APPENDIX II. BASIC DEFINITIONS AND PROPERTIES OF COMPLEX NUMBERS.

1. Basic definitions. A complex number is an abstract quantity $z=a+i b$, where a and b are real numbers and i is an abstract quantity which we require to satisfy $i^{2}=-1 .{ }^{1}$ We require that these numbers satisfy all of the usual properties of arithmetic; thus if $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$, we have

$$
\begin{gathered}
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) \\
z_{1} \cdot z_{2}=a_{1} a_{2}-b_{1} b_{2}+i\left(a_{1} b_{2}+b_{1} a_{2} .\right.
\end{gathered}
$$

We define the conjugate of a complex number $z=a+i b$ to be the complex number

$$
\bar{z}=a-i b,
$$

and note that the product

$$
z \bar{z}=a^{2}+b^{2}
$$

is always real and nonnegative. By the Pythagorean theorem, $\sqrt{z \bar{z}}$ is the distance from the origin to the point (a, b), and we call this quantity the modulus ${ }^{2}$ (or, sometimes, the absolute value or even the length) of the complex number z, and denote it as

$$
|z|=\sqrt{z \bar{z}} .
$$

The function $|\cdot|$ satisfies all of the usual properties of the absolute value function on real numbers:

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

Since geometrically $|\cdot|$ represents distance from the origin, a set of the form

$$
\left\{z\left|\left|z-z_{0}\right|<R\right\}\right.
$$

is a circle of radius R centred at the point corresponding to z_{0}.
The ratio of two complex numbers can be determined as follows. Let $z_{1}=a+i b, z_{2}=c+i d$ be complex numbers with $z_{2} \neq 0$; then

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{z_{1} \overline{z_{2}}}{z_{2} \overline{z_{2}}}=\frac{(a+i b)(c-i d)}{c^{2}+d^{2}} \\
& =\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}} .
\end{aligned}
$$

Let $z=a+i b$ be a complex number, and consider the corresponding point (a, b) in the plane. Let this point have a polar representation (r, θ), where r is the distance to it from the origin and θ is the angle from the positive x axis to a ray from the origin to the point, measured counterclockwise. Then we may write

$$
a=r \cos \theta, \quad b=r \sin \theta,
$$

so that we have

$$
z=r(\cos \theta+i \sin \theta)
$$

Here, clearly, $r=|z|$. The angle θ is called the argument of the complex number z and is defined only up to a multiple of 2π. From the definition of the complex exponential below it follows that we may write equivalently

$$
z=r e^{i \theta}
$$

[^0]If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ are any two complex numbers, then it is not hard to show that their product has the polar representation

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

i.e., that moduli multiply while arguments add. Geometrically, multiplying complex numbers amounts to multiplying lengths and adding angles. Further,

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

i.e., dividing corresponds to dividing lengths and subtracting angles. If m is any positive integer, then, we have

$$
z^{m}=\underbrace{z \cdot z \cdots z}_{m \text { times }}=r^{m} e^{i m \theta} .
$$

If m is a negative integer, we define

$$
z^{m}=\frac{1}{z^{|m|}}
$$

and it is simple to show that in this case also

$$
z^{m}=r^{m} e^{i m \theta}
$$

i.e., that this formula holds for all nonzero integer exponents m. For nonzero z we define $z^{0}=1$, and this formula then holds for all integer exponents.

[^0]: ${ }^{1}$ For those who are familiar with fields, we note that we may view the set of complex numbers as the quotient field $\mathbf{R}[x] /\left(x^{2}+1\right)$, which is quite natural since we wish it to be the real field \mathbf{R} with a root of the equation $x^{2}+1=0$ attached. In this quotient field the equivalence class of x plays the role of i.
 ${ }^{2}$ Plural, moduli.

