − a

)N+1
]

=

N∑

n=0

(z − a)n

(z′ − a)n+1
+

1

z′ − z

(
z − a

z′ − a

)N+1

.

Substituting this back in to (4), we see that

f(z) =
1

2πi

∫

C

N∑

n=0

(z − a)n
f(z′)

(z′ − a)n+1
+

f(z′)

z′ − z

(
z − a

z′ − a

)N+1

dz′

=
1

2πi

[
N∑

n=0

(z − a)n
∫

C

f(z′)

(z′ − a)n+1
dz′
]

+
1

2πi

∫

C

f(z′)

z′ − z

(
z − a

z′ − a

)N+1

dz′. (6)

Let us consider the last term above. Since f is continuous on C, it must be bounded on C; let M > 0 be
such that |f(z′)| < M when z′ is on the curve C. Now since |z′ − a| = R and |z − a| = r < R, we see that
|z′ − z| ≥ R− r (this is just the triangle inequality |z′ − a| ≤ |z′ − z|+ |z − a|); thus

∣
∣
∣
∣

1

z′ − z

∣
∣
∣
∣
=

1

|z′ − z| ≤
1

R− r
.

3 In fact, this formula is valid in any ring as long as 1 − w is invertible in that ring; i.e., it is a purely
algebraic result.
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Further,
∣
∣
∣
∣

z − a

z′ − a

∣
∣
∣
∣

N+1

=
( r

R

)N+1

.

Thus the absolute value of the second term can be bounded as follows:
∣
∣
∣
∣
∣

1

2πi

∫

C

f(z′)

z′ − z

(
z − a

z′ − a

)N+1

dz′

∣
∣
∣
∣
∣
≤ 1

2π
· 2πR ·M · 1

R− r
·
( r

R

)N+1

=
MR

1−R

( r

R

)N+1

.

Since r < R, this quantity must go to zero in the limit as N → ∞; substituting this into (6) gives

1

2πi

[ ∞∑

n=0

(z − a)n
∫

C

f(z′)

(z′ − a)n+1
dz′
]

= f(z)− lim
N→∞

1

2πi

∫

C

f(z′)

z′ − z

(
z − a

z′ − a

)N+1

dz′ = f(z),

or to write it out more clearly,

f(z) =

∞∑

n=0

(z − a)n
1

2πi

∫

C

f(z′)

(z′ − a)n+1
dz′.

But by the Cauchy integral formula for f (n), the integral here is simply 1
n!f

(n)(a), and we have thus proven
the Taylor series expansion for f ,

f(z) =
∞∑

n=0

1

n!
f (n)(a)(z − a)n,

which will be valid on any disk centred at a on which f is analytic. Note that the above argument shows
quite rigorously both that the above series converges and that it converges to f(z), given only the general
Cauchy integral formula. So if you had never seen a proof that a Taylor series converges to the function it
comes from, now you have!

26. Laurent series. It turns out that for many applications it is important to be able to treat
functions which have varies kinds of singularities, i.e., which fail to be analytic at various points or regions
of the plane. While such functions will still clearly have Taylor series expansions on any disk not containing
any of these singularities, it turns out to be useful to consider a more general type of expansion which will
represent the function on a region surrounding the singularities. These are called Laurent series.

Thus suppose that we have a function f which is analytic on an annulus; specifically, suppose that C
and C′ are two circles, centred at a point a, with radii R and R′ respectively, where R > R′ (so that C′ is
the inner circle), and both oriented counterclockwise, and that f is analytic on the region between C and
C′. We shall extract a series expansion for f from the general Cauchy integral theorem in the same way we
found the Cauchy integral formula and then used it to extract the Taylor expansion for f in the previous
two sections. Our first step is thus to produce a generalisation of the Cauchy integral formula to the present
case. The generalisation is not at all hard. Let z be any point in the annulus between C and C′, and let
γ be a small circle centred at z and with radius r, oriented counterclockwise and entirely contained in the
region between C and C′. Then by the general Cauchy integral theorem in §23, we have

∫

C

f(z′)

z′ − z
dz′ =

∫

C′

f(z′)

z′ − z
dz′ +

∫

γ

f(z′)

z′ − z
dz′.

Now since γ is entirely contained in the region between C and C′, f must be analytic everywhere on and
inside γ, which means that by the usual Cauchy integral formula the second integral above is just

∫

γ

f(z′)

z′ − z
dz′ = 2πif(z),

and the above formula gives

f(z) =
1

2πi

∫

C

f(z′)

z′ − z
dz′ − 1

2πi

∫

C′

f(z′)

z′ − z
dz′;
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in other words, we can generalise the Cauchy integral formula to the case of a function analytic between
two curves if we integrate over both of them with the correct orientation (equivalently, including the correct
minus sign). Evidently we could also extend the formula to a situation where a function was analytic on a
region with multiple holes, but we do not need that here.

Now the first integral above can be treated exactly as before, giving ultimately

∞∑

n=0

(z − a)n
1

2πi

∫

C

f(z′)

(z′ − a)n+1
dz′,

but note that in this case we cannot replace the integral with f (n)(a)/n!, since f is not known to be analytic
at a (f might not even be defined at a, for that matter!). The second integral can be treated by slightly
adapting this method. Since in the second integral the point z′ lies on C′, letting |z − a| = r we have
|z′ − a| = R′ < r; thus we may write

− 1

z′ − z
=

1

z − z′
=

1

(z − a)− (z′ − a)
=

1

z − a

1

1− z′−a
z−a

;

thus we have an analogue to formula (6) but with z′ and z interchanged except inside f :

− 1

2πi

∫

C′

f(z′)

z′ − z
dz =

1

2πi

[
N∑

n=0

(z′ − a)n
∫

C′

f(z′)

(z − a)n+1
dz

]

+
1

2πi

∫

C′

f(z′)

z − z′

(
z′ − a

z − a

)N+1

dz

=
1

2πi

[
N∑

n=0

1

(z − a)n+1

∫

C′

f(z′)(z′ − a)n dz′
]

+
1

2πi

∫

C′

f(z′)

z − z′

(
z′ − a

z − a

)N+1

dz′.

Since we now have, as just noted, |z′ − a| = R′ < r = |z − a|, the argument given above shows that the
second integral vanishes in the limit as N → ∞, and we obtain the series expansion

− 1

2πi

∫

C′

f(z′)

z′ − z
dz =

∞∑

n=0

1

(z − a)n+1

∫

C′

(z′ − a)nf(z′) dz′.

Thus, finally, we find that f(z) can be expressed as the sum of two series:

f(z) =
∞∑

n=0

(z − a)n
1

2πi

∫

C′

f(z′)

(z′ − a)n+1
dz′ +

∞∑

n=0

1

(z − a)n+1

∫

C′

(z′ − a)nf(z′) dz′.

To simplify this a bit, let us make the definitions

an =
1

2πi

∫

C

f(z′)

(z′ − a)n+1
dz′ (n ≥ 0), bn =

1

2πi

∫

C′

(z′ − a)n−1f(z′) dz′, (n ≥ 1)

where in b1 we have (z′ − a)0 = 1 since z′ 6= a, as z′ is on C′ and a is inside C′. Then we can write

f(z) =
∞∑

n=0

an(z − a)n +
∞∑

n=1

bn
1

(z − a)n
;

in other words, whereas in the previous section, when f was analytic everywhere inside the circle C and we
could write it as a sum of powers of z− a, in the case when f is analytic only on an annular region, we must
write f as an infinite series of powers of z − a and 1/(z − a). This is reasonable since 1/(z − a) will not be
analytic at z = a; but note that f may be singular at other points inside C′ than just a.
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Before ending with an example, it is probably worthwhile to step back a bit and consider what be
the importance of the results we have derived in the last three sections. As a concise summary, and for
comparison, these are

f(z) =
1

2πi

∫

C

f(z′)

z′ − z
dz′,

f(z) =

∞∑

n=0

(z − a)n
1

2πi

∫

C

f(z′)

(z′ − a)n+1
dz′,

f(z) =

∞∑

n=0

(z − a)n
1

2πi

∫

C′

f(z′)

(z′ − a)n+1
dz′ +

∞∑

n=0

1

(z − a)n+1

∫

C′

(z′ − a)nf(z′) dz′,

where f is assumed to be analytic within the arbitrary simple closed curve C in the first line, within the
circle C in the second, and between the circles C′ and C in the third. All three of these are representation
formulæ; i.e., they give f(z) as a special type of expression (an integral in the first case, series in the latter
two). One of the uses of formulæof this sort is that they give us concrete ways of writing out f , which allow
us to perform certain manipulations which would be much harder without them. Another, slightly more
abstract, perspective is that these formulægive us a way of breaking f down into other data, which may
encode the information we need for a specific problem in a more convenient way than the map z 7→ f(z)
all by itself. For example, if we are only interested in knowing f(1), then the simpler the formula for f the
better; but if we are interested in knowing

∫

C′
f(z) dz, then the simpler the expression for b1 the better.

On the other hand, these formulæare so general that it will require a fair bit more work before we get
to the concrete applications in which they are so powerful. Thus unfortunately we shall have to stop at the
vague indications in the previous paragraph for the time being, with a promise to say more about it later.

Let us do an example.

EXAMPLE. Let p be a positive integer, let a ∈ C, and define the function f on C\{a} by

f(z) =
1

(z − a)p
.

Then f is analytic everywhere on the plane except at z = a. (This kind of singularity, incidentally, is called
a pole of order p; we shall study these systematically later.) Thus we expect to be able to expand f as a
Laurent series. Actually it is quite obvious that f(z) as given is a (single-term) Laurent series, so actually
we already know this without any calculation; but let us work out the integrals anyway to see what happens.
In this case we may take C and C′ to be any circles centred at a, say with radii R and R′, where the only
condition on these radii is that R > R′. We have first of all

an =
1

2πi

∫

C

f(z′)

(z′ − a)n+1
dz′ =

1

2πi

∫

C

1

(z′ − a)n+p+1
;

now n ≥ 0, while p ≥ 1, so n + p ≥ 1 and by the example we did at the end of §24 above we must have
an = 0. Similarly,

bn =
1

2πi

∫

C′

(z′ − a)n−1f(z′) dz′ =
1

2πi

∫

C′

(z′ − a)n−1−p dz′;

if 1 ≤ n < p (note that if p = 1 there will not be any such n, but that doesn’t matter) then we must have
n−1−p < −1, so this integral is zero for the same reason. Now if instead we have n > p, then n−1−p ≥ 0,
so the integrand is actually analytic, and by the Cauchy integral theorem we have again bn = 0. The only
case left is n = p; in this case we have

bp =
1

2πi

∫

C′

1

z′ − a
dz′ = 1,

by the first example at the end of §24 above. Thus we can write

f(z) =

∞∑

n=0

an(z − a)n +

∞∑

n=1

bn(z − a)−n,
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where an = 0 for all n and bn = 0 except for n = p, where bp = 1. The series on the left thus trivially give
1

(z′−a)p , as they should.

For those of you who have seen orthogonal bases in vector spaces with an inner product, it is worth
noting the formal similarity between the above procedure and that of determining components along the
basis vectors in an orthonormal basis. We are not going to make this formal similarity precise, but it is
worth noting anyway.
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APPENDIX I. REVIEW OF MULTIVARIABLE CALCULUS AND LINEAR ALGEBRA

I. MULTIVARIABLE CALCULUS

1. Parametric curves. A plane parametric curve1 is a curve in the plane which can be described by
two equations

x = x(t), y = y(t), (t ∈ [a, b])

for some interval [a, b]; in other words, for every point (x, y) on the curve, there is some value t ∈ [a, b]
such that x = x(t) and y = y(t). (Note that this t need not be unique.) More informally, if we view t
as a dynamical quantity, the point (x(t), y(t)) ‘traces out’ the entire curve as t varies from a to b. It is
often convenient to represent the point (x(t), y(t)) by a single function, often called γ(t) (the Greek letter
gamma), so that γ(t) = (x(t), y(t)). We shall use γ (without t) to refer to the entire curve, considered as
a single object. When necessary to distinguish between the function γ(t) and the plane curve this function
represents, we shall call the latter the image of γ.

A curve is called closed when (in the notation of the previous paragraph) γ(a) = γ(b). A closed curve
which does not intersect itself (i.e., for which the value of t mentioned above is unique) is called a Jordan
curve. A Jordan curve γ is said to be oriented counterclockwise if, as t increases from a to b, the point γ(t)
traces out the curve in a counterclockwise direction, and similarly to be oriented clockwise if this point traces
out the curve in a clockwise direction.2 We note for future use that if D is a connected region of the plane,
then its boundary curve is always a Jordan curve. This result has a converse in the so-called Jordan curve
theorem which we shall mention later on in the course.

General parametric curves can display pathological behaviour, even when x(t) and y(t) are both con-
tinuous.3 In this course we shall deal exclusively with so-called piecewise-smooth curves, defined as follows.
A parametric curve γ is said to be piecewise-smooth on an interval [a, b] if (i) it is continuous on [a, b] and
(ii) there are points t0 = a < t1 < · · · < tn = b such that on each subinterval (ti, ti+1), i = 0, · · · , n − 1,
the derivative γ′(t) = x′(t)i + y′(t)j4 exists, and is continuous and nonzero. (Condition (ii) amounts to
saying that x(t) and y(t) are continuously differentiable on (ti, ti+1), and that x′(t) and y′(t) never vanish
simultaneously. This last requirement is necessary to avoid ‘corners’; see the practice problems!)

A piecewise smooth curve has a well-defined length. Recall that the length of a parametric curve γ
defined on some interval [a, b] and such that γ′ is continuous there is given by

∫ b

a

|γ′(t)| dt,

where | · | denotes the length of a vector. This definition can be extended to a piecewise-smooth curve in an
obvious way: if t0, t1, . . . , tn are the points given in the definition of piecewise-smoothness, then we define
the length of γ to be5

∫ t1

t0

|γ′(t)| dt+
∫ t2

t1

|γ′(t)| dt+ · · ·+
∫ tn

tn−1

|γ′(t)| dt =
n−1∑

i=0

∫ ti+1

ti

|γ′(t)| dt.

1 Parametric curves can, of course, also be considered in three (and even arbitrary) dimensions. In this
course, though, we shall only need them in two.

2 Note that this definition would not make sense for a self-intersecting curve: for example, no matter how
you trace out a figure-eight, the upper part will be oriented one way while the lower part will be oriented
another.

3 For example, one can find a parametric curve which – at least if we are allowed to replace the bounded
interval [a, b] by the whole real line – essentially fill out an entire two-dimensional region!

4 While we shall not need to make this distinction in this course, it bears pointing out that, technically
speaking, points and vectors are not identical, and when one must distinguish between them, a curve γ gives
a point for each t while its derivative gives a vector.

5 To be precise, the integrals here should be understood as improper integrals obtained by integrating
from something slightly greater than ti to something slightly less than ti+1, and then taking the limit as
these endpoints approach those two values, respectively; but this is generally not something which needs to
be made explicit in practice, and we shall generally pass over it in silence in similar cases in the future.
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The main use we shall make of parametric curves is in line integrals (see §3 below), and also in describing
how two points in the plane are connected. This latter will become clearer as we progress through the course.
The fact that two real numbers are essentially only connected in one way, while two complex numbers can
be connected in multiple ways, some of which may be distinct (in an appropriate sense), is part of what
makes complex analysis interesting.

2. Partial derivatives. Suppose that we have a function f defined on a region of the plane, which
we suppose has Cartesian coordinates (x, y). We define its partial derivatives with respect to x and y to be

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

∂f

∂y
= lim

h→0

(f(x, y + h)− f(x, y)

h
.

We recall that in multivariable calculus we saw that the existence of both partial derivatives still allowed for
quite a bit of pathological behaviour. It turns out that for functions of a complex variable there are additional
requirements on the partial derivatives in order for the function to have a single complex derivative, and
that these requirements, though simple, lead to far-reaching results which rule out all such pathological
behaviours.

Recall that if a function f has a local extremum at a point where its partial derivatives exist, then they
must both vanish.

Some examples of partial derivatives are given in the review problems.
[This paragraph is an aside for students who have had MAT237 or MAT257, or who have otherwise

learned how to view the derivative as a linear map. In this class we shall be interested in complex-valued
functions of a complex variable; since the set of complex numbers is a two-dimensional vector space over the
real numbers, this means that we are in essence considering functions from R2 to R2 (or, in essence, a vector
field on R2). Thus the derivative of such a function, in the multivariable-calculus sense, should be a linear
map from R2 to R2 approximating the original function at the point of differentiation. It turns out that the
requirement that a complex derivative exists requires that this map be a composition of an isotropic scaling
(i.e., multiplication by a single real number) and a rotation. This is the basis for the study of functions of a
complex variable as conformal maps, namely functions from R2 to R2 which preserve angles.]

3. Line integrals and vector fields. Suppose that γ is a piecewise-smooth curve on an interval
[a, b] (γ(t) = (x(t), y(t))), and that f is a continuous function defined on some set containing the image of γ.
Then we define three different types of line integral along γ, as follows. Let t0, t1, · · · , tn be the points given
in the definition of piecewise-smoothness; then we define

∫

γ

f dx =
n−1∑

i=0

∫ ti+1

ti

f(x(t), y(t))x′(t) dt

∫

γ

f dy =
n−1∑

i=0

∫ ti+1

ti

f(x(t), y(t)) y′(t) dt

∫

γ

f ds =
n−1∑

i=0

∫ ti+1

ti

f(x(t), y(t)) |γ′(t)| dt,

and call these the line integrals of f along γ with respect to x, y, and arclength, respectively.
Recall that a vector field on a region of R2 is a function which to every point in its domain associates

a vector in R2; in other words, it can be written as a function F(x, y) = P (x, y)i +Q(x, y)j, where P (x, y)
and Q(x, y) are functions defined on the region called (naturally) the components of the vector field. If the
vector field F is defined on a region containing γ, then we may combine the line integrals with respect to x
and y of the components of F to define a new line integral, as follows:

∫

γ

P (x, y) dx+

∫

γ

Q(x, y) dy =

∫

γ

F(x, y) · dx.
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We call this the line integral of the vector field along the curve γ. Recall the following fundamental theorem
of calculus for line integrals: If F = ∇f for some function f , i.e., if F is a gradient, then

∫

γ

F · dx = f(γ(b))− f(γ(a)),

and this integral is therefore independent of the choice of path γ. This notion of path-independence (this
is a standard term, though in our current setting it would be more natural to call it curve-independence!),
namely that the line integral along a certain curve only depends on the end-points of the curve and not on
the curve itself, is of central importance in the study of analytic functions of a complex variable. Recall
that it is equivalent to the requirement that the line integral along any closed curve be zero. This is in turn
related to Green’s theorem, which states that for any vector field F = P (x, y)i + Q(x, y)j and any closed
curve γ bounding a connected region D and oriented counterclockwise,

∫

γ

F · dx =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)

dA,

where the latter is an area integral over the region D. This is a special case of Stokes’s theorem, which
we shall not need in its full generality but which we state here because it provides useful notation: If S
is any (sufficiently smooth) connected surface in R3 with boundary curve C, and S and C are oriented
consistently,6 then ∫

C

F · dx =

∫∫

S

curlF · n dA.

Here the second integral is a surface integral and n represents the unit normal to the surface S, but we shall
not need these things in this class. The curl of a vector field can be defined heuristically as curlF = ∇×F;
if F is a vector field on R2 then the curl can be taken to be the single number

∂Q

∂x
− ∂P

∂y

appearing in Green’s theorem. For us this is the only case for which we shall need to use the curl (and we
shall not need to use it much even here).

Note now that Green’s theorem tells us that line integrals of a vector field are path-independent exactly
when the curl of that vector field is zero. Such a vector field is called conservative, though we shall only
need this term only occasionally. We have seen that a vector field which is the gradient of a function is
conservative; on a so-called simply connected region – by which we mean a region ‘without holes’, or, more
precisely, whose boundary is a single Jordan curve – the converse is also true. We shall see that these results
have analogues in the theory of functions of a complex variable, though the results generally are not quite
exact copies.

II. LINEAR ALGEBRA

4. Matrices. In this course we shall not need much from the results of linear algebra, but mostly a
familiarity with its concepts. Recall that a matrix of size m by n is a two-dimensional array of numbers

[aij ] =







a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn






,

and is called square if m = n. The product of matrices [aij ] and [bjk] of sizes m by n and n by ℓ is defined
to be the matrix [cik] of size m by ℓ given by

cik =

n∑

j=1

aijbjk.

6 For us, this just means that were γ oriented clockwise we would need to introduce an extra minus sign
on the right-hand side of Green’s theorem.
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Recall that the identity matrix of size n by n

I =







1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1







has the property that AI = A and IB = B for any matrices A and B of size m by n and n by ℓ, respectively.
If a matrix A = [aij ] is square of size n by n, then its inverse (when it exists) is a matrix A−1 of size n by
n satisfying

AA−1 = A−1A = I.

In general, finding an inverse matrix is hard. For two-by-two matrices, however, there is a simple formula
which is often useful, given by Cramer’s rule: If

A =

[
a b
c d

]

,

then

A−1 =
1

ad− bc

[
d −b
−c a

]

,

as long as ad − bc 6= 0. The quantity ad − bc is called the determinant of the matrix A; the notion of
determinant can be defined for a square matrix of any size, but as the general definition is complicated and
we shall not need it in this course we pass over it for the moment.

Recall that a matrix of size m by n can be viewed as giving a linear transformation from Rn to Rm.
In particular, a 2 by 2 matrix can be viewed as a linear transformation on the plane. Two particularly
important and simple examples are isotropic scaling and rotation. The first is just multiplication by a single
scalar and corresponds to the matrix (λ 6= 0)

[
λ 0
0 λ

]

, which has inverse

[
λ−1 0
0 λ−1

]

.

The second is a bit more complicated. Consider rotation of the plane by an angle θ counterclockwise around
the origin. Since vector addition and scalar multiplication in the plane can be defined in terms of geometric
pictures which are transformed rigidly by such a rotation, we see that this rotation must be linear; thus
it suffices to determine its effect on the basis vectors i and j of the plane. If we rotate the vector i by
an angle θ counterclockwise around the origin, a little geometry makes it clear that we obtain the vector
cos θi+sin θj, while if we rotate j the same way we obtain the vector − sin θi+cos θj; thus the matrix giving
this transformation is [

cos θ − sin θ
sin θ cos θ

]

.

We note two interesting properties of this matrix: first, its determinant is

cos θ · cos θ − (− sin θ) · sin θ = cos2 θ + sin2 θ = 1;

secondly, its inverse is (by the general formula above)

[
cos θ sin θ
− sin θ cos θ

]

,

which is just the original matrix with θ replaced by −θ! This makes good sense since the inverse to a
counterclockwise rotation by θ is a clockwise rotation by θ, which is essentially just a counterclockwise
rotation by −θ.

47



MAT334, 2020. I, §26 [May – June] Appendices Nathan Carruth

APPENDIX II. BASIC DEFINITIONS AND PROPERTIES OF COMPLEX NUMBERS.

1. Basic definitions. A complex number is an abstract quantity z = a + ib, where a and b are real
numbers and i is an abstract quantity which we require to satisfy i2 = −1.1 We require that these numbers
satisfy all of the usual properties of arithmetic; thus if z1 = a1 + ib1 and z2 = a2 + ib2, we have

z1 + z2 = (a1 + a2) + i(b1 + b2)

z1 · z2 = a1a2 − b1b2 + i(a1b2 + b1a2.

We define the conjugate of a complex number z = a+ ib to be the complex number

z = a− ib,

and note that the product
zz = a2 + b2

is always real and nonnegative. By the Pythagorean theorem,
√
zz is the distance from the origin to the

point (a, b), and we call this quantity the modulus2 (or, sometimes, the absolute value or even the length) of
the complex number z, and denote it as

|z| =
√
zz.

The function | · | satisfies all of the usual properties of the absolute value function on real numbers:

|z1z2| = |z1||z2|, |z1 + z2| ≤ |z1|+ |z2|.

Since geometrically | · | represents distance from the origin, a set of the form

{z||z − z0| < R}

is a circle of radius R centred at the point corresponding to z0.
The ratio of two complex numbers can be determined as follows. Let z1 = a+ ib, z2 = c+ id be complex

numbers with z2 6= 0; then
z1
z2

=
z1z2
z2z2

=
(a+ ib)(c− id)

c2 + d2

=
ac+ bd

c2 + d2
+ i

bc− ad

c2 + d2
.

Let z = a+ ib be a complex number, and consider the corresponding point (a, b) in the plane. Let this
point have a polar representation (r, θ), where r is the distance to it from the origin and θ is the angle from
the positive x axis to a ray from the origin to the point, measured counterclockwise. Then we may write

a = r cos θ, b = r sin θ,

so that we have
z = r(cos θ + i sin θ).

Here, clearly, r = |z|. The angle θ is called the argument of the complex number z and is defined only
up to a multiple of 2π. From the definition of the complex exponential below it follows that we may write
equivalently

z = reiθ .

If z1 = r1e
iθ1 and z2 = r2e

iθ2 are any two complex numbers, then it is not hard to show that their product
has the polar representation

z1z2 = r1r2e
i(θ1+θ2),

1 For those who are familiar with fields, we note that we may view the set of complex numbers as the
quotient field R[x]/(x2 + 1), which is quite natural since we wish it to be the real field R with a root of the
equation x2 + 1 = 0 attached. In this quotient field the equivalence class of x plays the role of i.

2 Plural, moduli.
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i.e., that moduli multiply while arguments add. Geometrically, multiplying complex numbers amounts to
multiplying lengths and adding angles. Further,

z1
z2

=
r1
r2

ei(θ1−θ2),

i.e., dividing corresponds to dividing lengths and subtracting angles. If m is any positive integer, then, we
have

zm = z · z · · · z
︸ ︷︷ ︸

m times

= rmeimθ.

If m is a negative integer, we define

zm =
1

z|m| ,

and it is simple to show that in this case also

zm = rmeimθ,

i.e., that this formula holds for all nonzero integer exponents m. For nonzero z we define z0 = 1, and this
formula then holds for all integer exponents.
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