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Summary:
• We motivate the definition of the Poisson kernel.
In lecture we attempted to give a derivation of the Poisson kernel. While the main idea was correct,

there were a few errors in detail and interpretation, and when those are corrected it turns out that what was
given can motivate the definition of the Poisson kernel, but does not really serve as a proof. We go through
this motivation anyway.

Let D be the disk of radius r centred at the origin, C = ∂D its boundary (the unit circle centred at the
origin), and consider the following problem:

∆u = 0, u|∂D = h, (1)

where ∆ is the Laplacian, ∆u = ∂2u/∂x2 + ∂2u/∂y2, and h is a function on C. Now suppose that there is
a function f which is analytic on the complex plane and satisfies Re f |∂D = h; since Re f must be harmonic
everywhere on the plane, and in particular on D, we see that u = Re f is a solution to problem (1). Now
the Cauchy integral formula allows us to write

f(x+ iy) =
1

2πi

∫

C

f(z′)

z′ − [x+ iy]
dz′. (2)

If we define

z∗ =
r2

z

[note that this corrects an error in the lecture, where z∗ was mistakenly given as r2/z], then z∗ will be
outside of C so that we will have

∫

C

f(x′ + iy′)

z′ − z∗
dz′ = 0 (3)

Thus we may subtract this integral from (2). Now we may parameterise C as

z′(t) = reiθ , θ ∈ [0, 2π];

let us write also x+ iy = r0e
iθ0 for some θ0. Then (2) becomes, after subtracting (3),

f(x+ iy) =
1

2πi

∫ 2

0

π

[

1

reiθ − r0eiθ0
− 1

reiθ − r2

r0
eiθ0

]

f(reiθ)ireiθ dθ

=
1

2π

∫ 2π

0

− r2

r0
eiθ0 + r0e

iθ0

(reiθ − r0eiθ0)
(

reiθ − r2

r0
eiθ0

)reiθf(reiθ) dθ

=
1

2π

∫ 2π

0

−(r2 − r20)
r
r0
ei(θ0+θ)

(reiθ − r0eiθ0)
(

reiθ − r2

r0
eiθ0

)f(reiθ) dθ

=
1

2π

∫ 2π

0

− r2−r20
r2
0

ei(θ0+θ)

(

r
r0
eiθ − eiθ0

)(

eiθ − r
r0
eiθ0

)f(reiθ) dθ

=
1

2π

∫ 2π

0

r2−r20
r2
0

(

r
r0

− ei(θ0−θ)
)(

r
r0

− ei(θ−θ0)
)f(reiθ) dθ

=
1

2π

∫ 2π

0

r2 − r20
∣

∣r − r0ei(θ0−θ)
∣

∣

2 f(re
iθ) dθ.

If we take the real part of this, then, since everything in the integrand is real except for f , and Re f |∂D = h,
we have

u(x, y) = Re f =
1

2π

∫ 2π

0

r2 − r20
∣

∣r − r0ei(θ0−θ)
∣

∣

2h(r cos θ, r sin θ) dθ

=
1

2π

∫ 2π

0

r2 − r20
r2 + r20 − 2rr0 cos(θ − θ0)

h(r cos θ, r sin θ) dθ. (4)
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As noted above, the foregoing does not actually prove that given a continuous function h the above
function u will give a solution to problem (1); however, this can be proved by other means, though we shall
not do so here. We shall however give an example.
EXAMPLE. Let us start with a trivial example:

∆u = 0, u|∂D = 1.

Clearly the solution to this is 1. Using the integral formula (4), we have

u(x, y) =
1

2π

∫ 2π

0

r2 − r20
r2 + r20 − 2rr0 cos(θ − θ0)

dθ

=
1

2π

∫ 2π

0

r2 − r20
r2 + r20 − 2rr0 cos θ

dθ. (5)

Now it turns out that the integrand here has an explicit antiderivative. To determine it, we work with the
integral

∫

1

a− b cos θ
dθ, (6)

where we assume a > b ≥ 0. Note that, since cos θ = cos2 θ/2− sin2 θ/2 = 2 cos2 θ/2− 1,

a− b cos θ = (a+ b)− b(1 + cos θ) = (a+ b)− 2b cos2
θ

2
,

so that the integral (6) may be rewritten as
∫

1

(a+ b)− 2b cos2 θ
2

dθ =

∫

sec2 θ
2

(a+ b) sec2 θ
2 − 2b

dθ.

Let us now make the substitution v = tan θ/2, dv = 1
2 sec

2 θ/2 dθ; then this integral becomes, since sec2 x =
1 + tan2 x,

2

∫

1

(a+ b)(1 + v2)− 2b
dv =

2

a+ b

∫

1

v2 + a−b
a+b

dv

=
2

a+ b
·
[

a+ b

a− b

]1/2

tan−1

[

{

a+ b

a− b

}1/2

v

]

=
2√

a2 − b2
tan−1

[

{

a+ b

a− b

}1/2

v

]

,

from which we obtain finally

∫

1

a− b cos θ
dθ =

2√
a2 − b2

tan−1

[

{

a+ b

a− b

}1/2

tan
θ

2

]

.

Now for us a = r2 + r20 while b = 2rr0, so a+ b = (r + r0)
2, a− b = (r − r0)

2, and
√
a2 − b2 = r2 − r20 , and

we obtain
∫

r2 − r20
r2 + r20 − 2rr0 cos θ

dθ = 2 tan−1

[

r + r0
r − r0

tan
θ

2

]

.

Note that this formula is only valid on intervals which do not contain any odd integer multiple of π; for
example, (−π, π), (π, 3π), and so on. This is because tan θ

2 is not defined at odd integer multiples of π. Thus
to evaluate our original integral (5) we must split the interval [0, 2π] into two pieces, [0, π) and (π, 2π], and
treat each piece as an improper integral. The two integrals we thus get are

1

2π

∫ π

0

r2 − r20
r2 + r20 − 2rr0 cos(θ − θ0)

dθ =
1

2π
lim

θ→π−

2 tan−1

[

r + r0
r − r0

tan
θ

2

]∣

∣

∣

∣

θ

0

=
1

2π
(π − 0) =

1

2
,

1

2π

∫ 2π

π

r2 − r20
r2 + r20 − 2rr0 cos(θ − θ0)

dθ =
1

2π
lim

θ→π+
2 tan−1

[

r + r0
r − r0

tan
θ

2

]
∣

∣

∣

∣

2π

θ

=
1

2π
(0 − (−π)) =

1

2
,

and finally we obtain u = 1, as we found originally by inspection.
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